Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Background

BPI-460372 is an orally available, covalent, irreversible small molecule inhibitor of the transcriptional enhanced associate domain (TEAD) 1/3/4, which is currently in clinical development for the treatment of cancers with Hippo pathway alterations.

Objectives

This study aimed to determine the cytochrome P450 (CYP) phenotyping, metabolic stability, and and metabolic profile of BPI-460372.

Methods

The CYP phenotyping and metabolic stability were assessed by measuring the depletion of substrate. The metabolic profile in hepatocytes and rat and dog plasma was analyzed using ultra-high-performance liquid chromatography combined with Orbitrap tandem mass spectrometry (UHPLC-Orbitrap-HRMS).

Results

BPI-460372 was mainly metabolized by CYP2D6, CYP3A4, and CYP1A2. BPI-460372 exhibited low clearance in human, monkey, and rat hepatocytes, while moderate clearance in dog and mouse hepatocytes. A total of 10 metabolites were identified in five species of hepatocytes, and no human-unique metabolite was detected. In rat plasma and dog plasma, the primary metabolites were M407 (BPI-460430) and M423 (BPI-460456), respectively. The two metabolites were quantitatively determined in rat and dog plasma in pharmacokinetic and toxicological studies. The major metabolic site was 2-fluoro-acrylamide, and major metabolic pathways in hepatocytes, and rat and dog plasma involved oxidative defluorination, hydration, glutathione (GSH) conjugation, hydrolysis, cysteine conjugation, and -acetyl cysteine conjugation. -lyase pathway contributed to the metabolism of BPI-460372 in rats to a certain degree.

Conclusion

This study elucidated the metabolism of BPI-460372 and provided a basis for pharmacokinetic and toxicological species selection, human pharmacokinetics prediction, and assessment of clinical co-administration limitations and possible metabolic pathways in humans.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002351556250123105344
2024-12-01
2025-09-06
Loading full text...

Full text loading...

/deliver/fulltext/cdm/25/10/CDM-25-10-05.html?itemId=/content/journals/cdm/10.2174/0113892002351556250123105344&mimeType=html&fmt=ahah

References

  1. DongJ. FeldmannG. HuangJ. WuS. ZhangN. ComerfordS.A. GayyedM.F. AndersR.A. MaitraA. PanD. Elucidation of a universal size-control mechanism in Drosophila and mammals.Cell200713061120113310.1016/j.cell.2007.07.01917889654
    [Google Scholar]
  2. MoroishiT. HansenC.G. GuanK.L. The emerging roles of YAP and TAZ in cancer.Nat. Rev. Cancer2015152737910.1038/nrc387625592648
    [Google Scholar]
  3. ThompsonB.J. YAP/TAZ: Drivers of tumor growth, metastasis, and resistance to therapy.BioEssays2020425190016210.1002/bies.20190016232128850
    [Google Scholar]
  4. LuoM. XuY. ChenH. WuY. PangA. HuJ. DongX. CheJ. YangH. Advances of targeting the YAP/TAZ-TEAD complex in the hippo pathway for the treatment of cancers.Eur. J. Med. Chem.202224411484710.1016/j.ejmech.2022.11484736265280
    [Google Scholar]
  5. KumarR. HongW. Hippo signaling at the hallmarks of cancer and drug resistance.Cells202413756410.3390/cells1307056438607003
    [Google Scholar]
  6. SchmelzleT. ChapeauE. BauerD. CheneP. FarisJ. FernandezC. FuretP. GalliG. GongJ. HarlfingerS. HofmannF. NunezE.J. KallenJ. MourikisT. SansregretL. SantosP. ScheuflerC. SellnerH. VoegtleM. WartmannM. WesselsP. ZecriF. SoldermannN. Abstract LB319: IAG933, a selective and orally efficacious YAP1/WWTR1(TAZ)-panTEAD protein-protein interaction inhibitor with pre-clinical activity in monotherapy and combinations.Cancer Res.2023838_SupplementSuppl.LB31910.1158/1538‑7445.AM2023‑LB319
    [Google Scholar]
  7. ZagielB. MelnykP. CotelleP. Progress with YAP/TAZ-TEAD inhibitors: A patent review (2018-present).Expert Opin. Ther. Pat.202232889991210.1080/13543776.2022.209643635768160
    [Google Scholar]
  8. HanX. GuoJ. JinX. ZhuL. ShenH. XuX. ZhangM. LiuX. LiuY. ChengH. GuoS. DingL. WangJ. LanH. WangM. Abstract 7575: BPI-460372, a covalent, irreversible TEAD inhibitor in Phase I clinical development.Cancer Res.2024846_SupplementSuppl.757510.1158/1538‑7445.AM2024‑7575
    [Google Scholar]
  9. LiuX. GuoZ. ChenZ. ZhangY. ZhouJ. JiangY. ZhaoQ. DiaoX. ZhongD. Alflutinib (AST2818), primarily metabolized by CYP3A4, is a potent CYP3A4 inducer.Acta Pharmacol. Sin.202041101366137610.1038/s41401‑020‑0389‑332235864
    [Google Scholar]
  10. RodriguesA.D. Integrated cytochrome P450 reaction phenotyping: Attempting to bridge the gap between cDNA-expressed cytochromes P450 and native human liver microsomes.Biochem. Pharmacol.199957546548010.1016/S0006‑2952(98)00268‑89952310
    [Google Scholar]
  11. ChenY. LiuL. NguyenK. FretlandA.J. Utility of intersystem extrapolation factors in early reaction phenotyping and the quantitative extrapolation of human liver microsomal intrinsic clearance using recombinant cytochromes P450.Drug Metab. Dispos.201139337338210.1124/dmd.110.03514721148079
    [Google Scholar]
  12. PearsonP.G. WienkersL.C. Handbook of drug metabolism.2nd edBoca RatonCRC Press201910.1201/9780429190315
    [Google Scholar]
  13. DaviesB. MorrisT. Physiological parameters in laboratory animals and humans.Pharm. Res.19931071093109510.1023/A:10189436131228378254
    [Google Scholar]
  14. Sohlenius-SternbeckA.K. Determination of the hepatocellularity number for human, dog, rabbit, rat and mouse livers from protein concentration measurements.Toxicol. In Vitro20062081582158610.1016/j.tiv.2006.06.00316930941
    [Google Scholar]
  15. HopC.E.C.A. WangZ. ChenQ. KweiG. Plasma-pooling methods to increase throughput for in vivo pharmacokinetic screening.J. Pharm. Sci.199887790190310.1021/js970486q9649361
    [Google Scholar]
  16. YuanY. WangW. LuoJ. TangC. ZhengY. YuJ. XuH. ZhuM. HangT. WangH. DiaoX. Metabolite characterisation of the peptide–drug conjugate LN005 in liver S9s by UHPLC-Orbitrap-HRMS.Xenobiotica20245411910.1080/00498254.2023.228963538044881
    [Google Scholar]
  17. MohosV. Fliszár-NyúlE. UngváriO. KuffaK. NeedsP.W. KroonP.A. TelbiszÁ. Özvegy-LaczkaC. PoórM. Inhibitory effects of quercetin and its main methyl, sulfate, and glucuronic acid conjugates on cytochrome P450 enzymes, and on OATP, BCRP and MRP2 transporters.Nutrients2020128230610.3390/nu1208230632751996
    [Google Scholar]
  18. QianY. MarkowitzJ.S. Natural products as modulators of CES1 activity.Drug Metab. Dispos.20204810993100710.1124/dmd.120.00006532591414
    [Google Scholar]
  19. ShenH.L. XuX.F. RongH.F. SongX.Z. GaoJ.H. ChenJ. ZhuD. ZhaoX.D. TongJ. ZouZ.Y. LiuX.Y. GuoJ. XuY. LiY.B. LiuX.Y. ChenH. ZhaoJ.Y. LiuY.J. JuX.P. ChenH.B. Discovery of BPI-460372, a potent and selective inhibitor of TEAD for the treatment of solid tumors harboring Hippo pathway aberrations.Cancer Res.2023837Suppl.50110.1158/1538‑7445.AM2023‑501
    [Google Scholar]
  20. US FDA Adagrasib multi-discipline review.2022 https://www.accessdata.fda.gov/drugsatfda_docs/nda/2023/216340Orig1s000MultidisciplineR.pdf
  21. XiaG. ChenW. ZhangJ. ShaoJ. ZhangY. HuangW. ZhangL. QiW. SunX. LiB. XiangZ. MaC. XuJ. DengH. LiY. LiP. MiaoH. HanJ. LiuY. ShenJ. YuY. A chemical tuned strategy to develop novel irreversible EGFR-TK inhibitors with improved safety and pharmacokinetic profiles.J. Med. Chem.201457239889990010.1021/jm501465925409491
    [Google Scholar]
  22. FellJ.B. FischerJ.P. BaerB.R. BlakeJ.F. BouhanaK. BriereD.M. BrownK.D. BurgessL.E. BurnsA.C. BurkardM.R. ChiangH. ChicarelliM.J. CookA.W. GaudinoJ.J. HallinJ. HansonL. HartleyD.P. HickenE.J. HingoraniG.P. HinklinR.J. MejiaM.J. OlsonP. OttenJ.N. RhodesS.P. RodriguezM.E. SavechenkovP. SmithD.J. SudhakarN. SullivanF.X. TangT.P. VigersG.P. WollenbergL. ChristensenJ.G. MarxM.A. Identification of the clinical development candidate MRTX849, a covalent KRASG12C inhibitor for the treatment of cancer.J. Med. Chem.202063136679669310.1021/acs.jmedchem.9b0205232250617
    [Google Scholar]
  23. ShibataY. ChibaM. The role of extrahepatic metabolism in the pharmacokinetics of the targeted covalent inhibitors afatinib, ibrutinib, and neratinib.Drug Metab. Dispos.201543337538410.1124/dmd.114.06142425504185
    [Google Scholar]
  24. ZhangD.L. ZhuM.S. HumphreysW.G. Drug metabolism in drug design and development: basic concepts and practice.1st edHobokenJohn Wiley & Sons200710.1002/9780470191699
    [Google Scholar]
  25. CooperA.J.L. HaniganM.H. Metabolism of glutathione S-conjugates: Multiple pathways.Comprehensive toxicology. McQueenC.A. OxfordElsevier201836340610.1016/B978‑0‑12‑801238‑3.01973‑5
    [Google Scholar]
  26. WernerJ.A. DaviesR. WahlstromJ. DahalU.P. JiangM. StauberJ. DavidB. SiskaW. ThomasB. IshidaK. HumphreysW.G. LipfordJ.R. MonticelloT.M. Mercapturate pathway metabolites of sotorasib, a covalent inhibitor of KRASG12C, are associated with renal toxicity in the Sprague Dawley rat.Toxicol. Appl. Pharmacol.202142311557810.1016/j.taap.2021.11557834004237
    [Google Scholar]
  27. RoskoskiR.Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2024 update.Pharmacol. Res.202420010705910.1016/j.phrs.2024.10705938216005
    [Google Scholar]
  28. US FDA Acalabrutinib multi-discipline review.2017 https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/210259Orig1s000MultidisciplineR.pdf
  29. BelloC.L. SmithE. Ruiz-GarciaA. NiG. AlveyC. LoiC.M. A phase I, open-label, mass balance study of [14C] dacomitinib (PF-00299804) in healthy male volunteers.Cancer Chemother. Pharmacol.201372237938510.1007/s00280‑013‑2207‑923760812
    [Google Scholar]
  30. ScheersE. LeclercqL. de JongJ. BodeN. BockxM. LaenenA. CuyckensF. SkeeD. MurphyJ. SukbuntherngJ. MannensG. Absorption, metabolism, and excretion of oral ¹⁴C radiolabeled ibrutinib: An open-label, phase I, single-dose study in healthy men.Drug Metab. Dispos.201543228929710.1124/dmd.114.06006125488930
    [Google Scholar]
  31. US FDA Neratinib multi-discipline review.2017 https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/208051Orig1s000MultidisciplineR.pdf
  32. US FDA Zanubrutinib multi-discipline review.2019 https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/213217Orig1s000MultidisciplineR.pdf
  33. US FDA Ritlecitinib multi-discipline review.2023 https://www.accessdata.fda.gov/drugsatfda_docs/nda/2023/215830Orig1s000MultidisciplineR.pdf
  34. StopferP. MarzinK. NarjesH. GansserD. ShahidiM. Uttereuther-FischerM. EbnerT. Afatinib pharmacokinetics and metabolism after oral administration to healthy male volunteers.Cancer Chemother. Pharmacol.20126941051106110.1007/s00280‑011‑1803‑922200729
    [Google Scholar]
  35. DickinsonP.A. CantariniM.V. CollierJ. FrewerP. MartinS. PickupK. BallardP. Metabolic disposition of osimertinib in rats, dogs, and humans: Insights into a drug eesigned to bind covalently to a cysteine residue of epidermal growth factor receptor.Drug Metab. Dispos.20164481201121210.1124/dmd.115.06920327226351
    [Google Scholar]
  36. LiuX. FengD. ZhengM. CuiY. ZhongD. Characterization of covalent binding of tyrosine kinase inhibitors to plasma proteins.Drug Metab. Pharmacokinet.202035545646510.1016/j.dmpk.2020.07.00232847720
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002351556250123105344
Loading
/content/journals/cdm/10.2174/0113892002351556250123105344
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test