Skip to content
2000
Volume 26, Issue 4
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

TOX high mobility group box family member 4 (TOX4) has emerged as a critical regulator of Hepatic Glucose Production (HGP), particularly under insulin-resistant conditions seen in Type 2 Diabetes Mellitus (T2DM). Hyperglycemia-induced formation of Advanced Glycation End products (AGEs) exacerbates metabolic dysfunction. While the Akt-FoxO1 axis has been the conventional focus of insulin signaling, recent findings highlight the upregulation of TOX4 in T2DM, obesity, and preclinical models (., db/db mice). The cAMP signaling pathway has been shown to modulate TOX4 expression. This review synthesizes findings from recent and studies investigating the role of TOX4 in hepatic metabolism. The study focuses on its regulatory mechanisms, interaction with insulin signalling pathways, and its modulation through pharmacological inhibition. TOX4 inhibition significantly reduces glucose output in hepatocytes and improves glucose tolerance in animal models. While TOX4 ablation fails to reverse metabolic impairments caused by insulin receptor knockout, it nonetheless attenuates hepatic glucose production under insulin-resistant states. Additionally, TOX4 suppression shows hepatoprotective effects and may offer potential neuroprotection in the context of diabetic complications. TOX4 represents a promising therapeutic target for managing T2DM and its comorbidities. Further investigation into selective TOX4 inhibitors and their long-term safety profiles could facilitate the development of adjunct therapies for metabolic disorders involving hepatic and neuronal dysfunction.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002393234250908070423
2025-09-29
2026-02-02
Loading full text...

Full text loading...

References

  1. HanH.S. KangG. KimJ.S. ChoiB.H. KooS.H. Regulation of glucose metabolism from a liver-centric perspective.Exp. Mol. Med.2016483e21810.1038/emm.2015.12226964834
    [Google Scholar]
  2. RuiL. Energy metabolism in the liver.Compr. Physiol.20144117719710.1002/j.2040‑4603.2014.tb00548.x24692138
    [Google Scholar]
  3. NabeshimaA. YamadaS. GuoX. TanimotoA. WangK.Y. ShimajiriS. KimuraS. TasakiT. NoguchiH. KitadaS. WatanabeT. FujiiJ. KohnoK. SasaguriY. Peroxiredoxin 4 protects against nonalcoholic steatohepatitis and type 2 diabetes in a nongenetic mouse model.Antioxid. Redox Signal.201319171983199810.1089/ars.2012.494623477499
    [Google Scholar]
  4. WangL. YuJ. ZhouQ. WangX. MukhanovaM. DuW. SunL. PajvaniU.B. AcciliD. TOX4, an insulin receptor-independent regulator of hepatic glucose production, is activated in diabetic liver.Cell Metab.2022341158170.e510.1016/j.cmet.2021.11.01334914893
    [Google Scholar]
  5. WangL. LiuQ. KitamotoT. HouJ. QinJ. AcciliD. Identification of insulin-responsive transcription factors that regulate glucose production by hepatocytes.Diabetes20196861156116710.2337/db18‑123630936148
    [Google Scholar]
  6. LeeJ.H. YouJ. DobrotaE. SkalnikD.G. Identification and characterization of a novel human PP1 phosphatase complex.J. Biol. Chem.201028532244662447610.1074/jbc.M110.10980120516061
    [Google Scholar]
  7. BurkeS.J. BatdorfH.M. BurkD.H. NolandR.C. EderA.E. BoulosM.S. KarlstadM.D. Jason CollierJ. db/db mice exhibit features of human type 2 diabetes that are not present in weight-matched C57BL/6J mice fed a western diet.J. Diabetes Res.2017201711710.1155/2017/850375429038790
    [Google Scholar]
  8. Study of antisense oligonucleotides targeting tox4 in diabetes mellitus.Available From: https://clinicaltrials.gov/ct2/show/NCT05238714
  9. BurgessS.C. HeT. YanZ. LindnerJ. SherryA.D. MalloyC.R. BrowningJ.D. MagnusonM.A. Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver.Cell Metab.20075431332010.1016/j.cmet.2007.03.00417403375
    [Google Scholar]
  10. LonguetC. RobledoA.M. DeanE.D. DaiC. AliS. McGuinnessI. de ChavezV. VuguinP.M. CharronM.J. PowersA.C. DruckerD.J. Liver-specific disruption of the murine glucagon receptor produces α-cell hyperplasia: Evidence for a circulating α-cell growth factor.Diabetes20136241196120510.2337/db11‑160523160527
    [Google Scholar]
  11. KitamotoT. KuoT. OkabeA. KanedaA. AcciliD. An integrative transcriptional logic model of hepatic insulin resistance.Proc. Natl. Acad. Sci. USA202111845e210222211810.1073/pnas.210222211834732569
    [Google Scholar]
  12. MurrayT.V.A. DongX. SawyerG.J. CaldwellA. HalketJ. SherwoodR. QuagliaA. DewT. AnilkumarN. BurrS. MistryR.K. MartinD. SchröderK. BrandesR.P. HughesR.D. ShahA.M. BrewerA.C. NADPH oxidase 4 regulates homocysteine metabolism and protects against acetaminophen-induced liver damage in mice.Free Radic. Biol. Med.20158991893010.1016/j.freeradbiomed.2015.09.01526472193
    [Google Scholar]
  13. ValentiL. RamettaR. DongiovanniP. MaggioniM. Ludovica FracanzaniA. ZappaM. LattuadaE. G.; Fargion, S. Increased expression and activity of the transcription factor FOXO1 in nonalcoholic steatohepatitis.Diabetes20085751355136210.2337/db07‑071418316359
    [Google Scholar]
  14. TitchenellP.M. ChuQ. MonksB.R. BirnbaumM.J. Hepatic insulin signalling is dispensable for suppression of glucose output by insulin in vivo.Nat. Commun.201561707810.1038/ncomms807825963408
    [Google Scholar]
  15. CanbayA. TaimrP. TorokN. HiguchiH. FriedmanS. GoresG.J. Apoptotic body engulfment by a human stellate cell line is profibrogenic.Lab. Invest.200383565566310.1097/01.LAB.0000069036.63405.5C12746475
    [Google Scholar]
  16. CanbayA. FeldsteinA.E. HiguchiH. WerneburgN. GrambihlerA. BronkS.F. GoresG.J. Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression.Hepatology20033851188119810.1053/jhep.2003.5047214578857
    [Google Scholar]
  17. ZhanS.S. JiangJ.X. WuJ. HalstedC. FriedmanS.L. ZernM.A. TorokN.J. Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo.Hepatology200643343544310.1002/hep.2109316496318
    [Google Scholar]
  18. TarratsN. MolesA. MoralesA. García-RuizC. Fernández-ChecaJ.C. MaríM. Critical role of tumor necrosis factor receptor 1, but not 2, in hepatic stellate cell proliferation, extracellular matrix remodeling, and liver fibrogenesis.Hepatology201154131932710.1002/hep.2438821523796
    [Google Scholar]
  19. MichalopoulosG.K. DeFrancesM.C. Liver Regeneration.Science19972765309606610.1126/science.276.5309.609082986
    [Google Scholar]
  20. XuW. ZhaoX. WangX. FengH. GouM. JinW. WangX. LiuX. DongC. The Transcription factor Tox2 drives T follicular helper cell development via regulating chromatin accessibility.Immunity2019515826839.e510.1016/j.immuni.2019.10.00631732165
    [Google Scholar]
  21. PalS. BiswasD. Promoter-proximal regulation of gene transcription: Key factors involved and emerging role of general transcription factors in assisting productive elongation.Gene202387814757110.1016/j.gene.2023.14757137331491
    [Google Scholar]
  22. O’FlahertyE. KayeJ. TOX defines a conserved subfamily of HMG-box proteins.BMC Genomics2003411310.1186/1471‑2164‑4‑1312697058
    [Google Scholar]
  23. ScottA.C. DündarF. ZumboP. ChandranS.S. KlebanoffC.A. ShakibaM. TrivediP. MenocalL. ApplebyH. CamaraS. ZamarinD. WaltherT. SnyderA. FemiaM.R. ComenE.A. WenH.Y. HellmannM.D. AnandasabapathyN. LiuY. AltorkiN.K. LauerP. LevyO. GlickmanM.S. KayeJ. BetelD. PhilipM. SchietingerA. TOX is a critical regulator of tumour-specific T cell differentiation.Nature2019571776427027410.1038/s41586‑019‑1324‑y31207604
    [Google Scholar]
  24. TilborghsS. CorthoutsJ. VerhoevenY. AriasD. RolfoC. TrinhX.B. van DamP.A. The role of Nuclear Factor-kappa B signaling in human cervical cancer.Crit. Rev. Oncol. Hematol.201712014115010.1016/j.critrevonc.2017.11.00129198328
    [Google Scholar]
  25. MitchellS. MercadoE.L. AdelajaA. HoJ.Q. ChengQ.J. GhoshG. HoffmannA. An NFκB activity calculator to delineate signaling crosstalk: Type I and II interferons enhance NFκB via distinct mechanisms.Front. Immunol.201910142510.3389/fimmu.2019.0142531293585
    [Google Scholar]
  26. NeuzilletC. Tijeras-RaballandA. CohenR. CrosJ. FaivreS. RaymondE. de GramontA. Targeting the TGFβ pathway for cancer therapy.Pharmacol. Ther.2015147223110.1016/j.pharmthera.2014.11.00125444759
    [Google Scholar]
  27. HataA. ChenY.G. TGF-β Signaling from Receptors to Smads.Cold Spring Harb. Perspect. Biol.201689a02206110.1101/cshperspect.a02206127449815
    [Google Scholar]
  28. NowakR. KwiecienM. TkaczM. MazurekU. Transforming growth factor-beta (TGF- β) signaling in paravertebral muscles in juvenile and adolescent idiopathic scoliosis.BioMed Res. Int.2014201411410.1155/2014/59428725313366
    [Google Scholar]
  29. WangY. GuoX. JiaoG. LuoL. ZhouL. ZhangJ. WangB. Splenectomy promotes macrophage polarization in a mouse model of concanavalin A- (ConA-) induced liver fibrosis.BioMed Res. Int.2019201911210.1155/2019/575618930723740
    [Google Scholar]
  30. LiuY. LiuH. ZhuJ. BianZ. Interleukin-34 drives macrophage polarization to the M2 phenotype in autoimmune hepatitis.Pathol. Res. Pract.2019215815249310.1016/j.prp.2019.15249331201067
    [Google Scholar]
  31. SimondsW.F. G protein regulation of adenylate cyclase.Trends Pharmacol. Sci.1999202667310.1016/S0165‑6147(99)01307‑310101967
    [Google Scholar]
  32. KimM.J. HanJ.K. The involvement of cAMP signaling pathway in axis specification in Xenopus embryos.Mech. Dev.1999891-2556410.1016/S0925‑4773(99)00197‑510559480
    [Google Scholar]
  33. SmithS. NormahaniP. LaneT. Hohenschurz-SchmidtD. OliverN. DaviesA.H. Prevention and management strategies for diabetic neuropathy.Life2022128118510.3390/life1208118536013364
    [Google Scholar]
  34. WilkinsonB. ChenJ.Y.F. HanP. RufnerK.M. GoularteO.D. KayeJ. TOX: An HMG box protein implicated in the regulation of thymocyte selection.Nat. Immunol.20023327228010.1038/ni76711850626
    [Google Scholar]
  35. AgrawalV. SuM. HuangY. HsingM. CherkasovA. ZhouY. Computer-aided discovery of small molecule inhibitors of thymocyte selection-associated high mobility group box protein (TOX) as potential therapeutics for cutaneous t-cell lymphomas.Molecules20192419345910.3390/molecules2419345931554191
    [Google Scholar]
  36. ChenZ. SuX. CaoW. TanM. ZhuG. GaoJ. ZhouL. The discovery and characterization of a potent dpp-iv inhibitory peptide from oysters for the treatment of type 2 diabetes based on computational and experimental studies.Mar. Drugs202422836110.3390/md2208036139195477
    [Google Scholar]
  37. LiuZ. WuA. WuZ. WangT. PanY. LiB. ZhangX. YuM. TOX4 facilitates promoter-proximal pausing and C-terminal domain dephosphorylation of RNA polymerase II in human cells.Commun. Biol.20225130010.1038/s42003‑022‑03214‑135365735
    [Google Scholar]
  38. AlshaerW. ZureigatH. Al Karaki, A siRNA: Mechanism of action, challenges, and therapeutic approaches.Eur. J. Pharmacol.202290510.1016/j.ejphar.2021.174178
    [Google Scholar]
  39. NóbregaC. AlvesS. Editorial: Gene silencing and editing strategies for neurodegenerative diseases.Front. Neurosci.20181242510.3389/fnins.2018.0042529988416
    [Google Scholar]
  40. BantounasI. PhylactouL.A. UneyJ.B. RNA interference and the use of small interfering RNA to study gene function in mammalian systems.J. Mol. Endocrinol.200433354555710.1677/jme.1.0158215591019
    [Google Scholar]
  41. El-SappahA.H. YanK. HuangQ. Comprehensive mechanism of gene silencing and its role in plant growth and development.Front Plant. Sci.20211210.3389/fpls.2021.705249
    [Google Scholar]
  42. XiaoS. FeiN. PangX. ShenJ. WangL. ZhangB. ZhangM. ZhangX. ZhangC. LiM. SunL. XueZ. WangJ. FengJ. YanF. ZhaoN. LiuJ. LongW. ZhaoL. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome.FEMS Microbiol. Ecol.201487235736710.1111/1574‑6941.1222824117923
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002393234250908070423
Loading
/content/journals/cdm/10.2174/0113892002393234250908070423
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test