Current Drug Metabolism - Volume 22, Issue 10, 2021
Volume 22, Issue 10, 2021
-
-
Effects of CPY3A5 Genetic Polymorphisms on the Pharmacokinetics of Extendedrelease and Immediate-release Tacrolimus Formulations in Renal Transplant Recipients: A Systematic Review and Meta-analysis
Authors: Qiufen Xie, Qian Xiang, Zhiyan Liu, Guangyan Mu, Shuang Zhou, Zhuo Zhang, Lingyue Ma and Yimin CuiBackground: Although the pharmacokinetic variability of Tacrolimus (Tac) metabolism is primarily influenced by CYP3A5 genotypes, the potential effect according to CYP3A5 polymorphisms in Tac extended-release (Tac-ER) and immediate-release (Tac-IR) and between these formulations’ conversion needs further investigation. The purpose of this study was to clarify the association of CYP3A5 genotypes and pharmacokinetics of different Tac formulations in renal transplant recipients. Methods: PubMed, EMBASE, and Cochrane Library databases were searched for eligible studies (protocol registration No. CRD 42019133790 in PROSPERO network). The summary weighted mean difference with 95% confidence intervals was calculated for pharmacokinetic parameters using the random-effects model according to posttransplantation periods, genotypes and formulations. Sensitivity analysis, publication bias, and subgroup analyses were conducted. Results: A total of 27 studies involving 2,713 renal transplant recipients were adopted. Whether patients treated with Tac-ER or Tac-IR, CYP3A5 non-expressors (*3/*3) had a decreased daily dose and CL/F, an increased Ctrough, Ctrough/D, AUC0-24h/D and Cmax/D than expressors (*1/*1 or *1/*3) at most post-transplantation periods. Furthermore, when 1:1 dose conversion from Tac-IR to Tac-ER (all at ≥12 months post-transplantation), Ctrough and Cmax were decreased in both CYP3A5 non-expressors and expressors, while daily dose was only decreased in CYP3A5 nonexpressors and AUC0-24h was only decreased in CYP3A5 expressors. Finally, subgroup analyses indicated that ethnicity, mean age, and male percentage influenced daily dose and Ctrough of Tac, especially for Tac-IR. Conclusion: The results indicated that CYP3A5 genotypes affect the pharmacokinetics of Tac in renal transplant recipients in both formulations and between formulations’ conversion. Future studies should be exploring more other associations of CYP3A5 genotypes and the pharmacodynamics of Tac.
-
-
-
Overexpression of MRP3 in HeLa-UGT1A9 Cells Enhances Glucuronidation Capability of the Cells
Authors: Qiong Zhou, Bijun Xia, Taijun Yin, Yu He, Ling Ye and Ming HuBackground: The interplay between phase II enzymes and efflux transporters leads to extensive metabolism and low systemic bioavailability of flavonoids. Objective: In this study, the dynamic interplay between multiple UGTs and multiple efflux transporters that occur inside the cells was fully investigated. Methods: A new HeLa-UGT1A9-MRP3 cell was established to overexpress two dominant efflux transporters MRP3 and BCRP, and two UGT isoforms UGT1A9 and UGT1A3. The metabolism and glucuronides excretion for a model flavonoid genistein were determined in HeLa-UGT1A9-MRP3 cells and HeLa-UGT1A9-Con cells that overexpressed one UGT (1A9) and one efflux transporter (BCRP). Results: The excretion rate grew nearly 6-fold, cellular clearance of glucuronides increased about 3-fold, and fraction of genistein metabolized (fmet) increased (14%, p<0.01) in the new cells. Small interfering (siRNA)-mediated MRP3 functional knockdown resulted in marked decreases in the excretion rates (26%-78%), intracellular amounts (56%-93%), and cellular clearance (54%-96%) in both cells, but the magnitude of the differences in HeLa- UGT1A9-Con cells was relatively small. Reductions in fmet values were similarly moderate (11%-14%). In contrast, UGT1A9 knockdown with siRNA caused large decreases in the excretion rates (46%-88%), intracellular amounts (80%-97%), cellular clearance (80%-98%) as well as fmet value (33%-43%, p<0.01) in both UGT1A9 cells. Comparisons of the kinetic parameters and profiles of genistein glucuronidation as well as UGT mRNA expression suggest that HeLa-UGT1A9-MRP3 has increased expression of both MRP3 and UGT1A3. Conclusion: The newly engineered HeLa-UGT1A9-MRP3 cells is an appropriate model to study the kinetic interplay between multiple UGTs and efflux transporters, and a promising biosynthetic tool to obtain flavonoid glucuronides of high purity.
-
-
-
Absorption, Metabolism, Distribution, and Excretion of Letermovir
Authors: Karsten Menzel, Prajakti Kothare, Jacqueline B. McCrea, Xiaoyan Chu and Dirk KropeitBackground: Letermovir is approved for prophylaxis of cytomegalovirus infection and disease in cytomegalovirus-seropositive hematopoietic stem-cell transplant (HSCT) recipients. Objective: HSCT recipients are required to take many drugs concomitantly. The pharmacokinetics, absorption, distribution, metabolism, and excretion of letermovir and its potential to inhibit metabolizing enzymes and transporters in vitro were investigated to inform on the potential for drug-drug interactions (DDIs). Methods: A combination of in vitro and in vivo studies described the absorption, distribution, metabolism, and routes of elimination of letermovir, as well as the enzymes and transporters involved in these processes. The effect of letermovir to inhibit and induce metabolizing enzymes and transporters was evaluated in vitro and its victim and perpetrator DDI potentials were predicted by applying the regulatory guidance for DDI assessment. Results: Letermovir was a substrate of CYP3A4/5 and UGT1A1/3 in vitro. Letermovir showed concentration- dependent uptake into organic anionic transporting polypeptide (OATP)1B1/3-transfected cells and was a substrate of P-glycoprotein (P-gp). In a human ADME study, letermovir was primarily recovered as unchanged drug and minor amounts of a direct glucuronide in feces. Based on the metabolic pathway profiling of letermovir, there were few oxidative metabolites in human matrix. Letermovir inhibited CYP2B6, CYP2C8, CYP3A, and UGT1A1 in vitro, and induced CYP3A4 and CYP2B6 in hepatocytes. Letermovir also inhibited OATP1B1/3, OATP2B1, OAT3, OCT2, BCRP, BSEP, and P-gp. Conclusion: The body of work presented in this manuscript informed on the potential for DDIs when letermovir is administered both intravenously and orally in HSCT recipients.
-
-
-
In vitro Metabolism of Humantenine in Liver Microsomes from Human, Pig, Goat and Rat
Authors: Si-Juan Huang, Meng-Ting Zuo, Xue-Jia Qi, Xiao Ma, Zi-Yuan Wang and Zhao-Ying LiuBackground: Gelsemium elegans Benth (G. elegans) is a well-known toxic plant. Alkaloids are the main active components of G. elegans. Currently, the metabolism of several alkaloids, such as gelsenicine, koumine, and gelsemine, has been widely studied. However, as one of the most important alkaloids in G. elegans, the metabolism of humantenine has not been studied yet. Methods: In order to elaborate on the in vitro metabolism of humantenine, a comparative analysis of its metabolic profile in human, pig, goat and rat liver microsomes was carried out using high performance chromatography/ quadrupole time-of-flight mass spectrometry (HPLC/QqTOF-MS) for the first time. Results: Totally, ten metabolites of humantenine were identified in liver microsomes from human (HLMs), pig (PLMs), goat (GLMs) and rat (RLMs) based on the accurate MS/MS spectra. Five metabolic pathways of humantenine, including demethylation, dehydrogenation, oxidation, dehydrogenation and oxidation, and demethylation and oxidation, were proposed in this study. There were qualitative and quantitative species differences in the metabolism of humantenine among the four species. Conclusion: The in vitro metabolism of humantenine in HLMs, PLMs, GLMs and RLMs was studied by a sensitive and specific detection method based on HPLC/QqTOF-MS. The results indicated that there were species-related differences in the metabolism of humantenine. This work might be of great significance for the further research and explanation of species differences in terms of toxicological effects of G. elegans.
-
-
-
In vitro Measurement and In vivo Prediction of Time-Dependent Inhibitory Effects of Three Tyrosine Kinase Inhibitors on CYP3A Activity
Authors: Liyan Wang, Tingting Zhao, Yunxiang Wang, Banglian Hu, Jianfei Tao, Jinshan Ke, Tingfei Wei, Guangbo Ge, Qiang Meng, Changyuan Wang, Qi Liu, Huijun Sun, Jingjing Wu and Yanwei ChenBackground: Imatinib, sunitinib, and gefitinib are the three most common tyrosine kinase inhibitors (TKIs). However, their quantitative drug-drug interaction potentials In vivo and the relationship between their structure and inhibitory activity remain unknown. Objective: This study aimed to investigate the potential drug-drug interaction risk of three TKIs based on CYP3A. Methods: 6β-Hydroxylated testosterone formation was selected to probe the CYP3A activity in human liver microsomes. A molecular docking simulation was performed to explore the potential structural alerts. Results: Imatinib exhibited the strongest inhibitory effect towards CYP3A, while the inhibitory potential of gefitinib and sunitinib were comparable to each other but weaker than imatinib. IC50 shift assays demonstrated that the inhibitory potential of all three TKIs was significantly increased after a 30-min preincubation with NADPH. The KI and Kinact values of imatinib, sunitinib, and gefitinib were 3.75 μM and 0.055 min-1, 1.96 μM and 0.037 min-1, and 9.94 μM and 0.031 min-1, respectively. IVIVE results showed that there was a 1.3- to 43.1-fold increase in the AUC of CYP3A-metabolizing drugs in the presence of the TKIs. Conclusion: All three TKIs exhibited a typical irreversible inhibitory effect towards CYP3A. The presence of more N-heterocycles and the resulting better binding confirmation of imatinib may have been responsible for its stronger inhibitory effect than sunitinib and gefitinib. Therefore, caution should be taken when CYP3A-metabolizing drugs are co-administrated with imatinib, sunitinib, or gefitinib.
-
-
-
Comprehensive Identification of Astilbin Metabolites in Rats Based on Multiple Metabolite Templates Combined with UHPLC-Q-Exactive Mass Spectrometry
Authors: Shan Jiang, Haoran Li, Ailin Yang, Hongbing Zhang, Pingping Dong, Fan Dong, Long Dai, Shaoping Wang and Jiayu ZhangBackground: Astilbin, a dihydroflavonoid compound widely found in plants, exhibits a variety of pharmacological activities and biological effects. However, little is known about the metabolism of this active compound in vivo, which is very helpful for elucidating the pharmacodynamic material basis and application of astilbin. Objective: To establish a rapid profiling and identification method for metabolites in rat urine, faeces and plasma using a UHPLC-Q-Exactive mass spectrometer in negative ion mode. Methods: In this study, a simple and rapid systematic strategy and 7 metabolite templates, which were established based on previous reports, were utilized to screen and identify astilbin metabolites. Results: As a result, a total of 71 metabolites were detected and characterized, among which 32 metabolites were found in rat urine, while 27 and 38 metabolites were characterized from rat plasma and faeces, respectively. These metabolites were presumed to be generated through ring cleavage, sulfation, dehydrogenation, methylation, hydroxylation, glucuronidation, dehydroxylation and their composite reactions. Conclusion: This study illustrated the capacity of the sensitive UHPLC-Q-Exactive mass spectrometer analytical system combined with the data-mining methods to rapidly elucidate the unknown metabolism. Moreover, the comprehensive metabolism study of astilbin provided an overall metabolic profile, which will be of great help in predicting the in vivo pharmacokinetic profiles and understanding the action mechanism of this active ingredient.
-
-
-
Metabolism is not a Major Contributor to the Toxicity of Piperaquine, a Long-acting Antimalarial Agent in Artemisinin-based Combination Therapy
Authors: Liyuan Zhang, Zhaohua Liu, Yunrui Zhang, Yuewu Xie and Jie XingBackground: Hepatocellular damage has been reported for the antimalarial piperaquine (PQ) in the clinic after cumulative doses. Objectives: The role of metabolism in PQ toxicity was evaluated, and the mechanism mediating PQ hepatotoxicity was investigated. Methods: The toxicity of PQ and its major metabolite (PQ N-oxide; M1) in mice was evaluated in terms of serum biochemical parameters. The role of metabolism in PQ toxicity was investigated in mice pretreated with an inhibitor of CYP450 (ABT) and/or FMO enzyme (MMI). The dose-dependent pharmacokinetics of PQ and M1 were studied in mice. Histopathological examination was performed to reveal the mechanism mediating PQ hepatotoxicity. Results: Serum biochemical levels (ALT and BUN) increased significantly (P < 0.05) in mice after three-day oral doses of PQ (> 200 mg/kg/day), indicating hepatotoxicity and nephrotoxicity of PQ at a high dose. Weaker toxicity was observed for M1. Pretreatment with ABT and/or MMI did not increase PQ toxicity. PQ and M1 showed linear pharmacokinetics in mice after a single oral dose, and multiple oral doses led to their cumulative exposures. Histopathological examination showed that a high dose of PQ (> 200 mg/kg/day for three days) could induce hepatocyte apoptosis. The mRNA levels of targets in NF-ΚB and p53 pathways could be up-regulated by 2-30-fold in mice by PQ or M1. Conclusion: PQ metabolism led to detoxification of PQ, but there was a low possibility of altered toxicity induced by metabolism inhibition. The hepatotoxicity of PQ and its N-oxidation metabolite was partly mediated by NF-ΚB inflammatory pathway and p53 apoptosis pathway.
-
Volumes & issues
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
