Current Drug Metabolism - Volume 22, Issue 11, 2021
Volume 22, Issue 11, 2021
-
-
Metabolite Identification in the Preclinical and Clinical Phase of Drug Development
Authors: Yali Wu, Lulu Pan, Zhendong Chen, Yuandong Zheng, Xingxing Diao and Dafang ZhongMetabolite identification plays a critical role in the phases during drug development. Drug metabolites can contribute to efficacy, toxicity, and drug-drug interaction. Thus, the correct identification of metabolites is essential to understand the behavior of drugs in humans. Drug administration authorities (e.g., FDA, EMA, and NMPA) emphasize evaluating the safety of human metabolites with exposure higher than 10% of the total drugrelated components. Many previous reviews have summarized the various methods, tools, and strategies for the appropriate and comprehensive identification of metabolites. In this review, we focus on summarizing the importance of identifying metabolites in the preclinical and clinical phases of drug development. Summarized scenarios include the role of metabolites in pharmacokinetics/pharmacodynamics (PK/PD) analysis, disproportional exposure of metabolites that contribute to drug toxicity, changes in metabolite exposure in renal-impaired patients, covalent tyrosine kinase inhibitors (anticancer drugs), and metabolite identification of drug candidates from natural medicines. This review is aimed to provide meaningful insight into the significant role of metabolite identification in drug development.
-
-
-
Rapid Profiling of the Marker Components in Artemisia annua L. and their Metabolites in Rats Using an Improved Liquid Chromatography-tandem Highresolution Mass Spectrometry-based Technology
Authors: Xin Wang, Tianyu Cai, Yuewu Xie, Xiaoyue Chen, Aijuan Yang and Jie XingBackground: As parasite resistance to the main artemisinin drugs has emerged in Southern Asia, the traditional herb Artemisia annua L. (AAL) from which artemisinin (QHS) isolated was found to overcome resistance to QHS. However the component and metabolite profiles of AAL remain unclear. Objective: In this study, component profiling of marker compounds in AAL (amorphane sesquiterpene lactones and flavonoids) was performed and their subsequent metabolism was investigated in rats. Methods: For efficient component classification and structural characterization, an improved liquid chromatography- tandem high-resolution mass spectrometry (HRMS)-based analytical strategy was applied, i.e., background subtraction (BS) followed by ring-double-bond (RDB) filter in tandem with repeated BS processing. Structures of detected components/metabolites were characterized based on integrated information including their HRMSn patterns, RDB values, the established component/metabolite network, the biosynthesis pathways of AAL, and/or NMR data. Results: A total of 38 amorphane sesquiterpene lactones and 35 flavonoids were found in AAL as prototype compounds, among which 26 components were previously undescribed. Major compounds were identified by comparing them with reference standards. Among 73 AAL prototypes administered, 38 were absorbed in the circulation as the prototype. Moreover, 20 metabolites of amorphane sesquiterpene lactones and 10 metabolites of flavonoids were detected in rats. The major metabolic pathways included oxidation, methylation, glucuronidation and sulfation. Conclusion: The component and metabolite network were established for marker components in AAL, which will be valuable to understand the synergistic antimalarial potency of QHS in A. annua L. The analytical strategy can also be applied to other herbal medicines.
-
-
-
Metabolic Activation of Retrorsine may Disrupt Bile Acid Homeostasis in Mice through the Nrf2 Pathway
Authors: Xiaoyan Pang, Chongzhuang Tang, Peng Cao, Lei Zhou and Xiaoyan ChenBackground: The hepatotoxic pyrrolizidine alkaloids (PAs) were reported to increase bile acid (BA) levels in the rat. However, it is still unclear whether the production of highly reactive dehydropyrrolizidine through CYP450s is directly relevant to BA changes. Objective: To further explore the mechanism by which metabolic activation of PAs induced BA changes, the effect of impaired or enhanced metabolic activation on the BA profiling and BA-related synthesis and to investigate transport genes, and explore the involvement of the Nrf2 pathway. Methods: Blood and liver samples were collected after intragastrical administration of 35 mg/kg retrorsine or saline for seven days in wild-type (WT) and Nrf2 KO mice. CYP450 inhibitor, 1-aminobenzotriazole (ABT), or gammaglutamylcysteine synthetase inhibitor, L-buthionine-sulfoximine (BSO) were employed in WT mice. Retrorsineinduced hepatotoxicity was evaluated by a biochemical method and H staining method. Serum BAs were quantified by high-performance liquid chromatography/triple quadrupole mass spectrometry. Blood pyrrole-protein adducts were semi quantified by high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. The gene and protein expression of BA-related transporters and enzymes in the liver were measured by a quantitative real-time PCR method and western blotting method. Results: The BA concentrations in serum were increased in the retrorsine-treated WT mice, along with the upregulation of BA transporters, Ostβ, Mrp3, Mrp4, and Mrp2. When ABT was co-administered, the altered BA levels and Mrp4 mRNA and protein levels were reversed, accompanied by a 50% reduction of 6,7-dihydro-7-hydroxy-1- hydroxymethyl-5H-pyrrolizine (DHP) formation. When BSO was co-administered, serum BAs were not further increased, but Ostβ, Mrp3, Mrp4 mRNA, and Mrp4 protein levels continuously increased. The induction of Mrp4 by retrorsine among the tested BA transporters was the only one that was abolished or enhanced in the presence of ABT or BSO. The Nrf2 protein levels in the nucleus increased in the retrorsine-treated WT mice, which were remarkably repressed by co-administration of ABT and enhanced by co-administration of BSO. In Nrf2 KO mice receiving retrorsine, the bile acids and the mRNA and protein levels of Mrp2, Mrp3, Mrp4, and Ostβ were hardly changed, indicating the direct role of Nrf2 in retrorsine-induced BA changes in WT mice. Conclusion: The activation of Nrf2 translocation by forming the reactive metabolite of PAs induced the expressions of BA transporters and changed serum BA levels. Mrp4 was a sensitive biomarker for the perturbation of redox status caused by the formation of dehydropyrrolizidine.
-
-
-
Oxypeucedanin is a Mechanism-based Inactivator of CYP2B6 and CYP2D6
Authors: Kehan Zhang, Yilin Li, Yao Fu, Tiantian Cui, Qian Wang, Xu Mao, Ying Peng and Jiang ZhengBackground: Herbal medicine Angelica dahurica is widely employed for the treatment of rheumatism and pain relief in China. Oxypeucedanin is a major component in the herb. Objectives: The objectives of this study are aimed at the investigation of mechanism-based inactivation of CYP2B6 and CYP2D6 by oxypeucedanin, characterization of the reactive metabolites associated with the enzyme inactivation, and identification of the P450s participating in the bioactivation of oxypeucedanin. Methods: Oxypeucedanin was incubated with liver microsomes or recombinant CYPs2B6 and 2D6 under designed conditions, and the enzyme activities were measured by monitoring the generation of the corresponding products. The resulting reactive intermediates were trapped with GSH and analyzed by LC-MS/MS. Results: Microsomal incubation with oxypeucedanin induced a time-, concentration-, and NADPH-dependent inhibition of CYPs2B6 and 2D6 with kinetic values of KI/kinact 1.82 μM/0.07 min-1 (CYP2B6) and 8.47 μM/0.044 min-1 (CYP2D6), respectively. Ticlopidine and quinidine attenuated the observed time-dependent enzyme inhibitions. An epoxide and/or γ-ketoenal intermediate(s) derived from oxypeucedanin was/were trapped in microsomal incubations. CYP3A4 was the primary enzyme involved in the bioactivation of oxypeucedanin. Conclusion: Oxypeucedanin was a mechanism-based inactivator of CYP2B6 and CYP2D6. An epoxide and/or γ- ketoenal intermediate(s) may be responsible for the inactivation of the two enzymes.
-
-
-
Isolation, Docking and In Silico ADME-T Studies of Acacianol: Novel Antibacterial Isoflavone Analogue Isolated from Acacia leucophloea Bark
Authors: Rajeev K. Singla, Rajesh Gupta, Shikha Joon, Arun K. Gupta and Bairong ShenBackground: The plant Acacia leucophloea (Roxb.) Willd. of the family Fabaceae is of paramount importance in Indian medicine. Objectives: We sought to evaluate the in vitro anti-microbial activity of A. leucophloea stem bark extract together with its phytochemical characterization and exploration of drug-likeness attributes. Methods: In vitro Kirby-Bauer disc-diffusion and tube-dilution assays were exploited for determining the anti-microbial activity of the methanolic bark extracts against several bacterial test strains. Spectral characterization of the isolated phytoconstituents was performed using spectroscopy techniques viz., UV, IR, 1H NMR, and mass spectroscopy followed by the in silico studies like docking and ADME-T studies. Results: The crude methanolic extracts were active against all the bacterial test strains, albeit weakly or moderately, as indicated by the zone of inhibition and minimum inhibitory concentration in the anti-microbial assays. The isolated phytoconstituent was identified to be 3-(3,4-dihydro-5-methoxy-2H-chromen-6-yl)-2,5- dimethoxy-2H-chromen-7-ol (hereby coined as acacianol), a novel isoflavone analog. Acacianol demonstrated a strong binding affinity towards the bacterial DNA gyrase over clorobiocin, especially in the case of cavity 4 with no predicted toxicities in silico, except skin sensitization and chromosome damage.
-
-
-
Physicochemical, Interaction & Topological Descriptors vs. hMAO-A Inhibition of Aplysinopsin Analogs: A Boulevard to the Discovery of Semi-synthetic Antidepression Agents
Authors: Rajeev K. Singla, Ghulam Md. Ashraf, Magdah Ganash, Varadaraj B. G. and Bairong ShenBackground: Depression, a neurological disorder, is globally the 4th leading cause of chronic disabilities in human beings. Objective: This study aimed to model a 2D-QSAR equation that can facilitate the researchers to design better aplysinopsin analogs with potent hMAO-A inhibition. Methods: Aplysinopsin analogs dataset were subjected to ADME assessment for drug-likeness suitability using StarDrop software before modeled equation. 2D-QSAR equations were generated using VLife MDS 4.6. Dataset was segregated into training and test set using different methodologies, followed by variable selection. Model development was done using principal component regression, partial least square regression, and multiple regression. Results: The dataset has successfully qualified the drug-likeness criteria in ADME simulation, with more than 90% of molecules cleared the ideal conditions, including intrinsic solubility, hydrophobicity, CYP3A4 2C9pKi, hERG pIC50, etc. 112 models were developed using multiparametric consideration of methodologies. The best six models were discussed with their extent of significance and prediction capabilities. ALP97 was emerged out as the most significant model out of all, with ~83% of the variance in the training set, the internal predictive ability of ~74%, while having the external predictive capability of ~79%. Conclusion: ADME assessment suggested that aplysinopsin analogs are worth investigating. Interaction among the descriptors in the way of summation or multiplication products are quite influential and yield significant 2D-QSAR models with good prediction efficiency. This model can be used to design a more potent hMAO-A inhibitor with an aplysinopsin scaffold, which can then contribute to the treatment of depression and other neurological disorders.
-
Volumes & issues
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
