Current Drug Metabolism - Volume 23, Issue 6, 2022
Volume 23, Issue 6, 2022
-
-
Relevance of ABC Transporters in Drug Development
More LessATP-binding cassette (ABC) transporters play a critical role in protecting vital organs such as the brain and placenta against xenobiotics, as well as in modulating the pharmacological and toxicological profile of several drug candidates by restricting their penetration through cellular and tissue barriers. This review paper describes the structure and function of ABC transporters as well as the role of P-glycoprotein, multidrug resistance-associated protein 2 and breast cancer resistance protein in the disposition of drugs. Furthermore, a review of the in vitro and in vivo techniques for evaluating the interaction between drugs and ABC transporters is provided.
-
-
-
An Overview of the Neuropharmacological Potential of Thymoquinone and its Targeted Delivery Prospects for CNS Disorder
At present, people and patients worldwide are relying on the medicinal plant as a therapeutic agent over pharmaceuticals because the medicinal plant is considered safer, especially for chronic disorders. Several medicinal plants and their components are being researched and explored for their possible therapeutic contribution to CNS disorders. Thymoquinone (TQ) is one such molecule. Thymoquinone, one of the constituents of Plant Nigella Sativa, is effective against several neurodegenerative diseases like, Alzheimer's, Depression, Encephalomyelitis, Epilepsy, Ischemia, Parkinson's, and Traumatic. This review article presents the neuropharmacological potential of TQ's, their challenges, and delivery prospects, explicitly focusing on neurological disorders along with their chemistry, pharmacokinetics, and toxicity. Since TQ has some pharmacokinetic challenges, scientists have focused on novel formulations and delivery systems to enhance bioavailability and ultimately increase its therapeutic value. In the present work, the role of nanotechnology in neurodegenerative disease and how it improves the bioavailability and delivery of a drug to the site of action has been discussed. There are a few limitations to developing novel drug formulations, including solubility, pH, and compatibility of nanomaterials. Since here we are targeting CNS disorders, the bloodbrain barrier (BBB) becomes an additional challenge. Hence, the review summarized the novel aspects of delivery and biocompatible nanoparticles-based approaches for targeted drug delivery into CNS, enhancing TQ bioavailability and its neurotherapeutic effects.
-
-
-
Review of the Clinical Pharmacokinetics, Efficacy and Safety of Pembrolizumab
Background: Treatment of various types of cancer has been improved significantly with the discovery of biological drugs that act as immune checkpoint inhibitors (ICIs). Pembrolizumab is a humanized monoclonal anti-PD-1 antibody currently approved for the treatment of a wide range of tumors, with more indications still being investigated in ongoing clinical trials. Objective: The aim of this paper is to present all currently available data regarding pembrolizumab pharmacokinetic and pharmacodynamic characteristics. Also, the possibility of using predictive biomarkers to monitor patients during cancer treatment is discussed. Methods: Database research was carried out (PubMed, ScienceDirect). Information was gathered from original articles, the European Medicines Agency datasheets and results from clinical trials. Results: This review summarizes present-day knowledge about the pharmacokinetics, different modeling approaches and dosage regimens, efficacy and safety of pembrolizumab and therapeutic monitoring of disease progression. Conclusion: This review points out consistent pharmacokinetic characteristics of pembrolizumab in various cancer patients, the lack of pharmacokinetic-pharmacodynamic/outcome relationships, and the need for adequate biomarkers to predict treatment success. Hence, there is a clear necessity for more data and experience in order to optimize pembrolizumab treatment for each individual patient.
-
-
-
Comparison of Sweated and Non-Sweated Ethanol Extracts of Salvia miltiorrhiza Bge. (Danshen) Effects on Human and Rat Hepatic UDP-Glucuronosyltransferase and Preclinic Herb-Drug Interaction Potential Evaluation
Authors: Jie Liu, Yun Shi, Chengyuan Wu, Bangzhen Hong, Daiyin Peng, Nianjun Yu, Guokai Wang, Lei Wang and Weidong ChenBackground: The ethanol of Danshen (DEE) preparation has been widely used to treat cardiac-cerebral disease and cancer. Sweating is one of the primary processing methods of Danshen, which greatly influences its quality and pharmacological properties. Sweated and non-sweated DEE preparation combined with various synthetic drugs, add up the possibility of herbal-drug interactions. Objective: This study explored the effects of sweated and non-sweated DEE on human and rat hepatic UGT enzyme expression and activity and proposed a potential mechanism. Methods: The expression of two processed DEE on rat UGT1A, UGT2B, and nuclear receptors, including pregnane X receptor (PXR), constitutive androstane receptor (CAR), and peroxisome proliferator-activated receptor α (PPARα), were investigated after intragastric administration in rats by Western blot. Enzyme activity of DEE and its active ingredients (Tanshinone I, Cryptotanshinone, and Tanshinone I) on UGT isoenzymes was evaluated by quantifying probe substrate metabolism and metabolite formation in vitro using Ultra Performance Liquid Chromatography. Results: The two processed DEE (5.40 g/kg) improved UGT1A (P<0.01) and UGT2B (P<0.05) protein expression, and the non-sweated DEE (2.70 g/kg) upregulated UGT2B expression protein (P<0.05), compared with the CMCNa group. On day 28, UGT1A protein expression was increased (P<0.05) both in two processed DEE groups meanwhile, the non-sweated DEE significantly enhanced UGT2B protein expression (P<0.05) on day 21, compared with the CMCNa group. The process underlying this mechanism involved the activation of nuclear receptors CAR, PXR, and PPARα. In vitro, sweated DEE (0-80 μg/mL) significantly inhibited the activity of human UGT1A7 (P<0.05) and rat UGT1A1, 1A8, and 1A9 (P<0.05). Non-sweated DEE (0-80 μg/mL) dramatically suppressed the activity of human UGT1A1, 1A3, 1A6, 1A7, 2B4, and 2B15, and rat UGT1A1, 1A3, 1A7, and 1A9 (P<0.05). Tanshinone I (0-1 μM) inhibited the activity of human UGT1A3, 1A6, and 1A7 (P<0.01) and rat UGT1A3, 1A6, 1A7, and 1A8 (P<0.05). Cryptotanshinone (0-1 μM) remarkably inhibited the activity of human UGT1A3 and 1A7 (P<0.05) and rat UGT1A7, 1A8, and 1A9 (P<0.05). Nonetheless, Tanshinone IIA (0-2 μM) is not a potent UGT inhibitor both in humans and rats. Additionally, there existed significant differences between two processed DEE in the expression of PXR, and the activity of human UGT1A1, 1A3, 1A6, and 2B15 and rat UGT1A3, and 2B15 (P<0.05). Conclusion: The effects of two processed DEE on hepatic UGT enzyme expression and activity differed. Accordingly, the combined usage of related UGTs substrates with DEE and its monomer components preparations may call for caution, depending on the drug’s exposure-response relationship and dose adjustment. Besides, it is vital to pay attention to the distinction between sweated and non-sweated Danshen in clinic, which influences its pharmacological activity.
-
-
-
Effect of Atorvastatin on Single Oral Pharmacokinetics and Safety of Daclatasvir in Rats: Emphasis on P-glycoprotein and Cytochrome P450
Authors: Heba A. Elbadawy, Sara A. Wahdan and Ebtehal El-DemerdashObjective: This study aimed to investigate the effect of atorvastatin on daclatasvir oral pharmacokinetics and safety and assess the possible underlining mechanisms by targeting P-glycoprotein (P-gp) and cytochrome P450 (CYP3A4). Methods: The transport of daclatasvir, as well as the standard rhodamine 123 by P-gp across the rat intestine, was studied in vitro using the non-everted sac method. To assess the pharmacokinetic profile of daclatasvir in vivo, rats were divided into three groups receiving either saline, standard P-gp inhibitor verapamil (25 mg/kg), or atorvastatin (10 mg/kg), 2 hrs prior to a single dose of daclatasvir (7 mg/kg). In addition, the markers of liver and kidney functions and muscle rhabdomyolysis were assessed. Further, histopathological examination of liver and kidney tissue and assessment of CYP3A4 level was done. Results: The inhibitory effect of atorvastatin on Pgp activity and expression was manifested by increased serosal transport of the standard rhodamine 123, as well as daclatasvir. In vivo, Cmax (peak plasma concentration) and area under the curve (AUC (0128;t)) of daclatasvir after atorvastatin treatment increased compared to the vehicle group but not in a significant manner. On the other hand, atorvastatin caused a significant increase in the clearance of daclatasvir. Concomitant administration of atorvastatin with daclatasvir significantly decreased CYP3A4 content compared to the control group. The combination also showed increased liver enzymes and some pathological alterations in the liver. Conclusion: Atorvastatin has a significant effect on P-gp mediated intestinal transport of daclatasvir; however, it did not affect the systemic bioavailability of a single oral dose of daclatasvir.
-
-
-
Protective Effects of Grape Seed Proanthocyanidin Extract in Preventing DSS Induced Ulcerative Colitis Based on Pharmacodynamic, Pharmacokinetic and Tissue Distribution
Authors: Xinrui Wang, Shuai Quan, Jingyang Li, Ying Liu, Huageng Sun, Jingze Zhang and Dailin LiuBackground: Based on pharmacodynamic, pharmacokinetic and tissue distribution studies, we explored the potential effect of grape seed proanthocyanidin extract (GSPE) on dextran sodium sulfate (DSS) -induced ulcerative colitis in mice and its underlying mechanism. Methods: A liquid chromatography-mass spectrometry method was developed to measure the content of five components of GSPE in rat plasma and tissue. After oral administration of GSPE, correlative index levels of interleukin- 1β (IL-1β), interleukin-6 (IL-6), factor-α (TNF-α), Nitric Oxide (NO), malonaldehyde (MDA), and superoxide dismutase (SOD) were detected in the serum and colon tissues. The protein expression levels of HO-1, Nrf2 and NF-ΚB in the mouse colonic mucosa were analysed using immunohistochemistry. Results: Pharmacodynamic tests showed substantially reduced mice body weight, diarrhea, and bloody stool in the model group. The pathological damage to the colonic mucosa of mice in the GSPE groups was remarkably reduced in a dose-dependent manner. The histopathological score of the colon in the model group was significantly higher than that of the control group (P <0.05), suggesting that DSS caused severe damage to the colon. After oral administration of GSPE, the serum and colonic tissue levels of IL-1β, IL-6, TNF-α, NO, and MDA decreased, whereas SOD content increased. Moreover, the protein levels of NF-ΚB and Keap-1 were significantly decreased, whereas the expression levels of Nrf2 and HO-1 proteins increased (P<0.01) based on the results of the microwaveimmunohistochemical assay. The pharmacokinetic results showed that catechin, epicatechin, and procyanidins B1, B2, and B4 are widely distributed in the tissues and blood of rats and may accumulate in some tissues. Catechin and epicatechin peaked at 0.25 and 1.5 h for the first and second time, respectively. Procyanidin B1, B2, and B4 peaked at 0.5 and 1.5 h for the first and second time, respectively, owing to the effect of the hepato-enteric circulation. The active components of GSPE can reach the colon of the lesion site, and hepatoenteric circulation can increase the residence time of the active components in the body, further increasing the anti-ulcer activity. Conclusion: Our findings suggest that GSPE has a potential protective effect against DSS-induced ulcerative colitis in mice.
-
Volumes & issues
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
