Current Drug Metabolism - Volume 20, Issue 13, 2019
Volume 20, Issue 13, 2019
-
-
Therapeutic Study of Phytochemicals Against Cancer and Alzheimer’s Disease Management
Authors: Syed S. Ahmad, Tayyaba Waheed, Sayed Rozeen, Sufia Mahmood and Mohammad Amjad KamalBackground: Phytochemicals are a significant piece of conventional prescription and have been researched in detail for conceivable consideration in current drug discovery. Medications and plants are firmly identified for traditional prescriptions and ethnomedicines that are basically arranged from plants. Recognizing the medical advantages of phytochemicals is of fundamental advancement in medication and useful sustenance improvement. Secondary metabolites of different plants have been customarily used for the improvement of human wellbeing. The phytochemicals are diets rich, which can upgrade neuroplasticity and protection from neurodegeneration. Results: Phytochemicals keep on entering clinical preliminaries or provide leads for the synthesis of medicinal agents. Phytochemicals are a great extent cancer prevention agents in nature at lower concentrations and under favorable cell conditions that adequately avoid the oxidation of different molecules that have an ability to produce free radicals and thus protect the body. Conclusion: The purpose of this review is to describe the use of phytochemicals against cancer and Alzheimer’s disease treatment.
-
-
-
Neuroblastoma: An Updated Review on Biology and Treatment
Authors: Suresh Mallepalli, Manoj K. Gupta and Ramakrishna VaddeBackground: Neuroblastoma (NB) is the second leading extracranial solid tumors of early childhood and clinically characterized by the presence of round, small, monomorphic cells with excess nuclear pigmentation (hyperchromasia).Owing to a lack of definitive treatment against NB and less survival rate in high-risk patients, there is an urgent requirement to understand molecular mechanisms associated with NB in a better way, which in turn can be utilized for developing drugs towards the treatment of NB in human. Objectives: In this review, an approach was adopted to understand major risk factors, pathophysiology, the molecular mechanism associated with NB, and various therapeutic agents that can serve as drugs towards the treatment of NB in humans. Conclusion: Numerous genetic (e.g., MYCN amplification), perinatal, and gestational factors are responsible for developing NB. However, no definite environmental or parental exposures responsible for causing NB have been confirmed to date. Though intensive multimodal treatment approaches, namely, chemotherapy, surgery & radiation, may help in improving the survival rate in children, these approaches have several side effects and do not work efficiently in high-risk patients. However, recent studies suggested that numerous phytochemicals, namely, vincristine, and matrine have a minimal side effect in the human body and may serve as a therapeutic drug during the treatment of NB. Most of these phytochemicals work in a dose-dependent manner and hence must be prescribed very cautiously. The information discussed in the present review will be useful in the drug discovery process as well as treatment and prevention on NB in humans.
-
-
-
Non-coding RNAs in Lung Cancer Chemoresistance
Authors: Priya Mondal, Jagadish Natesh, Mohammad A. Kamal and Syed Musthapa MeeranBackground: Lung cancer is the leading cause of cancer-associated death worldwide with limited treatment options. The major available treatment options are surgery, radiotherapy, chemotherapy and combinations of these treatments. In chemotherapy, tyrosine kinase inhibitors and taxol are the first lines of chemotherapeutics used for the treatment of lung cancer. Often drug resistance in the clinical settings hinders the efficiency of the treatment and intrigues the tumor relapse. Drug-resistance is triggered either by intrinsic factors or due to the prolonged cycles of chemotherapy as an acquired-resistance. There is an emerging role of non-coding RNAs (ncRNAs), including notorious microRNAs (miRNAs), proposed to be actively involved in the regulations of various tumor-suppressor genes and oncogenes. Results: The altered gene expression by miRNA is largely mediated either by the degradation or by interfering with the translation of targeted mRNA. Unlike miRNA, other type of ncRNAs, such as long non-coding RNAs (lncRNAs), can target the transcriptional activator or the repressor, RNA polymerase, and even DNA-duplex to regulate the gene expressions. Many studies have confirmed the crucial role of ncRNAs in lung adenocarcinoma progression and importantly, in the acquisition of chemoresistance. Recently, ncRNAs have become early biomarkers and therapeutic targets for lung cancer. Conclusion: Targeting ncRNAs could be an effective approach for the development of novel therapeutics against lung cancer and to overcome the chemoresistance.
-
-
-
Role of Adiponectin in Cervical Cancer
Background: Cervical Cancer (CC) is the most common leading cancer in women globally. This is considered to be the type of cancer that is restricted to women. Any women in the reproductive age range can develop CC. However, women between the ages of 25 and 39 are at a higher risk. Objective: In comparison with developed countries, the screening and awareness of CC in developing countries are significantly low. Infection with Human papillomavirus (HPV) is the main cause of CC, especially HPV-16 and HPV-18. Other than HPV, there are other factors that can contribute to CC, such as Human simplex virus (HSV) infection and immunocompromised patients with HIV. Conclusion: Cervical cancer can be detected by molecular techniques such as (1) PCR, (2) visual acetic acid method, (3) DNA Hybrid II test, (4) liquid-based cytology, (5) Pap-Smear techniques, and (6) colposcopy techniques. Early detection of CC is very much needed; cryotherapy or LEEP (Loop electro surgical excision procedure) can be conducted during the pre-invasive stage of CC. Some metabolic changes in the human body such as fluctuating levels of insulin and triglycerides and increased activity of adiponectin may lead to CC. These contributing factors, such as adipokines, can be used as biomarkers for CC detection.
-
-
-
Pharmacokinetic Evaluation of 99mTc-radiolabeled Solid Lipid Nanoparticles and Chitosan Coated Solid Lipid Nanoparticles
More LessBackground: Solid Lipid Nanoparticles (SLNs) possess unique in vivo features such as high resistivity, bioavailability, and habitation at the target site. Coating nanoparticles with polymers such as chitosan greatly affects their pharmacokinetic behavior, stability, tissue uptake, and controlled drug delivery. The aim of this study was to prepare and evaluate the biodistribution of 99mTc-labeled SLNs and chitosan modified SLNs in mice. Methods: 99mTc-oxine was prepared and utilized to radiolabel pre-papered SLNs or chitosan coated SLNs. After purification of radiolabeled SLNs (99mTc-SLNs) and radiolabeled chitosan-coated SLNs (99mTc-Chi-SLNs) using Amicon filter, they were injected into BALB/c mice to evaluate their biodistribution patterns. In addition, nanoparticles were characterized using Transmission Electron Microscopy (TEM), Fourier-transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), X-ray Powder Diffraction (XRD) and Dynamic Light Scattering (DLS). Results: 99mTc-oxine with high radiochemical purity (RCP~100%) and stability (RCP > 97% at 24 h) was used to provide 99mTc-SLNs and 99mTc-Chi-SLNs with high initial RCP (100%). TEM image and DLS data suggest 99mTc- SLNs susceptibility to aggregation. To that end, the main portion of 99mTc-SLNs radioactivity accumulates in the liver and intestines, while 99mTc-Chi-SLNs sequesters in the liver, intestines and kidneys. The blood radioactivity of 99mTc-Chi-SLNs was higher than that of 99mTc-SLNs by 7.5, 3.17 and 3.5 folds at 1, 4 and 8 h post-injection. 99mTc- Chi-SLNs uptake in the kidneys in comparison with 99mTc-SLNs was higher by 37.48, 5.84 and 11 folds at 1, 4 and 8h. Conclusion: The chitosan layer on the surface of 99mTc-Chi-SLNs reduces lipophilicity in comparison with 99mTc- SLNs. Therefore, 99mTc-Chi-SLNs are less susceptible to aggregation, which leads to their lower liver uptake and higher kidney uptake and blood concentration.
-
-
-
Developing a High-performance Liquid Chromatography Method for Simultaneous Determination of Loratadine and its Metabolite Desloratadine in Human Plasma
Authors: Mahmoud M. Sebaiy and Noha I. ZiedanBackground: Allergic diseases are considered as the major burden on public health with increased prevalence globally. Histamine H1-receptor antagonists are the foremost commonly used drugs in the treatment of allergic disorders. The target drug in this study, loratadine, belongs to this class of drugs and its biometabolite desloratadine which is also a non-sedating H1 receptor antagonist with anti-histaminic activity being 2.5 to 4 times greater than loratadine. This study aimed to develop and validate a novel isocratic Reversed-phase High-Performance Liquid Chromatography (RP-HPLC) method for rapid and simultaneous separation and determination of loratadine and its metabolite, desloratadine in human plasma. Methods: The drug extraction method from plasma was based on protein precipitation technique. The separation was carried out on a Thermo Scientific BDS Hypersil C18 column (5μm, 250 x 4.60 mm) in a mobile phase of MeOH: 0.025M KH2PO4 adjusted to pH 3.50 using orthophosphoric acid (85: 15, v/v) at an ambient temperature. The flow rate was maintained at 1 mL/min and maximum absorption was measured using the PDA detector at 248 nm. Results: The retention times of loratadine and desloratadine in plasma samples were recorded to be 4.10 and 5.08 minutes, respectively, indicating a short analysis time. Limits of detection were found to be 1.80 and 1.97 ng/mL for loratadine and desloratadine, respectively, showing a high degree of sensitivity of the method. The method was then validated according to FDA guidelines for the determination of the two analytes in human plasma. Conclusion: The results obtained indicate that the proposed method is rapid, sensitive in the nanogram range, accurate, selective, robust and reproducible compared to other reported methods.
-
-
-
Antiplatelet Effect of a Pulaimab [Anti-GPIIb/IIIa F(ab)2 Injection] Evaluated by a Population Pharmacokinetic-pharmacodynamic Model
Authors: Ya-Ou Liu, Zi-Ning Wang, Chao-Yang Chen, Xian-Han Zhuang, Chang-Geng Ruan, Ying Zhou and Yi-Min CuiBackground: Cardiovascular disease has one of the highest mortality rates among all the diseases. Platelets play an important role in the pathogenesis of cardiovascular diseases. Platelet membrane glycoprotein GPIIb/IIIa antagonists are the most effective antiplatelet drugs, and pulaimab is one of these. The study aims to promote individual medication of pulaimab [anti-GPIIb/IIIa F(ab)2 injection] by discovering the pharmacological relationship among the dose, concentration, and effects. The goal of this study is to establish a population pharmacokineticpharmacodynamic model to evaluate the antiplatelet effect of intravenous pulaimab injection. Methods: Data were collected from 59 healthy subjects who participated in a Phase-I clinical trial. Plasma concentration was used as the pharmacokinetic index, and platelet aggregation inhibition rate was used as the pharmacodynamic index. The basic pharmacokinetics model was a two-compartment model, whereas the basic pharmacodynamics model was a sigmoid-EMAX model with a direct effect. The covariable model was established by a stepwise method. The final model was verified by a goodness-of-fit method, and predictive performance was assessed by a Bootstrap (BS) method. Results: In the final model, typical population values of the parameters were as follows: central distribution Volume (V1), 183 L; peripheral distribution Volume (V2), 349 L; Central Clearance (CL), 31 L/h; peripheral clearance(Q), 204 L/h; effect compartment concentration reaching half of the maximum effect (EC50), 0.252 mg/L; maximum effect value (EMAX), 54.0%; and shape factor (γ), 0.42. In the covariable model, thrombin time had significant effects on CL and EMAX. Verification by the goodness-of-fit and BS methods showed that the final model was stable and reliable. Conclusion: A model was successfully established to evaluate the antiplatelet effect of intravenous pulaimab injection that could provide support for the clinical therapeutic regimen.
-
-
-
Preclinical Pharmacokinetics Study of a Novel Intravenous Anesthetic ET-26 Hydrochloride
Authors: Yu J. Zhang, ChaoYi Deng, Jun Yang, DeYing Gong, Yi Kang, Jin Liu and WenSheng ZhangBackground: ET-26 hydrochloride is a novel intravenous anesthetic, approved for clinical trials, that produces a desirable sedative-hypnotic effect with stable myocardial performance and mild adrenocortical suppression in rats and beagle dogs. The objective of this study was to assess the absorption, distribution, metabolism, and excretion of ET-26 hydrochloride. Methods: Hepatocytes from human, monkey, dog, rat, and mouse were used to determine the metabolites of ET-26 hydrochloride. Distribution and excretion were assessed in rats and pharmacokinetic studies were performed in beagle dogs. Results: The metabolic pathway and proposed structure of metabolites were fully assessed resulting from the biotransformation reactions of hydrolysis, dehydrogenation, demethylation and glucuronic acid conjugation. The main distribution of the drug was in fat (15067 ± 801 ng/ml) and liver (13647 ± 1126 ng/ml), and the kidney was the primary excretion route (4.47%-11.94%). The Cmax after injection with 1.045 mg/kg, 2.09 mg/kg, and 4.18 mg/kg was 1476.5 ± 138.9 ng/ml, 2846.1 ± 223.3 ng/ml, and 6233.3 ± 238.9 ng/ml, respectively. The t1/2 of the drug was similar across dose groups at 74.8 ± 10.8 min to 81.4 ± 4.2 min. The AUC0-t values were 30208.1 ± 2026.5 min*ng/ml, 62712.8 ± 1808.3 min*ng/ml, and 130465.2 ± 7457.4 min*ng/ml, respectively. Conclusion: The metabolic pathway and the proposed structure of metabolites for ET-26 hydrochloride were fully assessed. The majority of distribution for ET-26 hydrochloride occurs in the fat and liver, while the primary route of excretion for ET-26 hydrochloride is through the kidney. In dogs, pharmacokinetic features of ET-26 hydrochloride had a linear relationship with dosage.
-
Volumes & issues
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
