Current Drug Metabolism - Volume 5, Issue 3, 2004
Volume 5, Issue 3, 2004
-
-
Preface [Hot Topic: Cytochrome P450 and Diseases: Implications in Drug Metabolism and Pathophysiology (Guest Editor: Vincent Pichette)]
More LessSeveral decades ago, scientists showed the existence of a hemoprotein implicated in the metabolism of foreign and endogenous compounds. This enzyme was further shown to be part of a superfamily named cytochrome P450 (CYP450). Today, this family comprises more than 150 different isoforms distributed among multicellular organisms such as animals, vegetables as well as fungi. CYP450 is implicated in the metabolism of lipids, steroids, vitamins, bile acids, prostaglandins and many other endogenous molecules. Thus, it is essential for homeostasis. But CYP450 does much more than that. It is directly implicated in the elimination of toxic substances which can interfere with body functions if they accumulate. CYP450 plays also a key role in the acquisition of toxic characteristics by some xenobiotics like heterocyclic aromatic amines that are metabolized to carcinogenic products. Finally, studies of the CYP450 enlighten its outstanding participation in the metabolism of numerous drugs that are used in modern medicine. Recently, CYP450 research has focussed on its role in the pathophysiology of common diseases, particularly cancer and hypertension. Here, we exhaustively review certain diseases where CYP450 is either modified by a particular clinical situation, or implicated in the pathophysiology. Thus, senior authors have reviewed the current knowledge on the impact of liver diseases, inflammation, hypoxia and stroke on the activity of CYP450 and, consequently on the metabolism of various molecules. The direct or indirect implications of CYP450 in the pathophysiology of several conditions such as hypertension, cancer, and brain dysfunction are also review.
-
-
-
Cytochrome P450 Gene Polymorphism and Cancer
More LessHuman cytochrome P450 (CYP) enzymes play a key role in the metabolism of drugs and environmental chemicals. Several CYP enzymes metabolically activate procarcinogens to genotoxic intermediates. Phenotyping analyses revealed an association between CYP enzyme activity and the risk to develop several forms of cancer. Research carried out in the last decade demonstrated that several CYP enzymes are polymorphic due to single nucleotide polymorphisms, gene duplications and deletions. As genotyping procedures became available for most human CYP, an impressive number of association studies on CYP polymorphisms and cancer risk were conducted. Here we review the findings obtained in these studies regarding CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP3A7, CYP8A1 and CYP21 gene polymorphisms. Consistent evidences for association between CYP polymorphisms and lung, head and neck, and liver cancer were reported. Controversial findings suggest that colorectal and prostate cancers may be associated to CYP polymorphisms, whereas no evidences for a relevant association with breast or bladder cancers were reported. We summarize the available information related to the association of CYP polymorphisms with leukaemia, lymphomas and diverse types of cancer that were investigated only for some CYP genes, including brain, esophagus, stomach, pancreas, pituitary, cervical epithelium, melanoma, ovarian, kidney, anal and vulvar cancers. This review discusses on causes of heterogeneity in the proposed associations, controversial findings on cancer risk, and identifies topics that require further investigation. In addition, some recommendations on study design, in order to obtain more conclusive findings in further studies, are provided.
-
-
-
Cytochrome P450 in Neurological Disease
Authors: M. Liu, P. D. Hurn and N. J. AlkayedAdvances in a multitude of disciplines support an emerging role for cytochrome P450 enzymes and their metabolic substrates and end-products in the pathogenesis and treatment of central nervous system disorders, including acute cerebrovascular injury, such as stroke, chronic neurodegenerative disease, such as Alzheimer's and Parkinson's disease, as well as epilepsy, multiple sclerosis and psychiatric disorders, including anxiety and depression. The neural tissue contains its own unique set of P450 genes that are regulated in a manner that is distinct from their molecular regulation in peripheral tissue. Furthermore, brain P450s catalyze the formation of important brain signaling molecules, such as neurosteroids and eicosanoids, and metabolize substrates as diverse as vitamins A and D, cholesterol, bile acids, as well as centrally acting drugs, anesthetics and environmental neurotoxins. These unique characteristics allow this family of proteins and their metabolites to perform such vital functions in brain as neurotrophic support, neuroprotection, control of cerebral blood flow, temperature control, neuropeptide release, maintenance of brain cholesterol homoeostasis, elimination of retinoids from CNS, regulation of neurotransmitter levels and other functions important in brain physiology, development and disease.
-
-
-
Cytochrome P450 Regulation and Drug Biotransformation During Inflammation and Infection
More LessThe expression of cytochrome P450 and related biotransformation is altered during the operation of host defense mechanisms. This has major implications in inflammation and infection when the capacity of the liver and other organs to handle drugs is severely compromised. In most cases individual cytochrome P450 forms are down regulated at the level of gene transcription with a resulting decrease in the corresponding mRNA, protein and enzyme activity. The loss in drug metabolism is channeled predominantly through the production of cytokines which ultimately modify specific transcription factors. Other proposed mechanisms that apply to specific cytochrome P450s involve post translational steps including enzyme modification and increased degradation. When inflammatory responses are confined to the brain there is a loss of cytochrome P450 not only in the brain but also in peripheral tissues. This involves a yet to be identified mode of signaling between the brain and periphery but it does involve the production of cytokines from a peripheral source. In clinical medicine there are numerous examples of a decreased capacity to handle drugs during infections and disease states that involve an inflammatory component. This often results in altered drug responses and increased toxicities. Inflammation mediated alterations in the metabolism of endogenous compounds can lead to altered physiology. Changes in drug handling capacity during inflammation / infection will continue to be one of the many factors that complicate therapeutics.
-
-
-
Role of Cytochrome P450 Metabolites of Arachidonic Acid in Hypertension
Authors: A. Sarkis and R. J. RomanConsiderable evidence has accumulated over the last decade implicating a role of cytochrome P450 (CYP)- dependent metabolites of arachidonic acid (AA) in the pathogenesis of hypertension. Indeed, 20-hydroxyeicosatetraenoic acid (20-HETE) is produced by vascular smooth muscle (VSM) cells and is a potent vasoconstrictor that depolarizes VSM by blocking large conductance Ca2+-activated K+ channels. In contrast, epoxyeicosatrienoic acids (EETs) are synthesized by the vascular endothelium and have opposite effects on VSM (hyperpolarization and vasodilatation). Inhibition of the synthesis of 20-HETE attenuates myogenic tone and autoregulation of blood flow and modulates vascular responses to vasodilators (NO and CO) and vasoconstrictors (angiotensin II, endothelin). In the kidney, 20-HETE inhibits sodium transport in the proximal tubule by blocking Na+-K+-ATPase activity. In the thick ascending limb of the loop of Henle, 20-HETE inhibits Na+-K+-2Cl- transport, in part, by blocking a 70 pS apical K+ channel. EETs are produced in the proximal tubule where they inhibit Na+-H+ exchange and in the collecting duct where they inhibit sodium and water transport. Numerous studies have established that the formation of EETs and 20-HETE and the expression of CYP enzymes are altered in the kidney in many genetic and experimental animal models of hypertension and in some forms of human hypertension. However, the functional significance of these changes remains to be determined. Given the importance of this pathway in the control of renal function and vascular tone, it is likely that alterations in the renal formation of CYP-dependent metabolites of AA will be shown to participate in the development of hypertension in many of these models.
-
-
-
Effect of Hypoxia on Cytochrome P450 Activity and Expression
Authors: C. Fradette and P. d. SouichIn the last three decades, numerous reports have shown that patients with chronic pulmonary disease and with heart failure with hypoxemia cleared drugs at a lower rate than healthy volunteers. As a consequence decreased clearance, drug toxicity is frequent in these patients. The reduction in drug clearance is due to a decrease in activity of cytochrome P450 isoforms, partly associated to the hypoxemia. With in vivo animal models, acute moderate hypoxia (PaO2 of around 35-50 mm Hg) reduces the clearance of drugs biotransformed by CYP1A1, CYP1A2, CYP2B6, CYP2C9, CYP2C19 and CYP2E1, although hypoxia does not affect the clearance of drugs biotransformed by CYP3A6. Ex vivo and in vitro experiments demonstrate that hypoxia down-regulates CYP1A1, CYP1A2, CYP2B6, CYP2C9 and CYP2C19, decrease preceded by a reduction in activity. On the other hand, acute moderate hypoxia up-regulates CYP3A6. The changes in protein expression are preceded by modifications in the mRNA coding for the proteins. The effect of hypoxia on hepatic cytochrome P450 is carried out by serum mediators, e.g. interferon-γ, interleukin-1β, and interleukin-2 are responsible for the decrease in activity and in expression of cytochrome P450 isoforms, and erythropoietin accounts for the increase in CYP3A6. Probably several mechanisms underlie and contribute to the decrease in activity and down-regulation of cytochrome P450 isoforms by hypoxia, e.g. reducing potentiation factors, inducing repressor elements and activating negative regulatory elements. The up-regulation of CYP3A6 implies a PTK- and p42 / 44MAPK-dependent stabilization / activation, nuclear translocation of HIF-1 and AP-1, binding to CYP3A6 promoter, and transactivation of the gene to induce CYP3A6 expression.
-
-
-
Cytochrome P450 and Liver Diseases
Authors: J.-P. Villeneuve and V. PichetteCytochrome P-450 (CYPs) are involved in the metabolism of drugs, chemicals and endogenous substrates. The hepatic CYPs are also involved in the pathogenesis of several liver diseases. CYP-mediated activation of drugs to toxic metabolites induces hepatotoxicity. Well-known examples include acetaminophen and halothane. In some instances, covalent binding of the toxic metabolite to CYP leads to the formation of anti-CYP antibodies and immune-mediated hepatotoxicity (hydralazine, tienilic acid). Anti-CYP2D6 antibodies are also present in the serum of patients with type II autoimmune hepatitis, but the mechanism leading to their presence and their pathogenic significance remains unclear. Several studies support a role for CYP2E1 in the pathogenesis of alcoholic liver disease and non-alcoholic steatohepatitis. In these conditions, enhanced CYP2E1 activity is associated with lipid peroxidation and the production of reactive oxygen species with secondary damage to cellular membranes and mitochondria. Because of its ability to activate carcinogens, a role for CYP2E1 as a cofactor for hepatocellular carcinoma has also been postulated. On the other hand, drug metabolism is impaired in patients with liver disease, particularly that mediated by CYPs. The content and activity of CYP1A, 2C19 and 3A appear to be particularly vulnerable to the effect of liver disease while CYP2D6, 2C9 and 2E1 are less affected. The pattern of CYPs isoenzymes alterations also differs according to the etiology of liver disease. A strong relationship between the activity of CYPs and the severity of cirrhosis has been demonstrated, but the usefulness of measuring CYP activity to assess hepatic functional reserve remains uncertain.
-
Volumes & issues
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
