Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Diabetic-related complications, such as delayed and incomplete wound healing, are an increasing concern in the realm of public health. Ferroptosis represents an innovative variant of cellular demise. Ferroptosis is currently thought to be an essential factor in the process of diabetic wound recovery. This article, therefore, examines the novel function and mechanism of ferroptosis in the repair of diabetic wounds. Diabetic hyperglycemia can induce a healing process that disrupts the function and activity of cells, thereby impeding the repair of diabetic wounds. Ferroptosis may be accelerated in diabetic lesions due to protracted low-level inflammation and oxidative stress induced by elevated glucose, according to the available evidence. As a result, the buildup of ferroptosis impedes cellular migration and proliferation, amplifies oxidative stress and the inflammatory response, and ultimately interferes with the wound-healing process. By regulating the expression of factors linked to iron mortality, this substance expedites wound healing and fosters angiogenesis in diabetic rodents. Moreover, new perspectives on the difficulties and outlooks related to ferroptosis in the context of diabetic wound healing are provided, thereby contributing to the progression of understanding in this field.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998352547250107065356
2025-02-28
2026-02-19
Loading full text...

Full text loading...

/deliver/fulltext/cdr/22/1/CDR-22-1-06.html?itemId=/content/journals/cdr/10.2174/0115733998352547250107065356&mimeType=html&fmt=ahah

References

  1. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.10911934879977
    [Google Scholar]
  2. ArmstrongD.G. BoultonA.J.M. BusS.A. Diabetic foot ulcers and their recurrence.N. Engl. J. Med.2017376242367237510.1056/NEJMra161543928614678
    [Google Scholar]
  3. RajamaniK. ColmanP.G. LiL.P. BestJ.D. VoyseyM. D’EmdenM.C. LaaksoM. BakerJ.R. KeechA.C. FIELD study investigators Effect of fenofibrate on amputation events in people with type 2 diabetes mellitus (FIELD study): A prespecified analysis of a randomised controlled trial.Lancet200937396771780178810.1016/S0140‑6736(09)60698‑X19465233
    [Google Scholar]
  4. JeffcoateW.J. VileikyteL. BoykoE.J. ArmstrongD.G. BoultonA.J.M. Current challenges and opportunities in the prevention and management of diabetic foot ulcers.Diabetes Care201841464565210.2337/dc17‑183629559450
    [Google Scholar]
  5. MenkeA. CasagrandeS. GeissL. CowieC.C. Prevalence of and trends in diabetes among adults in the United States, 1988-2012.JAMA2015314101021102910.1001/jama.2015.1002926348752
    [Google Scholar]
  6. HuangJ. ChenG. WangJ. LiuS. SuJ. Platycodin D regulates high glucose-induced ferroptosis of HK-2 cells through glutathione peroxidase 4 (GPX4).Bioengineered20221336627663710.1080/21655979.2022.204583435226829
    [Google Scholar]
  7. LiS. LiY. WuZ. WuZ. FangH. Diabetic ferroptosis plays an important role in triggering on inflammation in diabetic wound.Am. J. Physiol. Endocrinol. Metab.20213214E509E52010.1152/ajpendo.00042.202134423682
    [Google Scholar]
  8. DuscherD. TrotsyukA.A. MaanZ.N. KwonS.H. RodriguesM. EngelK. Stern-BuchbinderZ.A. BonhamC.A. BarreraJ. WhittamA.J. HuM.S. InayathullahM. RajadasJ. GurtnerG.C. Optimization of transdermal deferoxamine leads to enhanced efficacy in healing skin wounds.J. Control. Release201930823223910.1016/j.jconrel.2019.07.00931299261
    [Google Scholar]
  9. SunL. ZongG. PanA. YeX. LiH. YuZ. ZhaoY. ZouS. YuD. JinQ. HuF.B. LinX. Elevated plasma ferritin is associated with increased incidence of type 2 diabetes in middle-aged and elderly Chinese adults.J. Nutr.201314391459146510.3945/jn.113.17780823902953
    [Google Scholar]
  10. DixonS.J. LembergK.M. LamprechtM.R. SkoutaR. ZaitsevE.M. GleasonC.E. PatelD.N. BauerA.J. CantleyA.M. YangW.S. MorrisonB.III StockwellB.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death.Cell201214951060107210.1016/j.cell.2012.03.04222632970
    [Google Scholar]
  11. DixonS.J. StockwellB.R.J.A.R.o.C.B. The hallmarks of ferroptosis.Annu. Rev. Cancer Biol.201931355410.1146/annurev‑cancerbio‑030518‑055844
    [Google Scholar]
  12. MouY. WangJ. WuJ. HeD. ZhangC. DuanC. LiB. Ferroptosis, a new form of cell death: Opportunities and challenges in cancer.J. Hematol. Oncol.20191213410.1186/s13045‑019‑0720‑y30925886
    [Google Scholar]
  13. HajmousaG. PrzybytE. PfisterF. Paredes-JuarezG.A. MogantiK. BuschS. KuipersJ. KlaassenI. van LuynM.J.A. KrenningG. HammesH.P. HarmsenM.C. Human adipose tissue-derived stromal cells act as functional pericytes in mice and suppress high-glucose-induced proinflammatory activation of bovine retinal endothelial cells.Diabetologia201861112371238510.1007/s00125‑018‑4713‑030151615
    [Google Scholar]
  14. GurtnerG.C. WernerS. BarrandonY. LongakerM.T. Wound repair and regeneration.Nature2008453719331432110.1038/nature0703918480812
    [Google Scholar]
  15. CuiS. LiuX. LiuY. HuW. MaK. HuangQ. ChuZ. TianL. MengS. SuJ. ZhangW. LiH. FuX. ZhangC. Autophagosomes defeat ferroptosis by decreasing generation and increasing discharge of free Fe 2+ in skin repair cells to accelerate diabetic wound healing.Adv. Sci.20231025230041410.1002/advs.20230041437387572
    [Google Scholar]
  16. HuangY. DingY. WangB. JiQ. PengC. TanQ. Neutrophils extracellular traps and ferroptosis in diabetic wounds.Int. Wound J.20232093840385410.1111/iwj.1423137199077
    [Google Scholar]
  17. FengJ. WangJ. WangY. HuangX. ShaoT. DengX. CaoY. ZhouM. ZhaoC. Oxidative stress and lipid peroxidation: Prospective associations between ferroptosis and delayed wound healing in diabetic ulcers.Front. Cell Dev. Biol.20221089865710.3389/fcell.2022.89865735874833
    [Google Scholar]
  18. EvstatievR. GascheC. Iron sensing and signalling.Gut201261693395210.1136/gut.2010.21431222016365
    [Google Scholar]
  19. ZhangS. XinW. AndersonG.J. LiR. GaoL. ChenS. ZhaoJ. LiuS. Double-edge sword roles of iron in driving energy production versus instigating ferroptosis.Cell Death Dis.20221314010.1038/s41419‑021‑04490‑135013137
    [Google Scholar]
  20. TangD. ChenX. KangR. KroemerG. Ferroptosis: Molecular mechanisms and health implications.Cell Res.202131210712510.1038/s41422‑020‑00441‑133268902
    [Google Scholar]
  21. DasN.K. SchwartzA.J. BarthelG. InoharaN. LiuQ. SankarA. HillD.R. MaX. LambergO. SchnizleinM.K. ArquésJ.L. SpenceJ.R. NunezG. PattersonA.D. SunD. YoungV.B. ShahY.M. Microbial metabolite signaling is required for systemic iron homeostasis.Cell Metab.2020311115130.e610.1016/j.cmet.2019.10.00531708445
    [Google Scholar]
  22. GalarisD. BarboutiA. PantopoulosK. Iron homeostasis and oxidative stress: An intimate relationship.Biochim. Biophys. Acta Mol. Cell Res.201918661211853510.1016/j.bbamcr.2019.11853531446062
    [Google Scholar]
  23. ChengY. ZakO. AisenP. HarrisonS.C. WalzT. Structure of the human transferrin receptor-transferrin complex.Cell2004116456557610.1016/S0092‑8674(04)00130‑814980223
    [Google Scholar]
  24. El HoutM. Dos SantosL. HamaïA. MehrpourM. A promising new approach to cancer therapy: Targeting iron metabolism in cancer stem cells.Semin. Cancer Biol.20185312513810.1016/j.semcancer.2018.07.00930071257
    [Google Scholar]
  25. KeY. QianZ.M. Brain iron metabolism: Neurobiology and neurochemistry.Prog. Neurobiol.200783314917310.1016/j.pneurobio.2007.07.00917870230
    [Google Scholar]
  26. ZhangD.L. GhoshM.C. OllivierreH. LiY. RouaultT.A. Ferroportin deficiency in erythroid cells causes serum iron deficiency and promotes hemolysis due to oxidative stress.Blood2018132192078208710.1182/blood‑2018‑04‑84299730213870
    [Google Scholar]
  27. DrakesmithH. NemethE. GanzT. Ironing out Ferroportin.Cell Metab.201522577778710.1016/j.cmet.2015.09.00626437604
    [Google Scholar]
  28. FillebeenC. CharleboisE. WagnerJ. KatsarouA. MuiJ. ValiH. Garcia-SantosD. PonkaP. PresleyJ. PantopoulosK. Transferrin receptor 1 controls systemic iron homeostasis by fine-tuning hepcidin expression to hepatocellular iron load.Blood2019133434435510.1182/blood‑2018‑05‑85040430538134
    [Google Scholar]
  29. YanatoriI. KishiF. DMT1 and iron transport.Free Radic. Biol. Med.2019133556310.1016/j.freeradbiomed.2018.07.02030055235
    [Google Scholar]
  30. ChutvanichkulB. VattanaviboonP. Mas-oodiS. U-pratyaY. WanachiwanawinW. Labile iron pool as a parameter to monitor iron overload and oxidative stress status in β-thalassemic erythrocytes.Cytometry B Clin. Cytom.201894463163610.1002/cyto.b.2163329486524
    [Google Scholar]
  31. KakhlonO. CabantchikZ.I. The labile iron pool: characterization, measurement, and participation in cellular processes1 1This article is part of a series of reviews on “Iron and Cellular Redox Status.” The full list of papers may be found on the homepage of the journal.Free Radic. Biol. Med.20023381037104610.1016/S0891‑5849(02)01006‑712374615
    [Google Scholar]
  32. NigamS. ScheweT. Phospholipase A2s and lipid peroxidation.Biochim. Biophys. Acta Mol. Cell Biol. Lipids200014881-216718110.1016/S1388‑1981(00)00119‑011080686
    [Google Scholar]
  33. Muralikrishna AdibhatlaR. HatcherJ.F. Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia.Free Radic. Biol. Med.200640337638710.1016/j.freeradbiomed.2005.08.04416443152
    [Google Scholar]
  34. Negre-SalvayreA. AugeN. AyalaV. BasagaH. BoadaJ. BrenkeR. ChappleS. CohenG. FeherJ. GruneT. LengyelG. MannG.E. PamplonaR. PoliG. Portero-OtinM. RiahiY. SalvayreR. SassonS. SerranoJ. ShamniO. SiemsW. SiowR.C.M. WiswedelI. ZarkovicK. ZarkovicN. Pathological aspects of lipid peroxidation.Free Radic. Res.201044101125117110.3109/10715762.2010.49847820836660
    [Google Scholar]
  35. NikiE. Lipid peroxidation: Physiological levels and dual biological effects.Free Radic. Biol. Med.200947546948410.1016/j.freeradbiomed.2009.05.03219500666
    [Google Scholar]
  36. BaoT. ZhangX. XieW. WangY. LiX. TangC. YangY. SunJ. GaoJ. YuT. ZhaoL. TongX. Natural compounds efficacy in complicated diabetes: A new twist impacting ferroptosis.Biomed. Pharmacother.202316811554410.1016/j.biopha.2023.11554437820566
    [Google Scholar]
  37. MagtanongL. KoP.J. ToM. CaoJ.Y. ForcinaG.C. TarangeloA. WardC.C. ChoK. PattiG.J. NomuraD.K. OlzmannJ.A. DixonS.J. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state.Cell Chem. Biol.2019263420432.e910.1016/j.chembiol.2018.11.01630686757
    [Google Scholar]
  38. GirottiA.W. KorytowskiW. Cholesterol hydroperoxide generation, translocation, and reductive turnover in biological systems.Cell Biochem. Biophys.2017753-441341910.1007/s12013‑017‑0799‑028434137
    [Google Scholar]
  39. KaganV.E. MaoG. QuF. AngeliJ.P.F. DollS. CroixC.S. DarH.H. LiuB. TyurinV.A. RitovV.B. KapralovA.A. AmoscatoA.A. JiangJ. AnthonymuthuT. MohammadyaniD. YangQ. PronethB. Klein-SeetharamanJ. WatkinsS. BaharI. GreenbergerJ. MallampalliR.K. StockwellB.R. TyurinaY.Y. ConradM. BayırH. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis.Nat. Chem. Biol.2017131819010.1038/nchembio.223827842066
    [Google Scholar]
  40. DollS. PronethB. TyurinaY.Y. PanziliusE. KobayashiS. IngoldI. IrmlerM. BeckersJ. AichlerM. WalchA. ProkischH. TrümbachD. MaoG. QuF. BayirH. FüllekrugJ. ScheelC.H. WurstW. SchickJ.A. KaganV.E. AngeliJ.P.F. ConradM. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition.Nat. Chem. Biol.2017131919810.1038/nchembio.223927842070
    [Google Scholar]
  41. ShintokuR. TakigawaY. YamadaK. KubotaC. YoshimotoY. TakeuchiT. KoshiishiI. ToriiS. Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3.Cancer Sci.2017108112187219410.1111/cas.1338028837253
    [Google Scholar]
  42. Friedmann AngeliJ.P. SchneiderM. PronethB. TyurinaY.Y. TyurinV.A. HammondV.J. HerbachN. AichlerM. WalchA. EggenhoferE. BasavarajappaD. RådmarkO. KobayashiS. SeibtT. BeckH. NeffF. EspositoI. WankeR. FörsterH. YefremovaO. HeinrichmeyerM. BornkammG.W. GeisslerE.K. ThomasS.B. StockwellB.R. O’DonnellV.B. KaganV.E. SchickJ.A. ConradM. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice.Nat. Cell Biol.201416121180119110.1038/ncb306425402683
    [Google Scholar]
  43. ZarjouA. BolisettyS. JosephR. TraylorA. ApostolovE.O. ArosioP. BallaJ. VerlanderJ. DarshanD. KuhnL.C. AgarwalA. Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury.J. Clin. Invest.2013123104423443410.1172/JCI6786724018561
    [Google Scholar]
  44. MaiorinoM. ConradM. UrsiniF. GPx4, lipid peroxidation, and cell death: Discoveries, rediscoveries, and open issues.Antioxid. Redox Signal.2018291617410.1089/ars.2017.711528462584
    [Google Scholar]
  45. KoppulaP. ZhuangL. GanB. Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy.Protein Cell202112859962010.1007/s13238‑020‑00789‑533000412
    [Google Scholar]
  46. YangW.S. KimK.J. GaschlerM.M. PatelM. ShchepinovM.S. StockwellB.R. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis.Proc. Natl. Acad. Sci. USA201611334E4966E497510.1073/pnas.160324411327506793
    [Google Scholar]
  47. BlommeA. FordC.A. MuiE. PatelR. NtalaC. JamiesonL.E. PlanqueM. McGregorG.H. PeixotoP. HervouetE. NixonC. SaljiM. GaughanL. MarkertE. RepiscakP. SumptonD. BlancoG.R. LillaS. KamphorstJ.J. GrahamD. FauldsK. MacKayG.M. FendtS.M. ZanivanS. LeungH.Y. 2,4-dienoyl-CoA reductase regulates lipid homeostasis in treatment-resistant prostate cancer.Nat. Commun.2020111250810.1038/s41467‑020‑16126‑732427840
    [Google Scholar]
  48. NassarZ.D. MahC.Y. DehairsJ. BurvenichI.J.G. IraniS. CenteneraM.M. HelmM. ShresthaR.K. MoldovanM. DonA.S. HolstJ. ScottA.M. HorvathL.G. LynnD.J. SelthL.A. HoyA.J. SwinnenJ.V. ButlerL.M. Human DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis.eLife20209e5416610.7554/eLife.5416632686647
    [Google Scholar]
  49. ZouY. LiH. GrahamE.T. DeikA.A. EatonJ.K. WangW. Sandoval-GomezG. ClishC.B. DoenchJ.G. SchreiberS.L. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis.Nat. Chem. Biol.202016330230910.1038/s41589‑020‑0472‑632080622
    [Google Scholar]
  50. XuY. LiuY. LiK. YuanD. YangS. ZhouL. ZhaoY. MiaoS. LvC. ZhaoJ. COX-2/PGE2 pathway inhibits the ferroptosis induced by cerebral ischemia reperfusion.Mol. Neurobiol.20225931619163110.1007/s12035‑021‑02706‑135013936
    [Google Scholar]
  51. ChenL. WuD. ZhouL. YeY. Platelet-rich plasma promotes diabetic ulcer repair through inhibition of ferroptosis.Ann. Transl. Med.20221020112110.21037/atm‑22‑465436388823
    [Google Scholar]
  52. MaiorinoF.M. Brigelius-FlohéR. AumannK.D. RoveriA. SchomburgD. FlohéL. FlohéL. Diversity of glutathione peroxidases.Methods Enzymol.1995252385310.1016/0076‑6879(95)52007‑47476373
    [Google Scholar]
  53. CardosoB.R. HareD.J. BushA.I. RobertsB.R. Glutathione peroxidase 4: A new player in neurodegeneration?Mol. Psychiatry201722332833510.1038/mp.2016.19627777421
    [Google Scholar]
  54. XuC. SunS. JohnsonT. QiR. ZhangS. ZhangJ. YangK. The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity.Cell Rep.2021351110923510.1016/j.celrep.2021.10923534133924
    [Google Scholar]
  55. ZouY. PalteM.J. DeikA.A. LiH. EatonJ.K. WangW. TsengY.Y. DeasyR. Kost-AlimovaM. DančíkV. LeshchinerE.S. ViswanathanV.S. SignorettiS. ChoueiriT.K. BoehmJ.S. WagnerB.K. DoenchJ.G. ClishC.B. ClemonsP.A. SchreiberS.L. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis.Nat. Commun.2019101161710.1038/s41467‑019‑09277‑930962421
    [Google Scholar]
  56. BersukerK. HendricksJ.M. LiZ. MagtanongL. FordB. TangP.H. RobertsM.A. TongB. MaimoneT.J. ZoncuR. BassikM.C. NomuraD.K. DixonS.J. OlzmannJ.A. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis.Nature2019575778468869210.1038/s41586‑019‑1705‑231634900
    [Google Scholar]
  57. DollS. FreitasF.P. ShahR. AldrovandiM. da SilvaM.C. IngoldI. Goya GrocinA. Xavier da SilvaT.N. PanziliusE. ScheelC.H. MourãoA. BudayK. SatoM. WanningerJ. VignaneT. MohanaV. RehbergM. FlatleyA. SchepersA. KurzA. WhiteD. SauerM. SattlerM. TateE.W. SchmitzW. SchulzeA. O’DonnellV. PronethB. PopowiczG.M. PrattD.A. AngeliJ.P.F. ConradM. FSP1 is a glutathione-independent ferroptosis suppressor.Nature2019575778469369810.1038/s41586‑019‑1707‑031634899
    [Google Scholar]
  58. GongM. HayS. MarshallK.R. MunroA.W. ScruttonN.S. DNA binding suppresses human AIF-M2 activity and provides a connection between redox chemistry, reactive oxygen species, and apoptosis.J. Biol. Chem.200728241303313034010.1074/jbc.M70371320017711848
    [Google Scholar]
  59. WuM. XuL.G. LiX. ZhaiZ. ShuH.B. AMID, an apoptosis-inducing factor-homologous mitochondrion-associated protein, induces caspase-independent apoptosis.J. Biol. Chem.200227728256172562310.1074/jbc.M20228520011980907
    [Google Scholar]
  60. LiJ. CaoF. YinH. HuangZ. LinZ. MaoN. SunB. WangG. Ferroptosis: Past, present and future.Cell Death Dis.20201128810.1038/s41419‑020‑2298‑232015325
    [Google Scholar]
  61. LiangD. FengY. ZandkarimiF. WangH. ZhangZ. KimJ. CaiY. GuW. StockwellB.R. JiangX. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones.Cell20231861327482764.e2210.1016/j.cell.2023.05.00337267948
    [Google Scholar]
  62. LiuJ. KangR. TangD. Signaling pathways and defense mechanisms of ferroptosis.FEBS J.2022289227038705010.1111/febs.1605934092035
    [Google Scholar]
  63. Cañedo-DorantesL. Cañedo-AyalaM. Skin acute wound healing: A comprehensive review.Int. J. Inflamm.2019201911510.1155/2019/370631531275545
    [Google Scholar]
  64. DesmetC.M. PréatV. GallezB. Nanomedicines and gene therapy for the delivery of growth factors to improve perfusion and oxygenation in wound healing.Adv. Drug Deliv. Rev.201812926228410.1016/j.addr.2018.02.00129448035
    [Google Scholar]
  65. TakeoM. LeeW. ItoM.J.C.S.H.P.M. Wound healing and skin regeneration.Cold Spring Harb Perspect Med.201551a023267
    [Google Scholar]
  66. RodriguesM. Wound healing: A cellular perspective.Physiol. Rev.201999166570610.1152/physrev.00067.2017
    [Google Scholar]
  67. BabaeiS. BayatM. NouruzianM. BayatM. Pentoxifylline improves cutaneous wound healing in streptozotocin-induced diabetic rats.Eur. J. Pharmacol.20137001-316517210.1016/j.ejphar.2012.11.02423220163
    [Google Scholar]
  68. Basu MallikS. JayashreeB.S. ShenoyR.R. Epigenetic modulation of macrophage polarization- perspectives in diabetic wounds.J. Diabetes Complications201832552453010.1016/j.jdiacomp.2018.01.01529530315
    [Google Scholar]
  69. MaruyamaK. AsaiJ. IiM. ThorneT. LosordoD.W. D’AmoreP.A. Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing.Am. J. Pathol.200717041178119110.2353/ajpath.2007.06001817392158
    [Google Scholar]
  70. FerranteC.J. LeibovichS.J. Regulation of macrophage polarization and wound healing.Adv. Wound Care201211101610.1089/wound.2011.030724527272
    [Google Scholar]
  71. LucasT. WaismanA. RanjanR. RoesJ. KriegT. MüllerW. RoersA. EmingS.A. Differential roles of macrophages in diverse phases of skin repair.J. Immunol.201018473964397710.4049/jimmunol.090335620176743
    [Google Scholar]
  72. KohT.J. DiPietroL.A. Inflammation and wound healing: The role of the macrophage.Expert Rev. Mol. Med.201113e2310.1017/S146239941100194321740602
    [Google Scholar]
  73. DunnillC. PattonT. BrennanJ. BarrettJ. DrydenM. CookeJ. LeaperD. GeorgopoulosN.T. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process.Int. Wound J.2017141899610.1111/iwj.1255726688157
    [Google Scholar]
  74. MiaoM. NiuY. XieT. YuanB. QingC. LuS. Diabetes-impaired wound healing and altered macrophage activation: A possible pathophysiologic correlation.Wound Repair Regen.201220220321310.1111/j.1524‑475X.2012.00772.x22380690
    [Google Scholar]
  75. LiechtyC. HuJ. ZhangL. LiechtyK.W. XuJ. Role of microRNA-21 and its underlying mechanisms in inflammatory responses in diabetic wounds.Int. J. Mol. Sci.2020219332810.3390/ijms2109332832397166
    [Google Scholar]
  76. MirzaR. KohT.J. Dysregulation of monocyte/macrophage phenotype in wounds of diabetic mice.Cytokine201156225626410.1016/j.cyto.2011.06.01621803601
    [Google Scholar]
  77. GaneshG.V. RamkumarK.M. Macrophage mediation in normal and diabetic wound healing responses.Inflamm. Res.202069434736310.1007/s00011‑020‑01328‑y32146517
    [Google Scholar]
  78. HanX. JuL.S. IrudayarajJ. Oxygenated wound dressings for hypoxia mitigation and enhanced wound healing.Mol. Pharm.20232073338335510.1021/acs.molpharmaceut.3c0035237338289
    [Google Scholar]
  79. CatrinaS.B. ZhengX. Disturbed hypoxic responses as a pathogenic mechanism of diabetic foot ulcers.Diabetes Metab. Res. Rev.201632S117918510.1002/dmrr.274226453314
    [Google Scholar]
  80. ZhaoM. WangS. ZuoA. ZhangJ. WenW. JiangW. ChenH. LiangD. SunJ. WangM. HIF-1α/JMJD1A signaling regulates inflammation and oxidative stress following hyperglycemia and hypoxia-induced vascular cell injury.Cell. Mol. Biol. Lett.20212614010.1186/s11658‑021‑00283‑834479471
    [Google Scholar]
  81. DengL. DuC. SongP. ChenT. RuiS. ArmstrongD.G. DengW. The role of oxidative stress and antioxidants in diabetic wound healing.Oxid. Med. Cell. Longev.202120211885275910.1155/2021/885275933628388
    [Google Scholar]
  82. GuanY. NiuH. LiuZ. DangY. ShenJ. ZayedM. MaL. GuanJ. Sustained oxygenation accelerates diabetic wound healing by promoting epithelialization and angiogenesis and decreasing inflammation.Sci. Adv.2021735eabj015310.1126/sciadv.abj015334452918
    [Google Scholar]
  83. SeitzO. SchürmannC. HermesN. MüllerE. PfeilschifterJ. FrankS. GorenI. Wound healing in mice with high-fat diet- or ob gene-induced diabetes-obesity syndromes: A comparative study.Exp. Diabetes Res.2010201011510.1155/2010/47696921318183
    [Google Scholar]
  84. BeerH.D. LongakerM.T. WernerS. Reduced expression of PDGF and PDGF receptors during impaired wound healing.J. Invest. Dermatol.1997109213213810.1111/1523‑1747.ep123191889242497
    [Google Scholar]
  85. OkonkwoU. DiPietroL. Diabetes and wound angiogenesis.Int. J. Mol. Sci.2017187141910.3390/ijms1807141928671607
    [Google Scholar]
  86. BurgessJ.L. WyantW.A. Abdo AbujamraB. KirsnerR.S. JozicI. Diabetic wound-healing science.Medicina20215710107210.3390/medicina5710107234684109
    [Google Scholar]
  87. LouiselleA.E. NiemiecS.M. ZgheibC. LiechtyK.W. Macrophage polarization and diabetic wound healing.Transl. Res.202123610911610.1016/j.trsl.2021.05.00634089902
    [Google Scholar]
  88. SharifiaghdamM. ShaabaniE. Faridi-MajidiR. De SmedtS.C. BraeckmansK. FraireJ.C. Macrophages as a therapeutic target to promote diabetic wound healing.Mol. Ther.20223092891290810.1016/j.ymthe.2022.07.01635918892
    [Google Scholar]
  89. LiS. DingX. ZhangH. DingY. TanQ. IL-25 improves diabetic wound healing through stimulating M2 macrophage polarization and fibroblast activation.Int. Immunopharmacol.202210610860510.1016/j.intimp.2022.10860535149293
    [Google Scholar]
  90. KingsburyK.D. SkeieJ.M. CosertK. SchmidtG.A. AldrichB.T. SalesC.S. WellerJ. KruseF. ThomasyS.M. Schlötzer-SchrehardtU. GreinerM.A. Type II diabetes mellitus causes extracellular matrix alterations in the posterior cornea that increase graft thickness and rigidity.Invest. Ophthalmol. Vis. Sci.20236472610.1167/iovs.64.7.2637326594
    [Google Scholar]
  91. HuangJ. HengS. ZhangW. LiuY. XiaT. JiC. ZhangL. Dermal extracellular matrix molecules in skin development, homeostasis, wound regeneration and diseases.Semin. Cell Dev. Biol.202212813714410.1016/j.semcdb.2022.02.02735339360
    [Google Scholar]
  92. AlaviA. SibbaldR.G. MayerD. GoodmanL. BotrosM. ArmstrongD.G. WooK. BoeniT. AyelloE.A. KirsnerR.S. Diabetic foot ulcers.J. Am. Acad. Dermatol.20147011.e11.e1810.1016/j.jaad.2013.06.05524355275
    [Google Scholar]
  93. OkizakiS. ItoY. HosonoK. ObaK. OhkuboH. AmanoH. ShichiriM. MajimaM. Suppressed recruitment of alternatively activated macrophages reduces TGF-β1 and impairs wound healing in streptozotocin-induced diabetic mice.Biomed. Pharmacother.20157031732510.1016/j.biopha.2014.10.02025677561
    [Google Scholar]
  94. HeJ. LiZ. XiaP. ShiA. FuChenX. ZhangJ. YuP. Ferroptosis and ferritinophagy in diabetes complications.Mol. Metab.20226010147010.1016/j.molmet.2022.10147035304332
    [Google Scholar]
  95. AltamuraS. KopfS. SchmidtJ. MüdderK. da SilvaA.R. NawrothP. MuckenthalerM.U. Uncoupled iron homeostasis in type 2 diabetes mellitus.J. Mol. Med.201795121387139810.1007/s00109‑017‑1596‑328971221
    [Google Scholar]
  96. WuY. ZhaoY. YangH. WangY. ChenY. HMGB1 regulates ferroptosis through Nrf2 pathway in mesangial cells in response to high glucose.Biosci. Rep.2021412BSR2020292410.1042/BSR2020292433565572
    [Google Scholar]
  97. CundyT. HoldenA. StallworthyE. Early worsening of diabetic nephropathy in type 2 diabetes after rapid improvement in chronic severe hyperglycemia.Diabetes Care2021443e55e5610.2337/dc20‑264633483357
    [Google Scholar]
  98. ZhouB. LiuJ. KangR. KlionskyD.J. KroemerG. TangD. Ferroptosis is a type of autophagy-dependent cell death.Semin. Cancer Biol.2020668910010.1016/j.semcancer.2019.03.00230880243
    [Google Scholar]
  99. VenkatesanP. VargheseJ. ArthiT.S. JamesJ.V. AnuraA. PrasadJ. JacobM. Evidence of dysregulated iron homeostasis in newly diagnosed diabetics, but not in pre-diabetics.J. Diabetes Complications202135910797710.1016/j.jdiacomp.2021.10797734217587
    [Google Scholar]
  100. WongS.L. DemersM. MartinodK. GallantM. WangY. GoldfineA.B. KahnC.R. WagnerD.D. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing.Nat. Med.201521781581910.1038/nm.388726076037
    [Google Scholar]
  101. TaoJ.Y. LiJ. WanL. DongB.Z. YuY.J. LiuY.M. YiM.L. WanL.P. Orientin regulates the proliferation and migration of hepatocellular carcinoma cells.Naunyn Schmiedebergs Arch. Pharmacol.2023396102519252810.1007/s00210‑023‑02472‑y37178274
    [Google Scholar]
  102. GaliniakS. AebisherD. Bartusik-AebisherD. Health benefits of resveratrol administration.Acta Biochim. Pol.2019661132130816367
    [Google Scholar]
  103. LiaoW. FuZ. ZouY. WenD. MaH. ZhouF. ChenY. ZhangM. ZhangW. MicroRNA-140-5p attenuated oxidative stress in Cisplatin induced acute kidney injury by activating Nrf2/ARE pathway through a Keap1-independent mechanism.Exp. Cell Res.2017360229230210.1016/j.yexcr.2017.09.01928928081
    [Google Scholar]
  104. ZhangM. HuangL.L. TengC.H. WuF.F. GeL. ShiY.J. HeZ.L. LiuL. JiangC.J. HouR.N. XiaoJ. ZhangH.Y. ChenD.Q. Correction to: Isoliquiritigenin provides protection and attenuates oxidative stress-induced injuries via the Nrf2-ARE signaling pathway after traumatic brain injury.Neurochem. Res.201944251051110.1007/s11064‑019‑02718‑330637601
    [Google Scholar]
  105. LiuX. YanC. ChangC. MengF. ShenW. WangS. ZhangY. FOXA2 suppression by TRIM36 exerts anti-tumor role in colorectal cancer via inducing NRF2/GPX4-regulated ferroptosis.Adv. Sci.20231035230452110.1002/advs.20230452137875418
    [Google Scholar]
  106. ShiJ. MaC. ZhengZ. ZhangT. LiZ. SunX. HeZ. ZhangZ. ZhangC. Low-dose antimony exposure promotes prostate cancer proliferation by inhibiting ferroptosis via activation of the Nrf2-SLC7A11-GPX4 pathway.Chemosphere202333913971610.1016/j.chemosphere.2023.13971637562508
    [Google Scholar]
  107. DodsonM. Castro-PortuguezR. ZhangD.D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis.Redox Biol.20192310110710.1016/j.redox.2019.10110730692038
    [Google Scholar]
  108. AnandhanA. DodsonM. ShakyaA. ChenJ. LiuP. WeiY. TanH. WangQ. JiangZ. YangK. GarciaJ.G.N. ChambersS.K. ChapmanE. OoiA. Yang-HartwichY. StockwellB.R. ZhangD.D. NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8.Sci. Adv.202395eade958510.1126/sciadv.ade958536724221
    [Google Scholar]
  109. ParkT.J. ParkJ.H. LeeG.S. LeeJ.Y. ShinJ.H. KimM.W. KimY.S. KimJ.Y. OhK.J. HanB.S. KimW.K. AhnY. MoonJ.H. SongJ. BaeK.H. KimD.H. LeeE.W. LeeS.C. Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes.Cell Death Dis.2019101183510.1038/s41419‑019‑2061‑831685805
    [Google Scholar]
  110. GeM. TianH. MaoL. LiD. LinJ. HuH. HuangS. ZhangC. MeiX. Zinc attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury by activating Nrf2/GPX4 defense pathway.CNS Neurosci. Ther.20212791023104010.1111/cns.1365733951302
    [Google Scholar]
  111. LiF. HuZ. HuangY. ZhanH. Dexmedetomidine ameliorates diabetic cardiomyopathy by inhibiting ferroptosis through the Nrf2/GPX4 pathway.J. Cardiothorac. Surg.202318122310.1186/s13019‑023‑02300‑737430319
    [Google Scholar]
  112. XingM. MaX. WangX. WangH. XieM. ZhangZ. ZhouJ. Emodin disrupts the Notch1/Nrf2/GPX4 antioxidant system and promotes renal cell ferroptosis.J. Appl. Toxicol.202343111702171810.1002/jat.450937393915
    [Google Scholar]
  113. anF. WangS. TianQ. ZhuD. Effects of orientin and vitexin from Trollius chinensis on the growth and apoptosis of esophageal cancer EC-109 cells.Oncol. Lett.20151042627263310.3892/ol.2015.361826622901
    [Google Scholar]
  114. JingS.Q. YanL-J. WangS-S. ZhongR-M. ZhangJ-Y. WuJ-Z. TuY-X. PuY. Neuroprotection of Cyperus esculentus L. orientin against cerebral ischemia/reperfusion induced brain injury.Neural Regen. Res.202015354855610.4103/1673‑5374.26606331571667
    [Google Scholar]
  115. XiaW. XiaoJ. TongC. LuJ. TuY. LiS. NiL. ShiY. LuoP. ZhangX. WangX. Orientin inhibits inflammation in chondrocytes and attenuates osteoarthritis through Nrf2/NF-κB and SIRT6/NF-κB pathway.J. Orthop. Res.202341112405241710.1002/jor.2557337186383
    [Google Scholar]
  116. XiaoQ. Orientin-mediated Nrf2/HO-1 signal alleviates H2O2-induced oxidative damage via induction of JNK and PI3K/AKT activation.Int. J. Biol. Macromol.2018118Pt A747755
    [Google Scholar]
  117. HeW. TangM. GuR. WuX. MuX. NieX. The Role of p53 in regulating chronic inflammation and panoptosis in diabetic wounds.Aging Dis.20241613739338377027
    [Google Scholar]
  118. SongJ. ZhuK. WangH. WuM. WuY. ZhangQ. Deciphering the emerging role of programmed cell death in diabetic wound healing.Int. J. Biol. Sci.202319154989500310.7150/ijbs.8846137781514
    [Google Scholar]
  119. WeiX. LiuM. ZhengZ. YuS. HuangL. MaJ. GaoY. PengY. ChenL. TanR. SheZ. YangL. Defective NCOA4-dependent ferroptosis in senescent fibroblasts retards diabetic wound healing.Cell Death Discov.20239113810.1038/s41420‑023‑01437‑737117222
    [Google Scholar]
  120. NegrãoR. CostaR. DuarteD. GomesT.T. AzevedoI. SoaresR. Different effects of catechin on angiogenesis and inflammation depending on VEGF levels.J. Nutr. Biochem.201324243544410.1016/j.jnutbio.2011.12.01122704779
    [Google Scholar]
  121. MoldovanG.L. PfanderB. JentschS. PCNA, the maestro of the replication fork.Cell2007129466567910.1016/j.cell.2007.05.00317512402
    [Google Scholar]
  122. SunH. LiuX. LongS.R. Teng wang GeH. WangY. YuS. XueY. ZhangY. LiX. LiW. Antidiabetic effects of pterostilbene through PI3K/Akt signal pathway in high fat diet and STZ-induced diabetic rats.Eur. J. Pharmacol.201985917252610.1016/j.ejphar.2019.17252631283935
    [Google Scholar]
  123. HuangX. LiangP. JiangB. ZhangP. YuW. DuanM. GuoL. CuiX. HuangM. HuangX. Hyperbaric oxygen potentiates diabetic wound healing by promoting fibroblast cell proliferation and endothelial cell angiogenesis.Life Sci.202025911824610.1016/j.lfs.2020.11824632791151
    [Google Scholar]
  124. FajgenbaumD.C. LanganR.A. JappA.S. PartridgeH.L. PiersonS.K. SinghA. ArenasD.J. RuthJ.R. NabelC.S. StoneK. OkumuraM. SchwarerA. JoseF.F. HamerschlakN. WertheimG.B. JordanM.B. CohenA.D. KrymskayaV. RubensteinA. BettsM.R. KambayashiT. van RheeF. UldrickT.S. Identifying and targeting pathogenic PI3K/AKT/mTOR signaling in IL-6 blockade–refractory idiopathic multicentric Castleman disease.J. Clin. Invest.2019129104451446310.1172/JCI12609131408438
    [Google Scholar]
  125. ZhouY. QueK.T. ZhangZ. YiZ.J. ZhaoP.X. YouY. GongJ.P. LiuZ.J. Iron overloaded polarizes macrophage to proinflammation phenotype through ROS /acetyl-p53 pathway.Cancer Med.2018784012402210.1002/cam4.167029989329
    [Google Scholar]
  126. ChenR. KangR. TangD. The mechanism of HMGB1 secretion and release.Exp. Mol. Med.20225429110210.1038/s12276‑022‑00736‑w35217834
    [Google Scholar]
  127. FanH. TangH.B. ChenZ. WangH.Q. ZhangL. JiangY. LiT. YangC.F. WangX.Y. LiX. WuS.X. ZhangG.L. Inhibiting HMGB1-RAGE axis prevents pro-inflammatory macrophages/microglia polarization and affords neuroprotection after spinal cord injury.J. Neuroinflammation202017129510.1186/s12974‑020‑01973‑433036632
    [Google Scholar]
  128. KronerA. GreenhalghA.D. ZarrukJ.G. Passos dos SantosR. GaestelM. DavidS. TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord.Neuron20148351098111610.1016/j.neuron.2014.07.02725132469
    [Google Scholar]
  129. SeibtT.M. PronethB. ConradM. Role of GPX4 in ferroptosis and its pharmacological implication.Free Radic. Biol. Med.201913314415210.1016/j.freeradbiomed.2018.09.01430219704
    [Google Scholar]
  130. ZhangZ. GuoM. LiY. ShenM. KongD. ShaoJ. DingH. TanS. ChenA. ZhangF. ZhengS. RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells.Autophagy20201681482150510.1080/15548627.2019.168798531679460
    [Google Scholar]
  131. YuanH. LiX. ZhangX. KangR. TangD. Identification of ACSL4 as a biomarker and contributor of ferroptosis.Biochem. Biophys. Res. Commun.201647831338134310.1016/j.bbrc.2016.08.12427565726
    [Google Scholar]
  132. LuoE.F. LiH.X. QinY.H. QiaoY. YanG.L. YaoY.Y. LiL.Q. HouJ.T. TangC.C. WangD. Role of ferroptosis in the process of diabetes-induced endothelial dysfunction.World J. Diabetes202112212413710.4239/wjd.v12.i2.12433594332
    [Google Scholar]
  133. ChenX. ComishP.B. TangD. KangR. Characteristics and biomarkers of ferroptosis.Front. Cell Dev. Biol.2021963716210.3389/fcell.2021.63716233553189
    [Google Scholar]
  134. ZhangX. HouL. GuoZ. WangG. XuJ. ZhengZ. SunK. GuoF. Lipid peroxidation in osteoarthritis: Focusing on 4-hydroxynonenal, malondialdehyde, and ferroptosis.Cell Death Discov.20239132010.1038/s41420‑023‑01613‑937644030
    [Google Scholar]
  135. SantinY. FazalL. Sainte-MarieY. SicardP. MaggioraniD. TortosaF. YücelY.Y. TeyssedreL. RouquetteJ. MarcellinM. VindisC. ShihJ.C. LairezO. Burlet-SchiltzO. PariniA. Lezoualc’hF. Mialet-PerezJ. Mitochondrial 4-HNE derived from MAO-A promotes mito Ca2+ overload in chronic postischemic cardiac remodeling.Cell Death Differ.20202761907192310.1038/s41418‑019‑0470‑y31819159
    [Google Scholar]
  136. CindrićM. Čipak GašparovićA. MilkovićL. BujakI.T. MihaljevićB. ŽarkovićN. ŽarkovićK. 4-hydroxynonenal modulates blood–brain barrier permeability in vitro through changes in lipid composition and oxidative status of endothelial cells and astrocytes.Int. J. Mol. Sci.202223221437310.3390/ijms23221437336430852
    [Google Scholar]
  137. WangY. WangW. YangH. ShaoD. ZhaoX. ZhangG. Intraperitoneal injection of 4-hydroxynonenal (4-HNE), a lipid peroxidation product, exacerbates colonic inflammation through activation of Toll-like receptor 4 signaling.Free Radic. Biol. Med.201913123724210.1016/j.freeradbiomed.2018.11.03730503401
    [Google Scholar]
  138. LouB. BogerM. BennewitzK. StichtC. KopfS. MorgensternJ. FlemingT. HellR. YuanZ. NawrothP.P. KrollJ. Elevated 4-hydroxynonenal induces hyperglycaemia via Aldh3a1 loss in zebrafish and associates with diabetes progression in humans.Redox Biol.20203710172310.1016/j.redox.2020.10172332980661
    [Google Scholar]
  139. KhanF. Moinuddin MirA.R. IslamS. AbidiM. HusainM.A. KhanR.H. Unsaturated aldehyde, 4-hydroxynonenal (HNE) alters the structural integrity of HSA with consequences in the immuno-pathology of rheumatoid arthritis.Int. J. Biol. Macromol.201811230631410.1016/j.ijbiomac.2018.01.18829409764
    [Google Scholar]
  140. CucciM.A. CompagnoneA. DagaM. GrattarolaM. UllioC. RoettoA. PalmieriA. RosaA.C. ArgenzianoM. CavalliR. SimileM.M. PascaleR.M. DianzaniC. BarreraG. PizzimentiS. Post-translational inhibition of YAP oncogene expression by 4-hydroxynonenal in bladder cancer cells.Free Radic. Biol. Med.201914120521910.1016/j.freeradbiomed.2019.06.00931207288
    [Google Scholar]
  141. ZhongH. YinH. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: Focusing on mitochondria.Redox Biol.2015419319910.1016/j.redox.2014.12.01125598486
    [Google Scholar]
  142. GuéraudF. 4-Hydroxynonenal metabolites and adducts in pre-carcinogenic conditions and cancer.Free Radic. Biol. Med.201711119620810.1016/j.freeradbiomed.2016.12.02528065782
    [Google Scholar]
  143. SonowalH. RamanaK.V. 4-hydroxy-trans-2-nonenal in the regulation of anti-oxidative and pro-inflammatory signaling pathways.Oxid. Med. Cell. Longev.2019201911710.1155/2019/593732631781341
    [Google Scholar]
  144. ChackoB.K. WallS.B. KramerP.A. RaviS. MitchellT. JohnsonM.S. WilsonL. BarnesS. LandarA. Darley-UsmarV.M. Pleiotropic effects of 4-hydroxynonenal on oxidative burst and phagocytosis in neutrophils.Redox Biol.20169576610.1016/j.redox.2016.06.00327393890
    [Google Scholar]
  145. UchidaK. HNE as an inducer of COX-2.Free Radic. Biol. Med.201711116917210.1016/j.freeradbiomed.2017.02.00428192229
    [Google Scholar]
  146. MilkovicL. Cipak GasparovicA. ZarkovicN. Overview on major lipid peroxidation bioactive factor 4-hydroxynonenal as pluripotent growth-regulating factor.Free Radic. Res.201549785086010.3109/10715762.2014.99905625532703
    [Google Scholar]
  147. DalleauS. BaradatM. GuéraudF. HucL. Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance.Cell Death Differ.201320121615163010.1038/cdd.2013.13824096871
    [Google Scholar]
  148. Mas-BarguesC. EscriváC. DromantM. BorrásC. ViñaJ. Lipid peroxidation as measured by chromatographic determination of malondialdehyde. Human plasma reference values in health and disease.Arch. Biochem. Biophys.202170910894110.1016/j.abb.2021.10894134097903
    [Google Scholar]
  149. JovéM. Mota-MartorellN. PradasI. Martín-GariM. AyalaV. PamplonaR. The advanced lipoxidation end-product malondialdehyde-lysine in aging and longevity.Antioxidants2020911113210.3390/antiox911113233203089
    [Google Scholar]
  150. JanaA.K. AgarwalS. ChatterjeeS.N. The induction of lipid peroxidation in liposomal membrane by ultrasound and the role of hydroxyl radicals.Radiat. Res.1990124171410.2307/35776872173015
    [Google Scholar]
  151. ChenJ. LiX. LiuH. ZhongD. YinK. LiY. ZhuL. XuC. LiM. WangC. Bone marrow stromal cell-derived exosomal circular RNA improves diabetic foot ulcer wound healing by activating the nuclear factor erythroid 2-related factor 2 pathway and inhibiting ferroptosis.Diabet. Med.2023407e1503110.1111/dme.1503136537855
    [Google Scholar]
  152. LiuJ. LiQ. YangY. MaL. Iron metabolism and type 2 diabetes mellitus: A meta-analysis and systematic review.J. Diabetes Investig.202011494695510.1111/jdi.1321631975563
    [Google Scholar]
  153. LiS. ZhengL. ZhangJ. LiuX. WuZ. Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy.Free Radic. Biol. Med.202116243544910.1016/j.freeradbiomed.2020.10.32333152439
    [Google Scholar]
  154. NitureS.K. JaiswalA.K. Inhibitor of Nrf2 (INrf2 or Keap1) protein degrades Bcl-xL via phosphoglycerate mutase 5 and controls cellular apoptosis.J. Biol. Chem.201128652445424455610.1074/jbc.M111.27507322072718
    [Google Scholar]
  155. LongM. Rojo de la VegaM. WenQ. BhararaM. JiangT. ZhangR. ZhouS. WongP.K. WondrakG.T. ZhengH. ZhangD.D. An essential role of NRF2 in diabetic wound healing.Diabetes201665378079310.2337/db15‑056426718502
    [Google Scholar]
  156. TongJ. LanX. ZhangZ. LiuY. SunD. WangX. Ou-YangS. ZhuangC. ShenF. WangP. LiD. Ferroptosis inhibitor liproxstatin-1 alleviates metabolic dysfunction-associated fatty liver disease in mice: potential involvement of PANoptosis.Acta Pharmacol. Sin.20234451014102810.1038/s41401‑022‑01010‑536323829
    [Google Scholar]
  157. StockwellB.R. Friedmann AngeliJ.P. BayirH. BushA.I. ConradM. DixonS.J. FuldaS. GascónS. HatziosS.K. KaganV.E. NoelK. JiangX. LinkermannA. MurphyM.E. OverholtzerM. OyagiA. PagnussatG.C. ParkJ. RanQ. RosenfeldC.S. SalnikowK. TangD. TortiF.M. TortiS.V. ToyokuniS. WoerpelK.A. ZhangD.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease.Cell2017171227328510.1016/j.cell.2017.09.02128985560
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998352547250107065356
Loading
/content/journals/cdr/10.2174/0115733998352547250107065356
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test