Skip to content
2000
Volume 26, Issue 4
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Background

Tetrandrine (TET) demonstrates therapeutic potential for hypoxic pulmonary hypertension (HPH); however, its precise pharmacological mechanisms remain unclear. In this study, we aimed to investigate the effects of TET on pulmonary vascular remodeling (PVR) in HPH and elucidate the molecular pathways through which TET ameliorates HPH.

Methods

We established a rat model of HPH and evaluated the therapeutic effects of TET by measuring hemodynamic parameters, assessing right ventricular hypertrophy, and analyzing pathological changes in lung tissue. To explore the molecular mechanisms, we carried out comprehensive analyses using transcriptome and untargeted metabolomics technologies to examine the impact of TET on gene expression and metabolite profiles in the lung tissue of HPH rats. Using data from these multi-omics analyses, we performed biochemical assays, immunofluorescence staining, and Western blotting to validate the effects of TET on vasoconstriction and angiogenesis-related factors. These experiments provide further evidence of the anti-HPH and anti-PVR properties of TET.

Results

TET intervention significantly reduced hemodynamic parameters, including mean pulmonary arterial pressure (mPAP) and right ventricular systolic pressure (RVSP), as well as right ventricular hypertrophy indices, such as the right ventricular hypertrophy index (RVHI) and right ventricle-to-body weight ratio (RV/BW), in HPH rats. TET inhibited smooth muscle cell proliferation and alleviated pathological changes in lung tissue. Transcriptome and metabolome analyses revealed that genes affected by TET intervention were enriched in pathways related to PVR, including those involved in endothelial and smooth muscle cell proliferation, angiogenesis, and blood vessel morphogenesis. Metabolites were predominantly associated with the arachidonic acid (AA) metabolism pathway. Differentially expressed genes included , , , and . Validation experiments demonstrated that TET upregulated ALOX15 protein expression and downregulated CYP4A and CYP2U1 proteins, modulating levels of arachidonate metabolites 20-HETE and 15(S)-HPETE. We further observed that TET reduced the levels of PVR markers, including endothelin-1 (ET-1) secretion, while increasing nitric oxide (NO) release. TET also decreased the expression of cell proliferation markers PCNA and Ki-67 and elevated the endothelial marker CD31. Moreover, TET intervention suppressed angiogenic and vasoconstrictive factors, such as MMP-9, TGF-β1, IGF2, and PDGF-B, while enhancing levels of FGF9 and NOS3.

Conclusion

Our findings highlight the protective effects of TET on lung tissue in HPH mediated through the regulation of 15(S)-HPETE and 20-HETE within the arachidonic acid metabolism pathway. This regulation inhibits pulmonary angiogenesis and vasoconstriction, ultimately improving PVR in HPH.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002393801250812063417
2025-07-28
2026-02-01
Loading full text...

Full text loading...

/deliver/fulltext/cdm/26/4/CDM-26-4-04.html?itemId=/content/journals/cdm/10.2174/0113892002393801250812063417&mimeType=html&fmt=ahah

References

  1. MocumbiA. HumbertM. SaxenaA. JingZ.C. SliwaK. ThienemannF. ArcherS.L. StewartS. Pulmonary hypertension.Nat. Rev. Dis. Primers2024101110.1038/s41572‑023‑00486‑738177157
    [Google Scholar]
  2. HuangW. LiuN. TongX. DuY. Sildenafil protects against pulmonary hypertension induced by hypoxia in neonatal rats via activation of PPARγ mediated downregulation of TRPC.Int. J. Mol. Med.20214921910.3892/ijmm.2021.507434935055
    [Google Scholar]
  3. WedgwoodS. SteinhornR.H. LakshminrusimhaS. Optimal oxygenation and role of free radicals in PPHN.Free Radic. Biol. Med.20191429710610.1016/j.freeradbiomed.2019.04.00130995536
    [Google Scholar]
  4. WangB. WuL. ChenJ. DongL. ChenC. WenZ. HuJ. FlemingI. WangD.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets.Signal Transduct. Target. Ther.2021619410.1038/s41392‑020‑00443‑w33637672
    [Google Scholar]
  5. ChenC. LuoF. WuP. HuangY. DasA. ChenS. ChenJ. HuX. LiF. FangZ. ZhouS. Metabolomics reveals metabolite changes of patients with pulmonary arterial hypertension in China.J. Cell. Mol. Med.20202442484249610.1111/jcmm.1493731945804
    [Google Scholar]
  6. MaS. HeS. LiuJ. ZhuangW. LiH. LinC. WangL. FengJ. WangL. Metabolomics unveils the exacerbating role of arachidonic acid metabolism in atherosclerosis.Front. Mol. Biosci.202411129743710.3389/fmolb.2024.129743738384498
    [Google Scholar]
  7. LinX. ShanS.K. XuF. ZhongJ.Y. WuF. DuanJ.Y. GuoB. LiF.X.Z. WangY. ZhengM.H. XuQ.S. LeiL.M. Ou-YangW.L. WuY.Y. TangK.X. UllahM.H.E. LiaoX.B. YuanL.Q. The crosstalk between endothelial cells and vascular smooth muscle cells aggravates high phosphorus-induced arterial calcification.Cell Death Dis.202213765010.1038/s41419‑022‑05064‑535882857
    [Google Scholar]
  8. LinJ. ChenR. LiaoH. ZhangY. ZhengZ. HongC. Mechanisms of cordycepin in the treatment of pulmonary arterial hypertension in rats based on metabonomics and transcriptomics.Sci. Rep.20241411243110.1038/s41598‑024‑62163‑338816406
    [Google Scholar]
  9. WangH. ChenL. WangS. TianX. ZhangL. LiH. LiC. XueY. WangQ. FangL. YangW. SunW. LengY. LiM. GaoX. Tetrandrine promotes angiogenesis via transcriptional regulation of VEGF-A.Vascul. Pharmacol.202114110692010.1016/j.vph.2021.10692034592429
    [Google Scholar]
  10. SunZ.Y. LuG.Q. SunH.Y. JiangW.D. WangL. WangY.H. LiuL.Q. WangH.J. TangB. GaoQ. KangP.F. Salidroside ameliorates hypoxic pulmonary hypertension by regulating the two-pore domain potassium TASK-1 channel.Phytomedicine202413515620610.1016/j.phymed.2024.15620639520952
    [Google Scholar]
  11. WangR.R. YuanT.Y. ChenD. ChenY.C. SunS.C. WangS.B. KongL.L. FangL.H. DuG.H. Dan-Shen-Yin granules prevent hypoxia-induced pulmonary hypertension via STAT3/HIF-1α/VEGF and FAK/AKT signaling pathways.Front. Pharmacol.20221384440010.3389/fphar.2022.84440035479305
    [Google Scholar]
  12. AnandV. ScottC.G. LeeA.T. RigolinV.H. KaneG.C. MichelenaH.I. PislaruS.V. BagameriG. PellikkaP.A. Prevalence and prognostic implications of pulmonary hypertension in patients with severe aortic regurgitation.JACC Adv.20243310082710.1016/j.jacadv.2024.10082738938846
    [Google Scholar]
  13. SinghN. EickhoffC. Garcia-AgundezA. BertoneP. PaudelS.S. TambeD.T. LitzkyL.A. Cox-FlahertyK. KlingerJ.R. MonaghanS.F. MullinC.J. PereiraM. WalshT. WhittenhallM. StevensT. HarringtonE.O. VentetuoloC.E. Transcriptional profiles of pulmonary artery endothelial cells in pulmonary hypertension.Sci. Rep.20231312253410.1038/s41598‑023‑48077‑638110438
    [Google Scholar]
  14. GuoT.T. DengY.R. HuangX. YanC.W. GaoX. WuY. YanX.X. LiuZ.Q. HuS. TanJ.S. ChongL.T. ZhuS.S. MaM.J. YeM.T. HuaL. CaoJ. WangX.J. YangW.X. Untargeted metabolomics reveal the metabolic profile of normal pulmonary circulation.Respir. Med.202321710736910.1016/j.rmed.2023.10736937494975
    [Google Scholar]
  15. JiL. SuS. XinM. ZhangZ. NanX. LiZ. LuD. Luteolin ameliorates hypoxia-induced pulmonary hypertension via regulating HIF-2α-Arg-NO axis and PI3K-AKT-eNOS-NO signaling pathway.Phytomedicine202210415432910.1016/j.phymed.2022.15432935843187
    [Google Scholar]
  16. ZhuJ. QiuJ. ChenK. WangW. ZhengS. Tea polyphenols and Levofloxacin alleviate the lung injury of hepatopulmonary syndrome in common bile duct ligation rats through Endotoxin -TNF signaling.Biomed. Pharmacother.202113711126310.1016/j.biopha.2021.11126333516071
    [Google Scholar]
  17. BačákováL. SedlářA. MusílkováJ. EckhardtA. ŽaloudíkováM. KolářF. MaxováH. Mechanisms controlling the behavior of vascular smooth muscle cells in hypoxic pulmonary hypertension.Physiol. Res.202473S2S569S59610.33549/physiolres.93539439589304
    [Google Scholar]
  18. ShanK. ZhouS. LiQ. ZhouK. LiC. Research advance of the role of lipoxygenase in inflammation related diseases.Nanjing Nongye Daxue Xuebao20251482745
    [Google Scholar]
  19. ZamoraA. NouguéM. VerduL. BalzanE. Draia-NicolauT. BenuzziE. PujolF. BaillifV. LacazetteE. MorfoisseF. GalitzkyJ. BouloumiéA. DubourdeauM. ChaputB. FazilleauN. Malloizel-DelaunayJ. Bura-RivièreA. PratsA.C. Garmy-SusiniB. 15-Lipoxygenase promotes resolution of inflammation in lymphedema by controlling T reg cell function through IFN-β.Nat. Commun.202415122110.1038/s41467‑023‑43554‑y38177096
    [Google Scholar]
  20. PascaleJ.V. WolfA. KadishY. DiegisserD. KulaprathazheM.M. YemaneD. AliS. KimN. BaruchD.E. YahayaM.A.F. DiriceE. AdebesinA.M. FalckJ.R. SchwartzmanM.L. GarciaV. 20-Hydroxyeicosatetraenoic acid (20-HETE): Bioactions, receptors, vascular function, cardiometabolic disease and beyond.Adv. Pharmacol.20239722925510.1016/bs.apha.2023.01.00237236760
    [Google Scholar]
  21. HanJ. LiJ. LiuL. LiK. ZhangC. HanY. 20-HETE mediates Ang II-induced cardiac hypertrophy via ROS and Ca 2+ signaling in H9c2 cells.Sci. Rep.2025151234210.1038/s41598‑025‑85992‑239825084
    [Google Scholar]
  22. XuX. LiJ. ZhangY. ZhangL. Arachidonic acid 15-lipoxygenase: Effects of its expression, metabolites, and genetic and epigenetic variations on airway inflammation.Allergy Asthma Immunol. Res.202113568469610.4168/aair.2021.13.5.68434486255
    [Google Scholar]
  23. WangX. YangY. YangD. TongG. LvS. LinX. ChenC. DongW. Tetrandrine prevents monocrotaline-induced pulmonary arterial hypertension in rats through regulation of the protein expression of inducible nitric oxide synthase and cyclic guanosine monophosphate-dependent protein kinase type 1.J. Vasc. Surg.20166451468147710.1016/j.jvs.2015.09.016 26527422
    [Google Scholar]
  24. MihaljevićZ. MatićA. StupinA. FrkanecR. TavčarB. KelavaV. Tartaro BujakI. KolobarićN. KibelA. DrenjančevićI. Arachidonic acid metabolites of CYP450 enzymes and HIF-1α modulate endothelium-dependent vasorelaxation in sprague-dawley rats under acute and intermittent hyperbaric oxygenation.Int. J. Mol. Sci.20202117635310.3390/ijms2117635332883025
    [Google Scholar]
  25. FrooghG. GarciaV. Laniado SchwartzmanM. The CYP/20-HETE/GPR75 axis in hypertension.Adv. Pharmacol.20229412510.1016/bs.apha.2022.02.00335659370
    [Google Scholar]
  26. PascaleJ.V. ParkE.J. AdebesinA.M. FalckJ.R. SchwartzmanM.L. GarciaV. Uncovering the signalling, structure and function of the 20‐HETE‐GPR75 pairing: Identifying the chemokine CCL5 as a negative regulator of GPR75.Br. J. Pharmacol.2021178183813382810.1111/bph.1552533974269
    [Google Scholar]
  27. ZhangC. BoozG.W. YuQ. HeX. WangS. FanF. Conflicting roles of 20-HETE in hypertension and renal end organ damage.Eur. J. Pharmacol.201883319020010.1016/j.ejphar.2018.06.010 29886242
    [Google Scholar]
  28. LiangC.J. TsengC.P. YangC.M. MaY.H. 20‐Hydroxyeicosatetraenoic acid inhibits ATP‐induced COX‐2 expression via peroxisome proliferator activator receptor‐α in vascular smooth muscle cells.Br. J. Pharmacol.2011163481582510.1111/j.1476‑5381.2011.01263.x 21323895
    [Google Scholar]
  29. ShuT. ZhangJ. ZhouY. ChenZ. LiJ. TangQ. LeiW. XingY. WangJ. WangC. Eosinophils protect against pulmonary hypertension through 14-HDHA and 17-HDHA.Eur. Respir. J.2023613220058210.1183/13993003.00582‑202236423907
    [Google Scholar]
  30. DuY. TaylorC.G. AukemaH.M. ZahradkaP. PD146176 affects human EA.hy926 endothelial cell function by differentially modulating oxylipin production of LOX, COX and CYP epoxygenase.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20221867715915610.1016/j.bbalip.2022.15915635367352
    [Google Scholar]
  31. HarmonG.S. LamM.T. GlassC.K. PPARs and lipid ligands in inflammation and metabolism.Chem. Rev.2011111106321634010.1021/cr2001355 21988241
    [Google Scholar]
  32. HussainT. ChaiL. WangY. ZhangQ. WangJ. ShiW. WangQ. LiM. XieX. Activation of PPAR-γ prevents TERT-mediated pulmonary vascular remodeling in MCT-induced pulmonary hypertension.Heliyon202393e1417310.1016/j.heliyon.2023.e1417336938425
    [Google Scholar]
  33. SultanM. Ben-ShushanD. PeledM. KamariY. IsmanS. BarshackI. KubanR.J. KühnH. HaratsD. ShaishA. Specific overexpression of 15-lipoxygenase in endothelial cells promotes cancer cell death in an in vivo Lewis lung carcinoma mouse model.Adv. Med. Sci.202065111111910.1016/j.advms.2019.11.00631923770
    [Google Scholar]
  34. YangD. WangL. JiangP. KangR. XieY. Correlation between hs-CRP, IL-6, IL-10, ET-1, and chronic obstructive pulmonary disease combined with pulmonary hypertension.J. Healthc. Eng.202220221910.1155/2022/324780735186226
    [Google Scholar]
  35. ZhengW. LiT. WeiJ. YanY. YangS. Edaravone alleviates lung damage in mice with hypoxic pulmonary hypertension by increasing nitric oxide synthase 3 expression.Korean J. Physiol. Pharmacol.202327320922010.4196/kjpp.2023.27.3.20937078295
    [Google Scholar]
  36. JiangH. WangX. WangH. LiuT. Baicalin attenuates pulmonary vascular remodeling by inhibiting calpain-1 mediated endothelial-to-mesenchymal transition.Heliyon2023912e2307610.1016/j.heliyon.2023.e2307638144352
    [Google Scholar]
  37. KangK. XiangJ. ZhangX. XieY. ZhouM. ZengL. ZhuangJ. KuangJ. LinY. HuB. XiongQ. YinQ. SuQ. LiaoX. WangJ. NiuY. LiuC. TianJ. GouD. N6-methyladenosine modification of KLF2 may contribute to endothelial-to-mesenchymal transition in pulmonary hypertension.Cell. Mol. Biol. Lett.20242916910.1186/s11658‑024‑00590‑w38741032
    [Google Scholar]
  38. LiuP. GaoS. LiZ. PanS. LuoG. JiZ. Endothelial progenitor cell-derived exosomes inhibit pulmonary artery smooth muscle cell in vitro proliferation and resistance to apoptosis by modulating the Mitofusin-2 and Ras-Raf-ERK1/2 signaling pathway.Eur. J. Pharmacol.202394917572510.1016/j.ejphar.2023.17572537068578
    [Google Scholar]
  39. Congzheng Mao Jian Huang Haichao Liu Yi Liu Zhenhong Hu Ruijuan Xu, Nur77 induced by HIF-1α mediates vascular remodeling in hypoxic pulmonary hypertension.Cell. Mol. Biol.202470623323710.14715/cmb/2024.70.6.3538836656
    [Google Scholar]
  40. SolincJ. RibotJ. SoubrierF. PavoineC. DierickF. NadaudS. The platelet-derived growth factor pathway in pulmonary arterial hypertension: Still an interesting target?Life202212565810.3390/life1205065835629326
    [Google Scholar]
  41. ChiaZ.J. CaoY. LittleP.J. KamatoD. Transforming growth factor-β receptors: Versatile mechanisms of ligand activation.Acta Pharmacol. Sin.20244571337134810.1038/s41401‑024‑01235‑638351317
    [Google Scholar]
  42. SchäferM. IvyD.D. NguyenK. BoncellaK. FrankB.S. MorganG.J. Miller-ReedK. TruongU. ColvinK. YeagerM.E. Metalloproteinases and their inhibitors are associated with pulmonary arterial stiffness and ventricular function in pediatric pulmonary hypertension.Am. J. Physiol. Heart Circ. Physiol.20213211H242H25210.1152/ajpheart.00750.202034085841
    [Google Scholar]
  43. MocciaF. NegriS. ShekhaM. FarisP. GuerraG. Endothelial Ca 2+ Signaling, angiogenesis and vasculogenesis: Just what it takes to make a blood vessel.Int. J. Mol. Sci.20192016396210.3390/ijms2016396231416282
    [Google Scholar]
  44. ChenK. RaoZ. DongS. ChenY. WangX. LuoY. GongF. LiX. Roles of the fibroblast growth factor signal transduction system in tissue injury repair.Burns Trauma202210tkac00510.1093/burnst/tkac00535350443
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002393801250812063417
Loading
/content/journals/cdm/10.2174/0113892002393801250812063417
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test