Current Drug Metabolism - Volume 14, Issue 1, 2013
Volume 14, Issue 1, 2013
-
-
Models to Predict Intestinal Absorption of Therapeutic Peptides and Proteins
Authors: Filipa Antunes, Fernanda Andrade, Domingos Ferreira, Hanne Morck Nielsen and Bruno SarmentoPrediction of human intestinal absorption is a major goal in the design, optimization, and selection of drugs intended for oral delivery, in particular proteins, which possess intrinsic poor transport across intestinal epithelium. There are various techniques currently employed to evaluate the extension of protein absorption in the different phases of drug discovery and development. Screening protocols to evaluate protein absorption include a range of preclinical methodologies like in silico, in vitro, in situ, ex vivo and in vivo. It is the careful and critical use of these techniques that can help to identify drug candidates, which most probably will be well absorbed from the human intestinal tract. It is well recognized that the human intestinal permeability cannot be accurately predicted based on a single preclinical method. However, the present social and scientific concerns about the animal well care as well as the pharmaceutical industries need for rapid, cheap and reliable models predicting bioavailability give reasons for using methods providing an appropriate correlation between results of in vivo and in vitro drug absorption. The aim of this review is to describe and compare in silico, in vitro, in situ, ex vivo and in vivo methods used to predict human intestinal absorption, giving a special attention to the intestinal absorption of therapeutic peptides and proteins.
-
-
-
Do the Recommended Standards for In Vitro Biopharmaceutic Classification of Drug Permeability Meet the “Passive Transport” Criterion for Biowaivers?
Authors: Simon Zakelj, Katja Berginc, Robert Roskar, Bor Kraljic and Albin KristlBCS based biowaivers are recognized by major regulatory agencies. An application for a biowaiver can be supported by or even based on “in vitro” measurements of drug permeability. However, guidelines limit the application of biowaivers to drug substances that are transported only by passive mechanisms. Regarding published permeability data as well as measurements obtained in our institution, one can rarely observe drug substances that conform to this very strict criterion. Therefore, we measured the apparent permeability coefficients of 13 drugs recommended by FDA's Guidance to be used as standards for “in vitro” permeability classification. The asymmetry of permeability data determined for both directions (mucosal-to-serosal and serosalto- mucosal) through the rat small intestine revealed significant active transport for four out of the nine high-permeability standards and for all four low-permeability standard drugs. As could be expected, this asymmetry was abolished at 4°C on rat intestine. The permeability of all nine high-permeability, but none of the low permeability standards, was also much lower when measured with intestinal tissue, Caco-2 cell monolayers or artificial membranes at 4°C compared to standard conditions (37°C). Additionally, concurrent testing of several standard drugs revealed that membrane transport can be affected by the use of internal permeability standards. The implications of the results are discussed regarding the regulatory aspects of biopharmaceutical classification, good practice in drug permeability evaluation and regarding the general relevance of transport proteins with broad specificity in drug absorption.
-
-
-
Improving Oral Absorption Via Drug-Loaded Nanocarriers: Absorption Mechanisms, Intestinal Models and Rational Fabrication
Authors: Mohammad-Ali Shahbazi and Helder A. SantosAlthough it is acknowledged that the main impediment of orally administered therapeutic agents is their extensive and changeable pre-systemic metabolism, low absorption and instability in harsh environment of the gastrointestinal (GI) tract are also main influential factors, resulting into inadequate and erratic drug bioavailability. To overcome these shortcomings, nanotechnology has offered new promising strategies to prevent and treat a wide variety of diseases by employing different oral drug-carrier structures capable to enhance therapeutic effects and minimize the toxicity of healthy organs or cells. This review, in general, elucidates some considerable features of in vitro oral drug delivery in three different parts. The first one summarizes the main challenges for oral drug delivery and available absorption mechanisms. The second part embodies an in-depth discussion on the role of the intestinal absorption models used to predict permeability, cellular uptake or even toxicity of nanoparticles, resulting into the design of nanocarriers with optimum efficacy for oral delivery. The third section of the literature is devoted, more particularly, to nanocarriers developed for oral absorption in the past few years, including the behavior of nanovehicles upon oral administration with respect to membrane permeability, retention properties and stability, as well as methods which may lengthen residence time in the GI environment or improve drug absorption.
-
-
-
Why We Need Proper PBPK Models to Examine Intestine and Liver Oral Drug Absorption
Authors: Edwin C.Y. Chow and K. Sandy PangIntestinal transporters and enzymes are factors that can influence the absorption of orally administrated drugs. Compartmental models are no longer adequate to describe the sequential handling of drugs and metabolites by the intestine and liver during oral drug absorption, especially when intestinal removal is substantial relative to the liver, and when induction/inhibition elicits different extents of change for identical intestinal and hepatic enzymes or transporters. In this review, we described PBPK models for the intestine (with differential flow patterns: traditional model, TM, and segregated flow model, SFM, and QGut model) as well as semi- or whole bodyphysiological- based pharmacokinetic (PBPK) models to describe the impact of the flow pattern, and the intestinal transporters and enzymes and their attendant heterogeneities on intestinal (FI or FG) and oral (Fsys) bioavailability. The modeling efforts have led to a refinement in providing mechanistic insight on the accurate prediction of drug and metabolite profiles for DDI, pharmacogenomics, age factors and disease conditions.
-
-
-
Evaluation of the Physicochemical and Biopharmaceutical Properties of Fluoro-Indomethacin
Drug nanocarriers have shown great potential in therapy and as diagnostic probes, e.g. in imaging of cancer and inflammation. Imaging can be applied to localize the carrier or the drug itself in the body and/or tissues. In this particular case it is important that drug molecules have the characteristics for possible detection, e.g. after modification with positron emission tomography compliant radioisotopes, without affecting their pharmacological behavior. In order to easily and efficiently follow the ADME profile of the drug after loaded into nanocarriers, the drug can be radiolabelled with, e.g. 18F-label, in order to assess its biodistribution after enteral and parenteral administration in rats. However, this is only possible if the derivative compound behaves similarly to the parent drug compound. In this study, indomethacin (a poorly water-soluble drug) was chosen as a model compound and aimed to evaluate the physicochemical and biopharmaceutical properties of an analog of indomethacin (IMC), fluoro-indomethacin (F-IMC). Although some of the physicochemical and biopharmaceutical properties of IMC are already known, in order to establish a feasible comparison between IMC and F-IMC, the behavior of the former was also investigated in the same conditions as for F-IMC. In this context, both IMC and F-IMC were thermally and morphologically studied. Furthermore, the following properties were also studied for both compounds: pKa and logP, solubility and dissolution profiles at physiological pH values, and toxicity at different concentrations in Caco-2 cells. Finally, the transport across Caco- 2 monolayers of the IMC and F-IMC at physiological pH range was also investigated. The results obtained showed similar values in pKalogP, solubility, dissolution, cytotoxicity, and permeability for both compounds. Thus, there might be strong evidence that both IMC and F-IMC should have a similar ADME behavior and profiles in vivo. The results provide fundamental tools and ideas for further research with nanocarriers of 18F-IMC.
-
-
-
The Mechanisms Responsible for Garlic - Drug Interactions and their In Vivo Relevance
Authors: Katja Berginc and Albin KristlGarlic phytochemicals and garlic supplements influence the pharmacokinetic and pharmacodynamic behavior of concomitantly ingested drugs. In this paper we have summarized the mechanisms responsible for first-pass intestinal pharmacokinetic interactions by investigating the intestinal permeability of some cardiovascular, antiviral drugs, their transport with hepatic transporters and CYP3A4 metabolism. Transporter-enzyme interplay was studied with several in vitro models of varying complexity: rat small intestine and Caco-2 cell monolayers were used in studies of intestinal processes, and hepatic pharmacokinetics was monitored in HepG2 cells, isolated rat hepatocytes and rat liver slices. Garlic phytochemicals from aged garlic extract modified the activities of secretory and absorptive transporters in both intestine and liver and competitively inhibited CYP3A4 enzyme. The increased activities of the most important intestinal efflux (P-glycoprotein - Pgp, Multidrug Resistance Associated Protein 2 - MRP-2, Breast Cancer Resistance Protein - BCRP) and uptake (MonoCarboxylate Transporter 1 - MCT1, Organic Anion Transporting Polypeptide - OATP, Peptide transporter 1 - PepT1) transporters were caused by changes in electrophysiological membrane properties and by allosteric modifications. Because clinical studies investigating interactions between garlic and human immunodeficiency virus protease inhibitors saquinavir and ritonavir have already been performed, we used these in vivo data to evaluate the in vitro results and the reliability of the models employed as screening tools for forecasting the potential of first-pass intestinal metabolism changes. We also assessed the probability of pharmacokinetic interactions with garlic of the novel drug darunavir and other cardiovascular drugs. Finally, selected garlic phytochemicals were tested for their ability to influence P-glycoprotein and CYP3A4 activities.
-
-
-
In Vitro Methods to Study the Interplay of Drug Metabolism and Efflux in the Intestine
Authors: Sanna Siissalo and Aki T. HeikkinenThis review provides an overview of the in vitro methods currently used in studies of intestinal drug metabolism and active efflux with a special emphasis on the efflux- metabolism interplay. These methods include e.g. expressed enzymes or efflux transporters, fractionated intestinal cells, cell lines, primary cells, intestinal segments and other tissue preparations. Pharmacokinetics of effluxmetabolism interplay is often very complicated, possibly involving saturation, stimulation and/or inhibition of one or both of these mechanisms. Parent drug and/or metabolite(s) can be substrates for several enzymes and/or efflux proteins. These detoxifying proteins may alter the exposure of drugs to each other and, consequently, their contributions to the overall drug elimination. Depending on the complexity of the in vitro system used, different kinds of information can be extracted from the results. Simple methods concentrating on single mechanisms provide easily interpretable information, but neglect the interplay between various mechanisms influencing the kinetics in a whole organism. More complex experimental systems mimic the mechanistic complexity of in vivo setting better, but at the same time the interpretation and utilization of the results becomes more challenging. Advantages and limitations of various in vitro systems are addressed and consideration is given to the physiological relevance of the results obtained and there is discussion of approaches for in vitro - in vivo translation of the data.
-
-
-
Precision-cut Intestinal Slices as In Vitro Tool for Studies on Drug Metabolism
Authors: Geny M.M. Groothuis and Inge A.M. de GraafThe role of the intestine in drug metabolism has long been underestimated as a consequence of the technical difficulty to discern the role of the intestine from that of the liver in in vivo experiments and of the lack of in vitro models that are sufficiently viable and fully representing the physiology and anatomy of the intestine. Recently the precision-cut slice model, which is widely used for liver and kidney, was also adapted for the small and large intestine. In this review the application of precision-cut intestinal slices (PCIS) for research in drug metabolism and transport is discussed. PCIS can be prepared from animal and human tissues from all regions of the intestine allowing investigation of species differences and regional gradients of activities of metabolizing enzymes. They are viable for 8-24 h of incubation and show high activity of drug metabolizing enzymes, representative for the in vivo activity. They have been successfully used to study drug-drug interactions such as induction, inhibition and regulation of drug metabolizing enzymes, transporters and nuclear factors. Moreover they appear to be a suitable model for studies on cold preservation of donor organs for transplantation, and allow exploring inter-organ interactions by co-incubation with precision-cut slices of other organs. Their application as model for drug-induced intestinal toxicity is still in its infancy but appears to be promising. PCIS, prepared from human and animal tissues, represent a powerful translational model for drug metabolism, transport and toxicity studies and as such contributes to the reduction and replacement of animal experiments.
-
-
-
Hurdles with Using In Vitro Models to Predict Human Blood-brain Barrier Drug Permeability: A Special Focus on Transporters and Metabolizing Enzymes
Authors: Ramzi Shawahna, Xavier Decleves and Jean-Michel ScherrmannThe penetration of drugs into the human brain through the blood-brain barrier (BBB) is a major obstacle limiting the development of successful neuropharmaceuticals. This restricted permeability is due to the delicate intercellular junctions, efflux transporters and metabolizing enzymes present at the BBB. The pharmaceutical industry and academic research relies heavily on permeability studies conducted in animals and in vitro models of the BBB. This text reviews the available animal and in vitro BBB models with special emphasis on the situation in freshly isolated human brain microvessels and the unique tightness between brain endothelial cells, drug transport pathways and metabolic capacity. We first outline the delicate structure of the intercellular junctions and the particular interaction between the brain endothelial cells and other components of the neurovascular unit. We then examine the differences in transporters and metabolizing enzymes between species and in vitro systems and those found in isolated brain microvessels. Finally, we review the possibilities of benchmarking in vitro models of the BBB in terms of gene and protein expression.
-
-
-
Function and Regulation of the Cyp2a5/CYP2A6 Genes in Response to Toxic Insults in the Liver
Authors: A'edah Abu-Bakar, Jukka Hakkola, Risto Juvonen, Minna Rahnasto-Rilla, Hannu Raunio and Matti A. LangThe mouse hepatic cytochrome P450 (CYP) 2A5 and its human orthologue CYP2A6 catalyse the metabolism of a number of drugs and toxins, such as halothane and aflatoxin B1. The enzymes are named “Coumarin 7-hydroxylase” and “Nicotine Hydroxylase”, respectively, by virtue of their high affinity and specific activity towards these compounds. Bilirubin, the breakdown product of haem, has been suggested to be the endogenous substrate for both enzymes. Uniquely, CYP2A5 and CYP2A6 are induced during pathological conditions associated with liver injury when the function of most other CYP enzymes is compromised, which suggests an exceptional mode of regulation of the corresponding genes. Regulation of these genes is indeed complex where the promoters interact with multiple stress-activated transcription factors. The Cyp2a5 promoter contains a “stress-responding” cluster of binding motifs, which interact with major mediators of toxic insults including nuclear factor-E2 p45-related factor 2 (Nrf2) and aryl hydrocarbon receptor (AhR). These interactions are crucial in the up-regulation of the genes under stress conditions. Additionally, elevated transcription is also achieved through mRNA stabilisation mediated by interaction of the stress activated heterogenous ribonucleoprotein A1 (hnRNP A1) with the 3'UTR of the CYP2A5/CYP2A6 mRNA. The up-regulation via enhanced transcription combined with mRNA stabilisation, as seen in some of the stress situations, leads to a particularly strong, fast and persistent response. This review brings together knowledge obtained from studies in our laboratories and others' on regulation of Cyp2a5/CYP2A6 genes in response to toxic insults and toxicological significance of their catalytic activities that may provide clues to a functional role of the enzymes in relation to liver toxicity.
-
-
-
Metabolism of the Antituberculosis Drug Ethionamide
Authors: Nuno Vale, Paula Gomes and Helder A. SantosEthionamide (ETH) is an important second-line antituberculosis drug used for the treatment of patients infected with multidrug-resistant Mycobacterium. Although ETH is a structural analogue of isoniazid (INH), both are pro-drugs that need to be activated by mycobacterial enzymes to exert their antimicrobial activity. ETH mechanism of action is thought to be identical to INH although the pathway of activation is distinct from that of INH. ETH is activated by an EthA enzyme, leading to the formation of an Soxide metabolite that has considerably better activity than the parent drug. This review comprehensively examines the aspects related with the metabolism of ETH since its discovery up to today.
-
Volumes & issues
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
