Current Drug Metabolism - Volume 7, Issue 1, 2006
Volume 7, Issue 1, 2006
-
-
Inhibition Constants, Inhibitor Concentrations and the Prediction of Inhibitory Drug Drug Interactions: Pitfalls, Progress and Promise
More LessStrategies and standards for predicting the likelihood of pharmacokinetically significant inhibitory drug-drug interactions for drug development purposes which rely primarily on projected in vivo concentrations of cytochrome P450 (CYP) or transporter inhibitors, [I], and in vitro estimates of their inhibitory constants, Ki, were specified in several commentaries based upon a conference held by the European Federation of Pharmaceutical Sciences (EUFEPS) several years ago. Since then the application of those strategies and standards has met with varying degrees of success. Many of the vexing issues that were identified in the EUFEPS Conference Report remain, while other issues are systematically being resolved. This article briefly reviews the underlying strategy in the prediction of the significance of inhibitory DDIs using [I]/Ki ratios; some of the difficulties or pitfalls associated with the predictive application of [I]/Ki ratios; and some of the recent refinements of the general strategy.
-
-
-
Early Development of Therapeutic Biologics - Pharmacokinetics
By A. BaumannModern biologics are biotechnology-derived pharmaceuticals. They are mostly used for diagnosis, prevention and treatment of serious and chronic diseases. Today, therapeutic biologics range from traditional biologics like blood and blood components, fractionated blood products, and antitoxins to modern biologics such as monoclonal antibodies, cytokines (e.g. interferon, interleukine), tissue growth factors, vaccines directed against non-infectious disease targets, and gene transfer products. Chemical as well as pre-clinical development are major challenges for biologics due to their different physicochemical properties (mostly protein structure) compared to small molecules. They demonstrate much more complex pharmacokinetic behaviour, which strongly influences their pre-clinical testing strategy. Biologics are often highly species-specific in action and immunogenic in test animal species and humans. Immunogenicity of therapeutic biologics may influence their pharmacokinetic behaviour as well as pharmacodynamics and toxicity. Biologics are frequently regulated by different procedures compared to small molecules. New guidances are evolving which reflect the rapid development of new technologies in this field. Bioanalytical method development and validation is a prerequisite not exclusively for pharmacokinetic studies but for the whole pre-clinical and clinical development. Due to their unique properties, different kinds of bioanalytical assays (mass assays, activity assays, immunogenicity assays) are necessary in early development of biologics.
-
-
-
Cytochrome P450 and Anticancer Drugs
More LessCytochrome P450 (CYP) is involved in the metabolism of a variety of anticancer drugs. CYP activities are known to be modified by several factors including genetic polymorphisms, changes in physiological conditions such as age, disease status or intake of certain drugs or foods or environmental factors such as smoking. These factors may cause interindividual differences in the pharmacokinetic profiles of anticancer drugs, leading to the variations of efficacy or toxicity of the drugs. Genetic polymorphisms present in CYPs sometimes result in the reduced activity of the enzymes causing low metabolic clearance of drugs or low production of active metabolites. For example, the formation of endoxifen, which is an active metabolite of tamoxifen, was less in patients with inactive polymorphic CYP2D6 than those with the wild type enzyme. CYP3A is the most abundant CYP expressed in the human liver and the small intestine that is involved in the metabolism of various anticancer drugs. The catalytic activity of CYP3A shows a large interindividual variability giving rise to large interindividual differences in the pharmacokinetic profiles of some anticancer drugs. So far, many attempts have been made to monitor the phenotypic activity of CYP3A in order to reduce the pharmacokinetic variations of anticancer drugs. Erythromycin, midazolam and cortisol are commonly used to monitor in vivo hepatic CYP3A activity. These methods have been applied to reduce the pharmacokinetic variations of docetaxel. Drug-drug interactions related to CYPs also modulate the pharmacokinetic profiles of anticancer drugs. These factors should be considered when trying to optimize and individualize chemotherapy.
-
-
-
Tissue Distribution and Pharmacodynamics: A Complicated Relationship
By Jiunn H. LinWith few exceptions, drugs exert their effects not within the plasma compartment, but in the defined target tissues. The process of drug distribution to the active site constitutes the "link-bridge" of the pharmacokinetic/pharmacodynamic (PK/PD) relationship. In spite of the importance of drug distribution as a key factor in determining pharmacologic response, research on drug distribution has historically received much less attention than that of absorption, metabolism, and excretion. The negligence of research on drug distribution is due mainly to the inaccessibility of the target tissues for obvious ethical reasons. In addition, lack of reliable experimental tools to assess the distribution process is also a major contributing factor. Because of this negligence, drug distribution has been referred to as "the forgotten relative in clinical pharmacokinetics." Although recent advances in molecular biology have led to the identification of many drug transporters, many of the processes of drug distribution are still not fully understood. The primary aim of this article is to provide new insight into the mechanisms of drug distribution, with an attempt to describe the relationship between the drug distribution and pharmacologic response. In addition, the factors that affect the processes of drug distribution will also be reviewed. Also, validity of some key assumptions that are used to relate the processes of tissue distribution with pharmacologic activity will be discussed.
-
-
-
Altered CYP Expression and Function in Response to Dietary Factors: Potential Roles in Disease Pathogenesis
More LessIncreasing evidence implicates dietary factors in the progression of diseases, including certain cancers, diabetes and obesity. Diet also regulates the expression and function of CYP genes, which impacts on drug elimination and may also significantly affect disease pathogenesis. Upregulation of CYPs 2E1 and 4A occurs after feeding of experimental diets that are high in fats or carbohydrates; these diets also promote hepatic lipid infiltration, which is a component of the metabolic syndrome that characterises obesity. Increased availability of lipid substrates for CYPs can enhance free radical production and exacerbate tissue injury. Similar processes may also occur in other models of experimental disease states that exhibit a component of altered nutrient utilization. Food-derived chemicals, including constituents of cruciferous vegetables and fruits, modulate CYP expression and the expression of genes that encode cytoprotective phase II enzymes. Certain dietary indoles and flavonoids activate CYP1A expression either by direct ligand interaction with the aryl hydrocarbon receptor (AhR) or by augmenting the interaction of the AhR with xenobiotic response elements in CYP1A1 and other target genes. Other dietary chemicals, including methylenedioxyphenyl (MDP) compounds and isothiocyanates also modulate CYP gene expression. Apart from altered CYP regulation, a number of dietary agents also inhibit CYP enzyme activity, leading to pharmacokinetic interactions with coadministered drugs. A well described example is that of grapefruit juice, which contains psoralens and possibly other chemicals, that inactivate intestinal CYP3A4. Decreased presystemic oxidation by this CYP increases the systemic bioavailability of drug substrates and the likelihood of drug toxicity. Dietary interactions may complicate drug therapy but inhibition of certain CYP reactions may also protect the individual against toxic metabolites and free radicals generated by CYPs. Chemicals in teas and cruciferous vegetables may also inhibit human CYP enzymes that have been implicated in the bioactivation of chemical carcinogens. Thus, food constituents modulate CYP expression and function by a range of mechanisms, with the potential for both deleterious and beneficial outcomes.
-
-
-
Inhibition of Sulfotransferases by Xenobiotics
Authors: Li-Quan Wang and Margaret O. JamesThe sulfotransferase (SULT) family comprises important phase II conjugation enzymes for the detoxification of xenobiotics and modulation of the activity of physiologically important endobiotics such as thyroid hormones, steroids, and neurotransmitters. SULT enzymes catalyze the transfer of a sulfuryl group, donated by 3'-phosphoadenosine-5'- phosphosulfate (PAPS), to an acceptor substrate that may be a hydroxy group or an amine group in a process originally called sulfation, but more correctly referred to as sulfonation or sulfurylation. SULT activity may be inhibited when humans are exposed to certain xenobiotics including drugs (mefenamic acid, salicylic acid, clomiphene, danazol etc.), dietary chemicals (catechins, food colorants, flavonoids and phytoestrogens etc.), and environmental chemicals (hydroxylated polychlorinated biphenyls, hydroxylated polyhalogenated aromatic hydrocarbons, pentachlorophenol, triclosan and bisphenol A, etc.). Inhibition of individual SULT isoforms may cause adverse effects on human health. For example, hydroxylated polychlorinated biphenyls have been shown to interfere with the transport of thyroid hormones, inhibit estradiol sulfonation, and inhibit thyroid hormone sulfonation, thereby potentially disrupting the thyroid hormone system. Formation of sulfate conjugates of toxic xenobiotics usually decreases their toxicity, so inhibition of this pathway may lead to prolonged exposure to the compounds. Conversely, some sulfate conjugates are chemically reactive, inhibition of their formation may protect from toxicity. This manuscript will review the literature concerning the inhibition of SULTs by xenobiotics including isoform-selective effects, inhibition kinetics and health effects resulting from the inhibition.
-
-
-
Topotecan Is a Substrate for Multidrug Resistance Associated Protein 4
Topotecan (TPT) is a semisynthetic water-soluble derivative of camptothecin (CPT) used as second-line therapy in patients with metastatic ovarian carcinoma, small cell lung cancer, and other malignancies. However, both doselimiting toxicity and tumor resistance hinder the clinical use of TPT. The mechanisms for resistance to TPT are not fully defined, but increased efflux of the drug by multiple drug transporters including P-glycoprotein (PgP), multidrug resistance associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) from tumor cells has been highly implicated. This study aimed to investigate whether overexpression of human MRP4 rendered resistance to TPT by examining the cytotoxicity profiles using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazonium bromide (MTT) assay and cellular accumulation of TPT in HepG2 cells stably overexpressing MRP4. Two kinds of cell lines, HepG2 with insertion of an empty vector plasmid (V/HepG2), HepG2 cells stably expressing MRP4 (MRP4/HepG2), were exposed to TPT for 4 or 48 hr in the absence or presence of various MRP4 inhibitors including DL-buthionine-(S,R)-sulphoximine (BSO), diclofenac, celecoxib, or MK-571. The intracellular accumulation of TPT and paclitaxel (a PgP substrate) by V/HepG2 and MRP4/HepG2 cells was determined by incubation of TPT with the cells and the amounts of the drug in cells were determined by validated HPLC methods. The study demonstrated that MRP4 conferred a 12.03- and 6.86-fold resistance to TPT in the 4- and 48-hr drug-exposure MTT assay, respectively. BSO, MK-571, celecoxib, or diclofenac sensitised MRP4/HepG2 cells to TPT cytotoxicity and partially reversed MRP4-mediated resistance to TPT. In addition, the accumulation of TPT was significantly reduced in MRP4/HepG2 cells compared to V/HepG2 cells, and one-binding site model was found the best fit for the MRP4-mediated efflux of TPT, with an estimated Km of 1.66 mM and Vmax of 0.341 ng/min/106 cells. Preincubation of MRP4/HepG2 cells with BSO (200 μM) for 24 hr, celecoxib (50 mM), or MK-571 (100 mM) for 2 hr significantly increased the accumulation of TPT over 10 min in MRP4/HepG2 cells by 28.0%, 37.3% and 32.5% (P < 0.05), respectively. By contrast, there was no significant difference in intracellular accumulation of paclitaxel in V/HepG2 and MRP4/HepG2 cells over 120 min. MRP4 also rendered resistance to adefovir dipivoxil (bis-POMPMEA) and methotrexate, two reported MRP4 substrates. MRP4 did not exhibit any significant resistance to other model drugs including vinblastine, vincristine, etoposide, carboplatin, cyclosporine and paclitaxel in both long (48 hr) and short (4 hr) drug-exposure MTT assays. These findings indicate that MRP4 confers resistance to TPT and TPT is the substrate for MRP4. Further studies are needed to explore the role of MRP4 in resistance to, toxicity and pharmacokinetics of TPT in cancer patients.
-
Volumes & issues
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
