Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Background

Hypertension, which affects 1.28 billion people globally aged 30 to 79, is characterized by continuously high blood pressure (140/90 or more) and raises the risk of premature death. Losartan, an angiotensin receptor blocker (ARB), is suggested for patients under the age of 55 who cannot take ACE inhibitors as a first treatment option. Epilepsy, a chronic neurological illness marked by repeated seizures, affects more than 50 million individuals worldwide and is the third most common chronic brain disorder. Both hypertension and epilepsy are frequent chronic illnesses, with increased blood pressure greatly raising the risk of epilepsy due to its relationship with cerebrovascular disease, doubling the risk when compared to people with normal blood pressure.

Objective

The effect on pharmacokinetics and pharmacodynamics of losartan on concomitant administration with carbamazepine was investigated.

Materials and Methods

Wistar rats of either sex, with a minimum of six animals per group, were used in the investigation. The rats were treated with Losartan and Losartan-Carbamazepine for 30 days. Blood samples were taken retro-orbital plexus at 0, 1, 2, 4, 6, and 12 hours after treatment concluded, and they were subjected to high-performance liquid chromatography for plasma analysis to calculate AUC, t1/2, and Clearance. A pharmacodynamic evaluation was done by inducing hypertension in rats using a 10% fructose solution and the effect of pretreated Losartan and Losartan-Carbamazepine on blood pressure was determined.

Results

In the Losartan and Carbamazepine treated group, there was a reduction in the AUC and t1/2 and a reported increase in the clearance value compared to Losartan alone treated rats. In fructose-induced hypertension model to evaluate the effect of losartan and carbamazepine on BP showed an increase in mean arterial pressure, plasma glucose, and a reduction in triglycerides level was noted in comparison to Losartan alone treated rats indicating therapeutic failure of Losartan.

Conclusion

Based on these studies, it is concluded that CBZ has reduced the effectiveness of losartan and therefore, co-administration of these drugs should be avoided.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002358068250119052940
2025-01-23
2025-09-01
Loading full text...

Full text loading...

References

  1. SahaNilanjan Clinical pharmacokinetics and drug interactions.Pharmaceutical Medicine and Translational Clinical Research.Academic Press.20188110610.1016/B978‑0‑12‑802103‑3.00006‑7
    [Google Scholar]
  2. GuptaP JhariaV. A review on effect of food on medication.Curr. Res. Pharm. Sci.201444110115
    [Google Scholar]
  3. PalleriaC Di PaoloA GiofrèC CagliotiC LeuzziG SiniscalchiA De SarroG GallelliL Pharmacokinetic drug-drug interaction and their implication in clinical management.J. Res. Med. Sci.2013187601
    [Google Scholar]
  4. SharifiH. HasanloeiM. MahmoudiJ. Polypharmacy-induced drug-drug interactions; threats to patient safety.Drug Res. (Stuttg.)2014641263363710.1055/s‑0033‑136396524500732
    [Google Scholar]
  5. Obreli-NetoP.R. NobiliA. de Oliveira BaldoniA. Guidoni C.M. de Lyra JúniorD.P. Pilger D. DuzanskiJ. Tettamanti M. Cruciol-SouzaJ.M. Tettamanti M. Adverse drug reactions caused by drug–drug interactions in elderly outpatients: A prospective cohort study.Eur. J. Clin. Pharmacol.20126812166710.1007/s00228‑012‑1309‑3
    [Google Scholar]
  6. MarcumZ.A. GelladW.F. Medication adherence to multidrug regimens.Clin. Geriatr. Med.201228228730010.1016/j.cger.2012.01.00822500544
    [Google Scholar]
  7. DaniëlM. Towards a mechanism-based analysis of pharmacodynamic drug–drug interactions in vivo. .J.pharmthera2005106111810.1016/j.pharmthera.2004.10.014
    [Google Scholar]
  8. LaiY ChuX DiL GaoW GuoY LiuX LuC MaoJ ShenH TangH XiaCQ ZhangL DingX Recent advances in the translation of drug metabolism and pharmacokinetics science for drug discovery and development.Acta Pharm Sin B.20061262751277710.1016/j.apsb.2022.03.009
    [Google Scholar]
  9. MarcelJ. Designing better drugs: Predicting cytochrome P450 metabolism.Drug. Discov. Today.2006111360110.1016/j.drudis.2006.05.001
    [Google Scholar]
  10. YanZ. Caldwell G.W. Bentham Science Publisher Metabolism profiling, and cytochrome P450 inhibition and induction in drug discovery.Curr. Top Med. Chem.20011540310.2174/1568026013395001
    [Google Scholar]
  11. GuengerichF. Role of cytochrome P450 enzymes in drug-drug interactions.Adv. Pharmacol.19974373510.1016/S1054‑3589(08)60200‑8
    [Google Scholar]
  12. BibiZ. Role of cytochrome P450 in drug interactions.Nutr. Metab. (Lond.)2008512710.1186/1743‑7075‑5‑2718928560
    [Google Scholar]
  13. MillsK.T. StefanescuA. HeJ. The global epidemiology of hypertension.Nat. Rev. Nephrol.202016422323710.1038/s41581‑019‑0244‑232024986
    [Google Scholar]
  14. FranzH Essential hypertension.Lancet2007370958759160310.1016/S0140‑6736(07)61299‑9
    [Google Scholar]
  15. Krousel-WoodM.A. MuntnerP. HeJ. WheltonP.K. Primary prevention of essential hypertension.Med. Clin. North Am.200488122323810.1016/S0025‑7125(03)00126‑314871061
    [Google Scholar]
  16. JagadeeshG. BalakumarP. Hypertension: Introduction, Types, Causes, and Complications.Pathophysiology and Pharmacotherapy of Cardiovascular Disease.AdisCham201563565310.1007/978‑3‑319‑15961‑4
    [Google Scholar]
  17. BabatsikouF. ZavitsanouA. Epidemiology of hypertension in the elderly.Health Sci. J.20104124
    [Google Scholar]
  18. KumarJ. Epidemiology of hypertension.Clin. Queries Nephrol.201322566110.1016/j.cqn.2013.04.005
    [Google Scholar]
  19. BeeversG. LipG.Y. O’BrienE. ABC of hypertension: The pathophysiology of hypertension.BMJ2001322729191291610.1136/bmj.322.7291.91211302910
    [Google Scholar]
  20. RosivallL. Intrarenal renin–angiotensin system.Mol. Cell. Endocrinol.2009302218519210.1016/j.mce.2008.09.03318977408
    [Google Scholar]
  21. NaikP. MurumkarP. GiridharR. YadavM.R. Angiotensin II receptor type 1 (AT1) selective nonpeptidic antagonists—A perspective.Bioorg. Med. Chem.201018248418845610.1016/j.bmc.2010.10.04321071232
    [Google Scholar]
  22. GoaK.L. WagstaffA.J. Losartan Potassium.Drugs199651582084510.2165/00003495‑199651050‑000088861549
    [Google Scholar]
  23. BurnierM. WuerznerG. Pharmacokinetic evaluation of losartan.Expert Opin. Drug Metab. Toxicol.20117564364910.1517/17425255.2011.57033321417956
    [Google Scholar]
  24. Al-MajedA.R. Assiri E. Khalil N.Y. Abdel-AzizH.A. Losartan: Comprehensive Profile.Profiles. Drug. Subst. Excip. Relat. Methodol. 20154015919410.1016/bs.podrm.2015.02.003
    [Google Scholar]
  25. ConlinP.R. Efficacy and safety of angiotensin receptor blockers: A review of losartan in essential hypertension.Curr. Ther. Res. Clin. Exp.2001622799110.1016/S0011‑393X(01)80019‑9
    [Google Scholar]
  26. StafstromC.E. CarmantL. Seizures and epilepsy: An overview for neuroscientists.Cold. Spring. Harb. Perspect. Med.201556a02242610.1101/cshperspect.a02242626033084
    [Google Scholar]
  27. de BoerH.M. MulaM. SanderJ.W. The global burden and stigma of epilepsy.Epilepsy Behav.200812454054610.1016/j.yebeh.2007.12.01918280210
    [Google Scholar]
  28. SatishchandraP. SanthoshN.S. SinhaS. Epilepsy: Indian perspective.Ann. Indian Acad. Neurol.2014175Suppl. 1310.4103/0972‑2327.12864324791085
    [Google Scholar]
  29. StöllbergerC. FinstererJ. Cardiorespiratory findings in sudden unexplained/unexpected death in epilepsy (SUDEP).Epilepsy Res.2004591516010.1016/j.eplepsyres.2004.03.00815135167
    [Google Scholar]
  30. EngelborghsS. D’HoogeR. De DeynP.P. Pathophysiology of epilepsy.Acta Neurol. Belg.2000100420121311233674
    [Google Scholar]
  31. JefferysJ.G.R. Advances in understanding basic mechanisms of epilepsy and seizures.Seizure2010191063864610.1016/j.seizure.2010.10.02621095139
    [Google Scholar]
  32. RobertL. Antiepileptic drug mechanisms of action.Epilepsia19953622s1210.1111/j.1528‑1157.1995.tb05996.x
    [Google Scholar]
  33. CamposM.S.A. AyresL.R. MoreloM.R.S. MarquesF.A. PereiraL.R.L. Efficacy and tolerability of antiepileptic drugs in patients with focal epilepsy: Systematic review and network meta-analyses.Pharmacotherapy201636121255127110.1002/phar.185527779771
    [Google Scholar]
  34. ManikandanP. NaginiS. Cytochrome P450 structure, function and clinical significance: A review.Curr. Drug Targets2018191385410.2174/138945011866617012514455728124606
    [Google Scholar]
  35. SicaD.A. GehrT.W.B. GhoshS. Clinical pharmacokinetics of losartan.Clin. Pharmacokinet.200544879781410.2165/00003088‑200544080‑0000316029066
    [Google Scholar]
  36. ShouM. DaiR. CuiD. KorzekwaK.R. BaillieT.A. RushmoreT.H. A kinetic model for the metabolic interaction of two substrates at the active site of cytochrome P450 3A4.J. Biol. Chem.200127632256226210.1074/jbc.M00879920011054425
    [Google Scholar]
  37. RossiG.P. Losartan metabolite EXP3179.Hypertension200954471071210.1161/HYPERTENSIONAHA.109.13888319687342
    [Google Scholar]
  38. DresserG.K. SpenceJ.D. BaileyD.G. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition.Clin. Pharmacokinet.2000381415710.2165/00003088‑200038010‑0000310668858
    [Google Scholar]
  39. ZhouS.F. XueC.C. Yu X.Q. LiC. WangG. Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring.Ther Drug Monit.200729668771010.1097/FTD.0b013e31815c16f5
    [Google Scholar]
  40. KetterT.A. FlockhartD.A. PostR.M. DenicoffK. PazzagliaP.J. MarangellL.B. GeorgeM.S. CallahanA.M. The emerging role of cytochrome P450 3A in psychopharmacology.J. Clin. Psychopharmacol.199515638739810.1097/00004714‑199512000‑000028748427
    [Google Scholar]
  41. GuekhtA. Epilepsy, comorbidities and treatments.Curr. Pharm. Des.201823375702572610.2174/138161282366617100914440028990527
    [Google Scholar]
  42. FisherR.S. AcevedoC. ArzimanoglouA. BogaczA. CrossJ.H. ElgerC.E. EngelJ.Jr ForsgrenL. FrenchJ.A. GlynnM. HesdorfferD.C. LeeB.I. MathernG.W. MoshéS.L. PeruccaE. SchefferI.E. TomsonT. WatanabeM. WiebeS. ILAE official report: A practical clinical definition of epilepsy.Epilepsia201455447548210.1111/epi.1255024730690
    [Google Scholar]
  43. GaspariniS. FerlazzoE. SueriC. CianciV. AscoliM. CavalliS.M. BeghiE. BelcastroV. BianchiA. BennaP. CantelloR. ConsoliD. De FalcoF.A. Di GennaroG. GambardellaA. GigliG.L. IudiceA. LabateA. MichelucciR. PaciaroniM. PalumboP. PrimaveraA. SartucciF. StrianoP. VillaniF. RussoE. De SarroG. AgugliaU. Epilepsy Study Group of the Italian Neurological Society Hypertension, seizures, and epilepsy: A review on pathophysiology and management.Neurol. Sci.20194091775178310.1007/s10072‑019‑03913‑431055731
    [Google Scholar]
  44. JohnsonE.L. KraussG.L. LeeA.K. SchneiderA.L.C. DearbornJ.L. Kucharska-NewtonA.M. HuangJ. AlonsoA. GottesmanR.F. Association between midlife risk factors and late-onset epilepsy: Results from the atherosclerosis risk in communities study.JAMA Neurol.201875111375138210.1001/jamaneurol.2018.193530039175
    [Google Scholar]
  45. StefanidouM. HimaliJ.J. DevinskyO. RomeroJ.R. IkramM.A. BeiserA.S. SeshadriS. FriedmanD. Vascular risk factors as predictors of epilepsy in older age: The framingham heart study.Epilepsia202263123724310.1111/epi.1710834786697
    [Google Scholar]
  46. PereiraM.G.A.G. BecariC. OliveiraJ.A.C. SalgadoM.C.O. Garcia-CairascoN. Costa-NetoC.M. Inhibition of the renin–angiotensin system prevents seizures in a rat model of epilepsy.Clin. Sci. (Lond.)20101191147748210.1042/CS2010005320533906
    [Google Scholar]
  47. SuC. XueJ. YeC. ChenA. Role of the central renin‑angiotensin system in hypertension (Review).Int. J. Mol. Med.20214769510.3892/ijmm.2021.492833846799
    [Google Scholar]
  48. HallJ.E. Control of blood pressure by the renin-angiotensin-aldosterone system.Clin. Cardiol.199114S4Suppl. 462110.1002/clc.49601418021893644
    [Google Scholar]
  49. ScorzaF.A. de AlmeidaA.C.G. ScorzaC.A. RodriguesA.M. CysneirosR.M. Hypertension and epilepsy: A deadly combination.Epilepsy Behav.202111910797810.1016/j.yebeh.2021.10797833941499
    [Google Scholar]
  50. SurgesR. SanderJ.W. Sudden unexpected death in epilepsy.Curr. Opin. Neurol.201225220120710.1097/WCO.0b013e328350671422274774
    [Google Scholar]
  51. JamaH.A. MuralitharanR.R. XuC. O’DonnellJ.A. BertagnolliM. BroughtonB.R.S. HeadG.A. MarquesF.Z. Rodent models of hypertension.Br. J. Pharmacol.2022179591893710.1111/bph.1565034363610
    [Google Scholar]
  52. HwangI.S. HoH. HoffmanB.B. ReavenG.M. Fructose-induced insulin resistance and hypertension in rats.Hypertension198710551251610.1161/01.HYP.10.5.5123311990
    [Google Scholar]
  53. PaulineM. AvadhanyS.T. MaruthyK.N. Non invasive measurement of systolic blood pressure in rats: A simple technique.Al Ameen J. Med. Sci.201144365369
    [Google Scholar]
  54. DaiS. McNeillJ.H. Fructose-induced hypertension in rats is concentration- and duration-dependent.J. Pharmacol. Toxicol. Methods199533210110710.1016/1056‑8719(94)00063‑A7766916
    [Google Scholar]
  55. FletcherM.J. A colorimetric method for estimating serum triglycerides.Clin. Chim. Acta196822339339710.1016/0009‑8981(68)90041‑75696963
    [Google Scholar]
  56. SiddiquiB. AhmedH. HaqI. RehmanA. AhmedN. Development and validation of HPLC method for simultaneous determination of Leflunomide and folic acid in the nanoparticulate system by reversed-phase HPLC.Drug Dev. Ind. Pharm.202349849750710.1080/03639045.2023.223934637470519
    [Google Scholar]
  57. ChavanY.S. ShinkarD.M. JadhavS.S. BorasteS.S. PingaleP.L. AmrutkarS.V. Advancement and authentication of spectrophotometric method for detection of losartan potassium.Chemistry. Africa.2022562061206610.1007/s42250‑022‑00456‑8
    [Google Scholar]
  58. YasarÜ. Forslund-BergengrenC. TybringG. DoradoP. LLerenaA. SjöqvistF. EliassonE. DahlM.L. Pharmacokinetics of losartan and its metabolite E-3174 in relation to the CYP2C9 genotype.Clin. Pharmacol. Ther.2002711899810.1067/mcp.2002.12121611823761
    [Google Scholar]
  59. PawarH.A. LalithaK.G. Development and validation of a novel RP-HPLC method for estimation of losartan potassium in dissolution samples of immediate and sustained release tablets.Chromatogr. Res. Int.2014201411810.1155/2014/736761
    [Google Scholar]
  60. SmajićM. VujićZ. MulavdićN. BrborićJ. An improved HPLC method for simultaneous analysis of losartan potassium and hydrochlorothiazide with the aid of a chemometric protocol.Chromatographia2013767-841942510.1007/s10337‑013‑2388‑8
    [Google Scholar]
  61. ZaidensteinR. SobackS. GipsM. AvniB. DishiV. WeissgartenY. GolikA. ScapaE. Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers.Ther. Drug Monit.200123436937310.1097/00007691‑200108000‑0000811477318
    [Google Scholar]
  62. RusekM. CzuczwarS.J. A review of clinically significant drug-drug interactions involving angiotensin II receptor antagonists and antiepileptic drugs.Expert Opin. Drug Metab. Toxicol.202016650751510.1080/17425255.2020.176395532397766
    [Google Scholar]
  63. NgoL.T. YunH. ChaeJ. Application of the population pharmacokinetics model-based approach to the prediction of drug–drug interaction between Rivaroxaban and Carbamazepine in Humans.Pharmaceuticals202316568410.3390/ph1605068437242468
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002358068250119052940
Loading
/content/journals/cdm/10.2174/0113892002358068250119052940
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test