Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Background

Chemotherapy-induced immunosuppression significantly impacts patient’s quality of life. Umbelliferone (UMB) is known for its anti-inflammatory, antioxidant, and anti-apoptotic properties, but its effects on cyclophosphamide (CTX)-induced immunosuppression need further study.

Methods

We established a CTX-induced immunosuppressed mouse model and administered varying doses of UMB. Immune function was assessed by evaluating white blood cells, lymphocytes, thymus and spleen indices, and CD4+/CD8+ T cell ratios. Serum levels of IL-2, IFN-γ, IgA, IgM, and IgG, along with macrophage phagocytic activity, NK cytotoxicity, and lymphocyte proliferation, were measured. Untargeted metabolomics was used to identify key pathways regulated by UMB, and RT-qPCR and Western blotting were performed to analyze the expression of related enzymes and metabolites.

Results

UMB intervention increased white blood cells, lymphocytes, thymus and spleen indices, and CD4+/CD8+ T cell ratios in CTX-immunosuppressed mice. It reversed reduced levels of serum IL-2, IFN-γ, IgA, IgM, and IgG and improved macrophage phagocytic activity, NK cytotoxicity, and lymphocyte proliferation. Key pathways identified by metabolomics included histidine and purine metabolism. UMB improved levels of histamine, L-glutamate, L-aspartate, xanthine, dAMP, deoxyinosine, xanthosine, and cGMP and upregulated HDC, ASPA, and PNP while downregulating XDH, PDE5, ROS, and MDA in spleen tissue. UMB enhanced SOD activity and GSH levels and reduced apoptosis, as indicated by lower TUNEL-positive expression.

Conclusion

UMB enhanced immune function in CTX-immunosuppressed mice through the regulation of histidine and purine metabolism, exhibiting antioxidant and anti-apoptotic effects. These findings highlight the potential of UMB in mitigating immunosuppression.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002360132250122164637
2025-02-07
2025-09-02
Loading full text...

Full text loading...

References

  1. LinM. ZhangX. LiangS. LuoH. AlnaggarM. LiuA. YinZ. ChenJ. NiuL. JiangY. Irreversible electroporation plus allogenic Vγ9Vδ2 T cells enhances antitumor effect for locally advanced pancreatic cancer patients.Signal Transduct. Target. Ther.20205121510.1038/s41392‑020‑00260‑133093457
    [Google Scholar]
  2. ZhangF. ShuJ.L. LiY. WuY.J. ZhangX.Z. HanL. TangX.Y. WangC. WangQ.T. ChenJ.Y. ChangY. WuH.X. ZhangL.L. WeiW. CP-25, a novel anti-inflammatory and immunomodulatory drug, inhibits the functions of activated human B cells through regulating BAFF and TNF-alpha signaling and comparative efficacy with biological agents.Front. Pharmacol.2017893310.3389/fphar.2017.0093329311935
    [Google Scholar]
  3. JianS.L. ChenW.W. SuY.C. SuY.W. ChuangT.H. HsuS.C. HuangL.R. Glycolysis regulates the expansion of myeloid-derived suppressor cells in tumor-bearing hosts through prevention of ROS-mediated apoptosis.Cell Death Dis.201785e277910.1038/cddis.2017.19228492541
    [Google Scholar]
  4. JhaA.K. HuangS.C.C. SergushichevA. LampropoulouV. IvanovaY. LoginichevaE. ChmielewskiK. StewartK.M. AshallJ. EvertsB. PearceE.J. DriggersE.M. ArtyomovM.N. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization.Immunity201542341943010.1016/j.immuni.2015.02.00525786174
    [Google Scholar]
  5. WangF. ZhangS. VuckovicI. JeonR. LermanA. FolmesC.D. DzejaP.P. HerrmannJ. Glycolytic stimulation is not a requirement for M2 macrophage differentiation.Cell Metab.2018283463475.e410.1016/j.cmet.2018.08.01230184486
    [Google Scholar]
  6. RyanD.G. MurphyM.P. FrezzaC. PragH.A. ChouchaniE.T. O’NeillL.A. MillsE.L. Coupling Krebs cycle metabolites to signalling in immunity and cancer.Nat. Metab.201811163310.1038/s42255‑018‑0014‑731032474
    [Google Scholar]
  7. PengH. Guerau-de-ArellanoM. MehtaV.B. YangY. HussD.J. PapenfussT.L. Lovett-RackeA.E. RackeM.K. Dimethyl fumarate inhibits dendritic cell maturation via nuclear factor κB (NF-κB) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) and mitogen stress-activated kinase 1 (MSK1) signaling.J. Biol. Chem.201228733280172802610.1074/jbc.M112.38338022733812
    [Google Scholar]
  8. LiuP.S. WangH. LiX. ChaoT. TeavT. ChristenS. Di ConzaG. ChengW.C. ChouC.H. VavakovaM. MuretC. DebackereK. MazzoneM. HuangH.D. FendtS.M. IvanisevicJ. HoP.C. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming.Nat. Immunol.201718998599410.1038/ni.379628714978
    [Google Scholar]
  9. HuangS.C.C. EvertsB. IvanovaY. O’SullivanD. NascimentoM. SmithA.M. BeattyW. Love-GregoryL. LamW.Y. O’NeillC.M. YanC. DuH. AbumradN.A. UrbanJ.F.Jr ArtyomovM.N. PearceE.L. PearceE.J. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages.Nat. Immunol.201415984685510.1038/ni.295625086775
    [Google Scholar]
  10. TakedaK. OkumuraK. Nicotinamide mononucleotide augments the cytotoxic activity of natural killer cells in young and elderly mice.Biomed. Res.202142517317910.2220/biomedres.42.17334544993
    [Google Scholar]
  11. ChakrabortyS. BhattacharyyaR. SayalK. BanerjeeD. Retinoic acid and iron metabolism: A step towards design of a novel antitubercular drug.Curr. Pharm. Biotechnol.201415121166117210.2174/138920101566614112612163925429653
    [Google Scholar]
  12. WangB. ZhongY. GaoC. LiJ. Myricetin ameliorates scopolamine-induced memory impairment in mice via inhibiting acetylcholinesterase and down-regulating brain iron.Biochem. Biophys. Res. Commun.2017490233634210.1016/j.bbrc.2017.06.04528619513
    [Google Scholar]
  13. ZhangS. ZhangS. LiY.Y. ZhangY. WangH. ChenY. SunM. Umbelliferone protects against methylglyoxal‐induced HUVECs dysfunction through suppression of apoptosis and oxidative stress.J. Appl. Toxicol.202343449049910.1002/jat.439936170298
    [Google Scholar]
  14. JieD. GaoT. ShanZ. SongJ. ZhangM. KurskayaO. SharshovK. WeiL. BiH. Immunostimulating effect of polysaccharides isolated from Ma-Nuo-Xi decoction in cyclophosphamide-immunosuppressed mice.Int. J. Biol. Macromol.2020146455210.1016/j.ijbiomac.2019.12.04231838067
    [Google Scholar]
  15. MahmoudA.M. GermoushM.O. AlotaibiM.F. HusseinO.E. Possible involvement of Nrf2 and PPARγ up-regulation in the protective effect of umbelliferone against cyclophosphamide-induced hepatotoxicity.Biomed. Pharmacother.20178629730610.1016/j.biopha.2016.12.04728011377
    [Google Scholar]
  16. ChoiG.Y. KimH.B. ChoJ.M. SreelathaI. LeeI.S. KweonH.S. SulS. KimS.A. MaengS. ParkJ.H. Umbelliferone ameliorates memory impairment and enhances hippocampal synaptic plasticity in scopolamine-induced rat model.Nutrients20231510235110.3390/nu1510235137242234
    [Google Scholar]
  17. CuiH. LiY. CaoM. LiaoJ. LiuX. MiaoJ. FuH. SongR. WenW. ZhangZ. WangH. Untargeted metabolomic analysis of the effects and mechanism of nuciferine treatment on rats with nonalcoholic fatty liver disease.Front Pharmacol.20201185810.3389/fphar.2020.0085832581811
    [Google Scholar]
  18. AnY. XuB. WanS. MaX. LongY. XuY. JiangZ. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction.Cardiovasc. Diabetol.202322123710.1186/s12933‑023‑01965‑737660030
    [Google Scholar]
  19. CiccoliniJ. CuqP. EvrardA. GiacomettiS. PelegrinA. AubertC. CanoJ.P. IliadisA. Combination of thymidine phosphorylase gene transfer and deoxyinosine treatment greatly enhances 5-fluorouracil antitumor activity in vitro and in vivo.Mol. Cancer Ther.20011213313912467230
    [Google Scholar]
  20. DuanJ. YinJ. RenW. LiuT. CuiZ. HuangX. WuL. KimS.W. LiuG. WuX. WuG. LiT. YinY. Dietary supplementation with l-glutamate and l-aspartate alleviates oxidative stress in weaned piglets challenged with hydrogen peroxide.Amino Acids2016481536410.1007/s00726‑015‑2065‑326255283
    [Google Scholar]
  21. SheweitaS.A. El-HosseinyL.S. NashashibiM.A. Protective effects of essential oils as natural antioxidants against hepatotoxicity induced by cyclophosphamide in mice.PLoS One20161111e016566710.1371/journal.pone.016566727802299
    [Google Scholar]
  22. EmadiA. JonesR.J. BrodskyR.A. Cyclophosphamide and cancer: Golden anniversary.Nat. Rev. Clin. Oncol.200961163864710.1038/nrclinonc.2009.14619786984
    [Google Scholar]
  23. GholamiM.H. RassouliA. MirzaeiS. HashemiF. The potential immunomodulatory effect of levamisole in humans and farm animals.J. Adv. Vet. Anim. Res.202310462062938370882
    [Google Scholar]
  24. BarcikW. WawrzyniakM. AkdisC.A. O’MahonyL. Immune regulation by histamine and histamine-secreting bacteria.Curr. Opin. Immunol.20174810811310.1016/j.coi.2017.08.01128923468
    [Google Scholar]
  25. JutelM. WatanabeT. KlunkerS. AkdisM. ThometO.A.R. MalolepszyJ. Zak-NejmarkT. KogaR. KobayashiT. BlaserK. AkdisC.A. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors.Nature2001413685442042510.1038/3509656411574888
    [Google Scholar]
  26. LiH. XiaoY. LiQ. YaoJ. YuanX. ZhangY. YinX. SaitoY. FanH. LiP. KuoW.L. HalpinA. GibbonsD.L. YagitaH. ZhaoZ. PangD. RenG. YeeC. LeeJ.J. YuD. The allergy mediator histamine confers resistance to immunotherapy in cancer patients via activation of the macrophage histamine receptor H1.Cancer Cell20224013652.e910.1016/j.ccell.2021.11.00234822775
    [Google Scholar]
  27. KimD.J. KimE.J. LeeT.Y. WonJ.N. SungM.H. PooH. Combination of poly-gamma-glutamate and cyclophosphamide enhanced antitumor efficacy against tumor growth and metastasis in a murine melanoma model.J. Microbiol. Biotechnol.20132391339134610.4014/jmb.1306.0607123867701
    [Google Scholar]
  28. WengH. XiongK.P. WangW. QianK.Y. YuanS. WangG. YuF. LuoJ. LuM.X. YangZ.H. LiuT. HuangX. ZhengH. WangX.H. Aspartoacylase suppresses prostate cancer progression by blocking LYN activation.Mil. Med. Res.20231012510.1186/s40779‑023‑00460‑037271807
    [Google Scholar]
  29. LiuX. PengS. TangG. XuG. XieY. ShenD. ZhuM. HuangY. WangX. YuH. HuangM. LuoY. Fasting-mimicking diet synergizes with ferroptosis against quiescent, chemotherapy-resistant cells.EBioMedicine20239010449610.1016/j.ebiom.2023.10449636863257
    [Google Scholar]
  30. YuanB. ZhouX. YouZ. XuW. FanJ. ChenS. HanY. WuQ. ZhangX. Inhibition of AIM2 inflammasome activation alleviates GSDMD-induced pyroptosis in early brain injury after subarachnoid haemorrhage.Cell Death Dis.20201117610.1038/s41419‑020‑2248‑z32001670
    [Google Scholar]
  31. YoneshimaY. AbolhassaniN. IyamaT. SakumiK. ShiomiN. MoriM. ShiomiT. NodaT. TsuchimotoD. NakabeppuY. Deoxyinosine triphosphate induces MLH1/PMS2- and p53-dependent cell growth arrest and DNA instability in mammalian cells.Sci. Rep.2016613284910.1038/srep3284927618981
    [Google Scholar]
  32. TangS. StokasimovE. CuiY. PellmanD. Breakage of cytoplasmic chromosomes by pathological DNA base excision repair.Nature2022606791693093610.1038/s41586‑022‑04767‑135477155
    [Google Scholar]
  33. LiverToxClinical and Research Information on Drug-Induced Liver Injury.Bethesda, MDNational Institute of Diabetes and Digestive and Kidney Diseases2012
    [Google Scholar]
  34. WilsonL. SaseenJ.J. Gouty arthritis: A review of acute management and prevention.Pharmacotherapy201636890692210.1002/phar.178827318031
    [Google Scholar]
  35. AhmedS.A. SarmaP. BargeS.R. SwargiaryD. DeviG.S. BorahJ.C. Xanthosine, a purine glycoside mediates hepatic glucose homeostasis through inhibition of gluconeogenesis and activation of glycogenesis via regulating the AMPK/ FoxO1/AKT/GSK3β signaling cascade.Chem. Biol. Interact.202337111034710.1016/j.cbi.2023.11034736627075
    [Google Scholar]
  36. LeeH.S. CraneG.G. MerokJ.R. TunsteadJ.R. HatchN.L. PanchalingamK. PowersM.J. GriffithL.G. SherleyJ.L. Clonal expansion of adult rat hepatic stem cell lines by suppression of asymmetric cell kinetics (SACK).Biotechnol. Bioeng.200383776077110.1002/bit.1072712889016
    [Google Scholar]
  37. TsuiM. BiroJ. ChanJ. MinW. DobbsK. NotarangeloL.D. GrunebaumE. Purine nucleoside phosphorylase deficiency induces p53-mediated intrinsic apoptosis in human induced pluripotent stem cell-derived neurons.Sci. Rep.2022121908410.1038/s41598‑022‑10935‑035641516
    [Google Scholar]
  38. HuangL. ChenW. LiuH. XueM. DongS. LiuX. FengC. CaoS. YeG. ZhouQ. ZhangZ. ZhengJ. LiJ. ZhaoD. WangZ. SunE. ChenH. ZhangS. WangX. ZhangX. HeX. GuanY. BuZ. WengC. African Swine Fever Virus HLJ/18 CD2v Suppresses Type I IFN Production and IFN-Stimulated Genes Expression through Negatively Regulating cGMP-AMP Synthase–STING and IFN Signaling Pathways.J. Immunol.202321091338135010.4049/jimmunol.220081336971697
    [Google Scholar]
  39. HuP. LiK. PengX.X. KanY. YaoT.J. WangZ.Y. LiZ. LiuH.Y. CaiD. Curcumin derived from medicinal homologous foods: Its main signals in immunoregulation of oxidative stress, inflammation, and apoptosis.Front. Immunol.202314123365210.3389/fimmu.2023.123365237497225
    [Google Scholar]
  40. YouL. NepovimovaE. ValkoM. WuQ. KucaK. Mycotoxins and cellular senescence: The impact of oxidative stress, hypoxia, and immunosuppression.Arch. Toxicol.202397239340410.1007/s00204‑022‑03423‑x36434400
    [Google Scholar]
  41. LiangX. WangZ. DaiZ. LiuJ. ZhangH. WenJ. ZhangN. ZhangJ. LuoP. LiuZ. LiuZ. ChengQ. Oxidative stress is involved in immunosuppression and macrophage regulation in glioblastoma.Clin. Immunol.202425810980210.1016/j.clim.2023.10980237866784
    [Google Scholar]
  42. GuoY. ZhangJ. LiX. WuJ. HanJ. YangG. ZhangL. Oxidative stress mediated immunosuppression caused by ammonia gas via antioxidant/oxidant imbalance in broilers.Br. Poult. Sci.2023641364610.1080/00071668.2022.212202536083210
    [Google Scholar]
  43. ZhengS. MaM. ChenY. LiM. Effects of quercetin on ovarian function and regulation of the ovarian PI3K/Akt/FoxO3a signalling pathway and oxidative stress in a rat model of cyclophosphamide‐induced premature ovarian failure.Basic Clin. Pharmacol. Toxicol.2022130224025310.1111/bcpt.1369634841658
    [Google Scholar]
  44. BellH.N. StockwellB.R. ZouW. Ironing out the role of ferroptosis in immunity.Immunity202457594195610.1016/j.immuni.2024.03.01938749397
    [Google Scholar]
  45. ChaudharyP. SharmaR. SharmaA. VatsyayanR. YadavS. SinghalS.S. RauniyarN. ProkaiL. AwasthiS. AwasthiY.C. Mechanisms of 4-hydroxy-2-nonenal induced pro- and anti-apoptotic signaling.Biochemistry201049296263627510.1021/bi100517x20565132
    [Google Scholar]
  46. CuiG. ZhangH. GuoQ. ShanS. ChenS. LiC. YangX. LiZ. MuY. ShaoH. DuZ. Oxidative stress-mediated mitochondrial pathway-dependent apoptosis is induced by silica nanoparticles in H9c2 cardiomyocytes.Toxicol. Mech. Methods202030964665510.1080/15376516.2020.180566432746757
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002360132250122164637
Loading
/content/journals/cdm/10.2174/0113892002360132250122164637
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test