Skip to content
2000
image of TOX4 Inhibition in Chronic Hyperglycemia: Effects on Glycation Stress, Hepatic Protection, Epigenetic Mechanisms, Signaling Pathways, and Beta Cell Dynamics

Abstract

TOX high mobility group box family member 4 (TOX4) has emerged as a critical regulator of Hepatic Glucose Production (HGP), particularly under insulin-resistant conditions seen in Type 2 Diabetes Mellitus (T2DM). Hyperglycemia-induced formation of Advanced Glycation End products (AGEs) exacerbates metabolic dysfunction. While the Akt-FoxO1 axis has been the conventional focus of insulin signaling, recent findings highlight the upregulation of TOX4 in T2DM, obesity, and preclinical models (., db/db mice). The cAMP signaling pathway has been shown to modulate TOX4 expression. This review synthesizes findings from recent and studies investigating the role of TOX4 in hepatic metabolism. The study focuses on its regulatory mechanisms, interaction with insulin signalling pathways, and its modulation through pharmacological inhibition. TOX4 inhibition significantly reduces glucose output in hepatocytes and improves glucose tolerance in animal models. While TOX4 ablation fails to reverse metabolic impairments caused by insulin receptor knockout, it nonetheless attenuates hepatic glucose production under insulin-resistant states. Additionally, TOX4 suppression shows hepatoprotective effects and may offer potential neuroprotection in the context of diabetic complications. TOX4 represents a promising therapeutic target for managing T2DM and its comorbidities. Further investigation into selective TOX4 inhibitors and their long-term safety profiles could facilitate the development of adjunct therapies for metabolic disorders involving hepatic and neuronal dysfunction.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002393234250908070423
2025-09-29
2025-11-05
Loading full text...

Full text loading...

References

  1. Han H.S. Kang G. Kim J.S. Choi B.H. Koo S.H. Regulation of glucose metabolism from a liver-centric perspective. Exp. Mol. Med. 2016 48 3 e218 10.1038/emm.2015.122 26964834
    [Google Scholar]
  2. Rui L. Energy metabolism in the liver. Compr. Physiol. 2014 4 1 177 197 10.1002/j.2040‑4603.2014.tb00548.x 24692138
    [Google Scholar]
  3. Nabeshima A. Yamada S. Guo X. Tanimoto A. Wang K.Y. Shimajiri S. Kimura S. Tasaki T. Noguchi H. Kitada S. Watanabe T. Fujii J. Kohno K. Sasaguri Y. Peroxiredoxin 4 protects against nonalcoholic steatohepatitis and type 2 diabetes in a nongenetic mouse model. Antioxid. Redox Signal. 2013 19 17 1983 1998 10.1089/ars.2012.4946 23477499
    [Google Scholar]
  4. Wang L. Yu J. Zhou Q. Wang X. Mukhanova M. Du W. Sun L. Pajvani U.B. Accili D. TOX4, an insulin receptor-independent regulator of hepatic glucose production, is activated in diabetic liver. Cell Metab. 2022 34 1 158 170.e5 10.1016/j.cmet.2021.11.013 34914893
    [Google Scholar]
  5. Wang L. Liu Q. Kitamoto T. Hou J. Qin J. Accili D. Identification of insulin-responsive transcription factors that regulate glucose production by hepatocytes. Diabetes 2019 68 6 1156 1167 10.2337/db18‑1236 30936148
    [Google Scholar]
  6. Lee J.H. You J. Dobrota E. Skalnik D.G. Identification and characterization of a novel human PP1 phosphatase complex. J. Biol. Chem. 2010 285 32 24466 24476 10.1074/jbc.M110.109801 20516061
    [Google Scholar]
  7. Burke S.J. Batdorf H.M. Burk D.H. Noland R.C. Eder A.E. Boulos M.S. Karlstad M.D. Jason Collier J. db/db mice exhibit features of human type 2 diabetes that are not present in weight-matched C57BL/6J mice fed a western diet. J. Diabetes Res. 2017 2017 1 17 10.1155/2017/8503754 29038790
    [Google Scholar]
  8. Study of antisense oligonucleotides targeting tox4 in diabetes mellitus. Available from: https://clinicaltrials.gov/ct2/show/NCT05238714
  9. Burgess S.C. He T. Yan Z. Lindner J. Sherry A.D. Malloy C.R. Browning J.D. Magnuson M.A. Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver. Cell Metab. 2007 5 4 313 320 10.1016/j.cmet.2007.03.004 17403375
    [Google Scholar]
  10. Longuet C. Robledo A.M. Dean E.D. Dai C. Ali S. McGuinness I. de Chavez V. Vuguin P.M. Charron M.J. Powers A.C. Drucker D.J. Liver-specific disruption of the murine glucagon receptor produces α-cell hyperplasia: Evidence for a circulating α-cell growth factor. Diabetes 2013 62 4 1196 1205 10.2337/db11‑1605 23160527
    [Google Scholar]
  11. Kitamoto T. Kuo T. Okabe A. Kaneda A. Accili D. An integrative transcriptional logic model of hepatic insulin resistance. Proc. Natl. Acad. Sci. USA 2021 118 45 e2102222118 10.1073/pnas.2102222118 34732569
    [Google Scholar]
  12. Murray T.V.A. Dong X. Sawyer G.J. Caldwell A. Halket J. Sherwood R. Quaglia A. Dew T. Anilkumar N. Burr S. Mistry R.K. Martin D. Schröder K. Brandes R.P. Hughes R.D. Shah A.M. Brewer A.C. NADPH oxidase 4 regulates homocysteine metabolism and protects against acetaminophen-induced liver damage in mice. Free Radic. Biol. Med. 2015 89 918 930 10.1016/j.freeradbiomed.2015.09.015 26472193
    [Google Scholar]
  13. Valenti L. Rametta R. Dongiovanni P. Maggioni M. Ludovica Fracanzani A. Zappa M. Lattuada E. G.; Fargion, S. Increased expression and activity of the transcription factor FOXO1 in nonalcoholic steatohepatitis. Diabetes 2008 57 5 1355 1362 10.2337/db07‑0714 18316359
    [Google Scholar]
  14. Titchenell P.M. Chu Q. Monks B.R. Birnbaum M.J. Hepatic insulin signalling is dispensable for suppression of glucose output by insulin in vivo. Nat. Commun. 2015 6 1 7078 10.1038/ncomms8078 25963408
    [Google Scholar]
  15. Canbay A. Taimr P. Torok N. Higuchi H. Friedman S. Gores G.J. Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab. Invest. 2003 83 5 655 663 10.1097/01.LAB.0000069036.63405.5C 12746475
    [Google Scholar]
  16. Canbay A. Feldstein A.E. Higuchi H. Werneburg N. Grambihler A. Bronk S.F. Gores G.J. Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology 2003 38 5 1188 1198 10.1053/jhep.2003.50472 14578857
    [Google Scholar]
  17. Zhan S.S. Jiang J.X. Wu J. Halsted C. Friedman S.L. Zern M.A. Torok N.J. Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo. Hepatology 2006 43 3 435 443 10.1002/hep.21093 16496318
    [Google Scholar]
  18. Tarrats N. Moles A. Morales A. García-Ruiz C. Fernández-Checa J.C. Marí M. Critical role of tumor necrosis factor receptor 1, but not 2, in hepatic stellate cell proliferation, extracellular matrix remodeling, and liver fibrogenesis. Hepatology 2011 54 1 319 327 10.1002/hep.24388 21523796
    [Google Scholar]
  19. Michalopoulos G.K. DeFrances M.C. Liver Regeneration. Science 1997 276 5309 60 66 10.1126/science.276.5309.60 9082986
    [Google Scholar]
  20. Xu W. Zhao X. Wang X. Feng H. Gou M. Jin W. Wang X. Liu X. Dong C. The Transcription factor Tox2 drives T follicular helper cell development via regulating chromatin accessibility. Immunity 2019 51 5 826 839.e5 10.1016/j.immuni.2019.10.006 31732165
    [Google Scholar]
  21. Pal S. Biswas D. Promoter-proximal regulation of gene transcription: Key factors involved and emerging role of general transcription factors in assisting productive elongation. Gene 2023 878 147571 10.1016/j.gene.2023.147571 37331491
    [Google Scholar]
  22. O’Flaherty E. Kaye J. TOX defines a conserved subfamily of HMG-box proteins. BMC Genomics 2003 4 1 13 10.1186/1471‑2164‑4‑13 12697058
    [Google Scholar]
  23. Scott A.C. Dündar F. Zumbo P. Chandran S.S. Klebanoff C.A. Shakiba M. Trivedi P. Menocal L. Appleby H. Camara S. Zamarin D. Walther T. Snyder A. Femia M.R. Comen E.A. Wen H.Y. Hellmann M.D. Anandasabapathy N. Liu Y. Altorki N.K. Lauer P. Levy O. Glickman M.S. Kaye J. Betel D. Philip M. Schietinger A. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 2019 571 7764 270 274 10.1038/s41586‑019‑1324‑y 31207604
    [Google Scholar]
  24. Tilborghs S. Corthouts J. Verhoeven Y. Arias D. Rolfo C. Trinh X.B. van Dam P.A. The role of Nuclear Factor-kappa B signaling in human cervical cancer. Crit. Rev. Oncol. Hematol. 2017 120 141 150 10.1016/j.critrevonc.2017.11.001 29198328
    [Google Scholar]
  25. Mitchell S. Mercado E.L. Adelaja A. Ho J.Q. Cheng Q.J. Ghosh G. Hoffmann A. An NFκB activity calculator to delineate signaling crosstalk: Type I and II interferons enhance NFκB via distinct mechanisms. Front. Immunol. 2019 10 1425 10.3389/fimmu.2019.01425 31293585
    [Google Scholar]
  26. Neuzillet C. Tijeras-Raballand A. Cohen R. Cros J. Faivre S. Raymond E. de Gramont A. Targeting the TGFβ pathway for cancer therapy. Pharmacol. Ther. 2015 147 22 31 10.1016/j.pharmthera.2014.11.001 25444759
    [Google Scholar]
  27. Hata A. Chen Y.G. TGF-β Signaling from Receptors to Smads. Cold Spring Harb. Perspect. Biol. 2016 8 9 a022061 10.1101/cshperspect.a022061 27449815
    [Google Scholar]
  28. Nowak R. Kwiecien M. Tkacz M. Mazurek U. Transforming growth factor-beta (TGF- β) signaling in paravertebral muscles in juvenile and adolescent idiopathic scoliosis. BioMed Res. Int. 2014 2014 1 14 10.1155/2014/594287 25313366
    [Google Scholar]
  29. Wang Y. Guo X. Jiao G. Luo L. Zhou L. Zhang J. Wang B. Splenectomy promotes macrophage polarization in a mouse model of concanavalin A- (ConA-) induced liver fibrosis. BioMed Res. Int. 2019 2019 1 12 10.1155/2019/5756189 30723740
    [Google Scholar]
  30. Liu Y. Liu H. Zhu J. Bian Z. Interleukin-34 drives macrophage polarization to the M2 phenotype in autoimmune hepatitis. Pathol. Res. Pract. 2019 215 8 152493 10.1016/j.prp.2019.152493 31201067
    [Google Scholar]
  31. Simonds W.F. G protein regulation of adenylate cyclase. Trends Pharmacol. Sci. 1999 20 2 66 73 10.1016/S0165‑6147(99)01307‑3 10101967
    [Google Scholar]
  32. Kim M.J. Han J.K. The involvement of cAMP signaling pathway in axis specification in Xenopus embryos. Mech. Dev. 1999 89 1-2 55 64 10.1016/S0925‑4773(99)00197‑5 10559480
    [Google Scholar]
  33. Smith S. Normahani P. Lane T. Hohenschurz-Schmidt D. Oliver N. Davies A.H. Prevention and management strategies for diabetic neuropathy. Life 2022 12 8 1185 10.3390/life12081185 36013364
    [Google Scholar]
  34. Wilkinson B. Chen J.Y.F. Han P. Rufner K.M. Goularte O.D. Kaye J. TOX: An HMG box protein implicated in the regulation of thymocyte selection. Nat. Immunol. 2002 3 3 272 280 10.1038/ni767 11850626
    [Google Scholar]
  35. Agrawal V. Su M. Huang Y. Hsing M. Cherkasov A. Zhou Y. Computer-aided discovery of small molecule inhibitors of thymocyte selection-associated high mobility group box protein (TOX) as potential therapeutics for cutaneous t-cell lymphomas. Molecules 2019 24 19 3459 10.3390/molecules24193459 31554191
    [Google Scholar]
  36. Chen Z. Su X. Cao W. Tan M. Zhu G. Gao J. Zhou L. The discovery and characterization of a potent dpp-iv inhibitory peptide from oysters for the treatment of type 2 diabetes based on computational and experimental studies. Mar. Drugs 2024 22 8 361 10.3390/md22080361 39195477
    [Google Scholar]
  37. Liu Z. Wu A. Wu Z. Wang T. Pan Y. Li B. Zhang X. Yu M. TOX4 facilitates promoter-proximal pausing and C-terminal domain dephosphorylation of RNA polymerase II in human cells. Commun. Biol. 2022 5 1 300 10.1038/s42003‑022‑03214‑1 35365735
    [Google Scholar]
  38. Alshaer W. Zureigat H. Al Karaki, A siRNA: Mechanism of action, challenges, and therapeutic approaches. Eur. J. Pharmacol. 2022 905 10.1016/j.ejphar.2021.174178
    [Google Scholar]
  39. Nóbrega C. Alves S. Editorial: Gene silencing and editing strategies for neurodegenerative diseases. Front. Neurosci. 2018 12 425 10.3389/fnins.2018.00425 29988416
    [Google Scholar]
  40. Bantounas I. Phylactou L.A. Uney J.B. RNA interference and the use of small interfering RNA to study gene function in mammalian systems. J. Mol. Endocrinol. 2004 33 3 545 557 10.1677/jme.1.01582 15591019
    [Google Scholar]
  41. El-Sappah A.H. Yan K. Huang Q. Comprehensive mechanism of gene silencing and its role in plant growth and development. Front Plant. Sci. 2021 12 10.3389/fpls.2021.705249
    [Google Scholar]
  42. Xiao S. Fei N. Pang X. Shen J. Wang L. Zhang B. Zhang M. Zhang X. Zhang C. Li M. Sun L. Xue Z. Wang J. Feng J. Yan F. Zhao N. Liu J. Long W. Zhao L. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiol. Ecol. 2014 87 2 357 367 10.1111/1574‑6941.12228 24117923
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002393234250908070423
Loading
/content/journals/cdm/10.2174/0113892002393234250908070423
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test