Current Drug Metabolism - Volume 10, Issue 4, 2009
Volume 10, Issue 4, 2009
-
-
Gender Differences in P-Glycoprotein Expression and Function: Effects on Drug Disposition and Outcome
More LessGender differences in drug concentrations, drug response and toxicity have been attributed to various distinct yet interrelated physiological and molecular mechanisms. Drug transporters and metabolising enzymes play an important role in the xenobiotic cascade and are important regulators of drug disposition at the molecular level. The proposal of a dynamic interplay between drug metabolism and efflux has positioned drug transporters as important mediators of gender disparity in respect to drug disposition and therapeutic response. In examining the effects of gender on drug disposition and response we will specifically direct our focus on the role of the predominant drug transporter, P-glycoprotein. This review focuses on the role of the P-glycoprotein as a molecular mediator of gender differences in both drug exposure and response. Differences in transporter expression and function will be discussed together with the molecular basis for the observed difference in drug exposure between the sexes. Gender differences affecting transporter expression and function at the effect compartment and the effect of this on drug response will also be discussed.
-
-
-
Caffeine Metabolic Ratios for the In Vivo Evaluation of CYP1A2, N-acetyltransferase 2, Xanthine Oxidase and CYP2A6 Enzymatic Activities
More LessPhenotyping by probe substrates of cytochrome P450 (CYP) and other metabolizing enzymes is widely used to assess the effects of genes, environment and ethnicity on the in vivo metabolism of drugs and environmental chemicals. The caffeine metabolic ratio, in urine, plasma or saliva, has been used extensively as an index of CYP1A2, N-acetyltransferase 2 (NAT2), xanthine oxidase (XO) and CYP2A6 enzymatic activities. Phenotyping using plasma or saliva samples to measure the paraxanthine to caffeine (17X/137X) ratio correlates well with many measures of CYP1A2 activity. Various urinary metabolic ratios for caffeine phenotyping have been proposed, but shortcomings have been demonstrated for all the proposed urinary metabolic ratios. Several groups have proposed the urinary ratio of (1- methylxanthine (1X) + 1-methylurate (1U) + 5-acetylamino-6-formylamino-3-methyluracil (AFMU)) to 1, 7-dimethylurate (17U) i.e. (1X + 1U + AFMU)/17U as the preferred metabolic ratio for CYP1A2 activity (independent of urine flow rate). There is no consensus on the best urinary metabolic ratio for NAT2, XO or CYP2A6 enzymatic activities. Caffeine has been used by different groups to evaluate the in vivo activity of CYP1A2, NAT2, XO and CYP2A6 in different populations and the effect of many factors on these activities. Caffeine has been also used as a constituent of a “cocktail” to phenotype several enzymes simultaneously. In conclusion, phenotyping using caffeine as a probe substrate may still provide useful assessment of CYP1A2, NAT2, XO and CYP2A6 activities in epidemiologic and drug-drug interaction studies despite the limitations that are associated with its use.
-
-
-
Development of Decision Tree Models for Substrates, Inhibitors, and Inducers of P-Glycoprotein
Authors: Felix Hammann, Heike Gutmann, Ursula Jecklin, Andreas Maunz, Christoph Helma and Juergen DreweIn silico classification of new compounds for certain properties is a useful tool to guide further experiments or compound selection. Interaction of new compounds with the efflux pump P-glycoprotein (P-gp) is an important drug property determining tissue distribution and the potential for drug-drug interactions. We present three datasets on substrate, inhibitor, and inducer activities for P-gp (n = 471) obtained from a literature search which we compared to an existing evaluation of the Prestwick Chemical Library with the calcein- AM assay (retrieved from PubMed). Additionally, we present decision tree models of these activities with predictive accuracies of 77.7 % (substrates), 86.9 % (inhibitors), and 90.3 % (inducers) using three algorithms (CHAID, CART, and C4.5). We also present decision tree models of the calcein-AM assay (79.9 %). Apart from a comprehensive dataset of P-gp interacting compounds, our study provides evidence of the efficacy of logD descriptors and of two algorithms not commonly used in pharmacological QSAR studies (CART and CHAID).
-
-
-
Transport of Nucleoside Analogs Across the Plasma Membrane: A Clue to Understanding Drug-Induced Cytotoxicity
Authors: I. Huber-Ruano and M. Pastor-AngladaNucleoside analogs are widely used in the treatment of cancer and viral-induced diseases. Efficacy of treatments relies upon a variety of events, including transport across tissue and target barriers, which determine drug pharmacokinetics and target cell bioavailability. To exert their action, nucleosides have to be chemically modified, thus compromising cellular uptake by those routes which are responsible for the uptake of natural nucleosides and nucleobases. In this review we will focus on established knowledge and recent advances in the understanding of nucleoside- and nucleobase-derived drug uptake mechanisms. Basically, these drug uptake processes involve the gene families SLC22, SLC28 and SLC29. These gene families encode Organic Anion Transporter (OAT)/ Organic Cation Transporter (OCT), Concentrative Nucleoside Transporter (CNT) and Equilibrative Nucleoside Transporter (ENT) proteins, respectively. The pharmacological profiles of these plasma membrane carriers as well as their basic physiological and regulatory properties, including their tissue and subcellular distribution will be reviewed. This knowledge is crucial for the understanding of nucleoside- and nucleobase-derived drug bioavailability and therapeutic action. Moreover, changes in both transporter expression and/or transporter function (for instance as a consequence of gene variability) might also modulate response to treatment, thereby anticipating a putative diagnostic and predictive added value to the analysis of transporter expression and their corresponding genetic variants.
-
-
-
A Review of the Pharmacological Interactions of Ivermectin in Several Animal Species
The antiparasitic activity of ivermectin depends on the presence of an active drug concentration at the site of parasites location for an adapted length of time. Ivermectin interactions with another concurrently administered drug can occur. Concomitant administration of some drugs can increase the bioavailability of simultaneously administered ivermectin. This can, in some cases, become a useful pharmacological strategy to improve its antiparasitic efficacy and to delay the development of resistance in livestock or, in other cases, lead to adverse drug reactions and toxicities. On the other hand, other interactions can result in lower levels of this drug, determining that moderate resistant residual populations of the parasites may persist to contaminate pastures. The characterisation of ivermectin interactions can be used to predict and optimise the value of the parasiticide effects. This article reviews the pharmacological interactions of ivermectin in several domestic animal species.
-
-
-
Bioavailability of Flavonoids: A Review of Their Membrane Transport and the Function of Bilitranslocase in Animal and Plant Organisms
Fruits and vegetables are rich in flavonoids, and ample epidemiological data show that diets rich in fruits and vegetables confer protection against cardiovascular, neurodegenerative and inflammatory diseases, and cancer. However, flavonoid bioavailability is reportedly very low in mammals and the molecular mechanisms of their action are still poorly known. This review focuses on membrane transport of flavonoids, a critical determinant of their bioavailability. Cellular influx and efflux transporters are reviewed for their involvement in the absorption of flavonoids from the gastro-intestinal tract and their subsequent tissue distribution. A focus on the mammalian bilirubin transporter bilitranslocase (TCDB 2.A.65.1.1) provides further insight into flavonoid bioavailability and its relationship with plasma bilirubin (an endogenous antioxidant). The general function of bilitranslocase as a flavonoid membrane transporter is further demonstrated by the occurrence of a plant homologue in organs (petals, berries) where flavonoid biosynthesis is most active. Bilitranslocase appears associated with sub-cellular membrane compartments and operates as a flavonoid membrane transporter.
-
-
-
Drug-Drug Interactions of Triazole Antifungal Agents in Multimorbid Patients and Implications for Patient Care
Drug interactions occur frequently with triazole antifungal agents because of their properties as inhibitors of 1 or more phase 1 (cytochrome P450) biotransformation enzymes and, possibly, as inhibitors or substrates of a phase 2 biotransformation enzyme or transporter protein. Multimorbid patients, including those with hematologic malignancies or other cancers, hematopoietic stem cell or organ transplant recipients, patients infected with the human immunodeficiency virus, and those in the intensive care unit, are at increased risk for drug interactions because they typically require several concomitant medications. They may also be extremely vulnerable to the clinical signs and symptoms of drug interactions. This review describes clinically significant drug interactions most frequently seen in multimorbid patients who receive systemic therapy with triazole antifungals for the prophylaxis or treatment of invasive fungal infections; including interactions with corticosteroids, immunosuppressants, anti-infective drugs, benzodiazepines, opioid analgesics, statins, anticoagulants, anticonvulsants, and drugs affecting gastric pH. The review also describes recommendations concerning contraindications and dose-modification strategies. The azoles differ markedly in their pharmacokinetic and antifungal properties, safety and tolerability, and drug-interaction profiles. Many drug interactions can be prevented if clinicians are thoroughly familiar with the pharmacokinetic profiles of different azoles, follow contraindications and dose-modification recommendations, and switch azoles when possible to achieve the best combination of clinical efficacy and safety. Therapeutic drug monitoring can help optimize treatment and prevent underdosing or overdosing of drugs. Education of patients and their families about signs and symptoms of possible drug interactions is also beneficial.
-
-
-
Drug Metabolizing Enzymes and Transporters mRNA in Peripheral Blood Mononuclear Cells of Healthy Subjects: Biological Variations and Importance of Preanalytical Steps
Quantification in peripheral blood mononuclear cells of mRNA of drug metabolizing enzymes or drug targets could give interesting, new information in the field of pharmacogenomics and molecular mechanisms. However, for the interpretation of these data, it is necessary to know mRNA biological variations. In this review, we propose a strategy based on the production and interpretation of clinical chemistry reference values. We discuss the concept of reference values; the necessity to master pre-analytical variations of CYP and ABC transporters; the choice of the analytical methods and of the reference genes; and finally the biological variations themselves. In particular, we focus on the importance of considering homogeneity for age, sex, degree of adiposity, tobacco and alcohol intake, food habits, and drug consumption, including their inductive effects, at the phase of subject recruitment. All this information is useful to define the partition and exclusion factors to obtain mRNA reference limits.
-
-
-
Towards a Quantitative Framework for the Prediction of DDIs Arising from Cytochrome P450 Induction
Authors: L. M. Almond, J. Yang, M. Jamei, G. T. Tucker and A. Rostami-HodjeganAlthough CYP induction is not generally considered to be as clinically relevant as CYP inhibition, there are important examples where induction has caused both therapeutic failure, due to insufficient exposure to parent drug, and toxicity, mediated by increased formation of reactive metabolites. Furthermore, while there has been considerable progress in the extrapolation of in vitro data to predict the in vivo consequences of enzyme inhibition, less attention has been given to the quantitative impact of enzyme induction as a mechanism of drug-drug interaction (DDI) and as a component of compound selection and early drug development. We discuss current approaches in the context of a mechanistic framework for the prediction of the extent and time-course of enzyme induction in vivo based on in vitro experimentation. Factors influencing the extent of DDI due to CYP induction are summarised, and areas deficient in information that would allow more accurate prediction within target populations are highlighted.
-
Volumes & issues
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
