Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Background

Cathinone derivatives as new psychoactive substances have attracted worldwide attention in recent years. They have strong excitatory effects on the human central nervous system, which is extremely abusive and harmful. As they are easy to be structurally modified, and rapidly metabolized and excreted after taken, clarifying their metabolic profile is of significant importance to provide useful information for their identification or forensic purposes.

Objectives

In this paper, a comparative metabolic profile study of five cathinone derivatives (4/3/2-methylmethcathinone and 4/3-methoxymethcathinone) was performed, including their metabolic stability in the simulated gastrointestinal tract, mass spectrometry fragmentation behavior, possible metabolic pathways and metabolites in human liver microsomal incubation system, and revealing the key metabolic enzyme isoforms involving in their biotransformation.

Methods

incubation was performed in simulated gastric/intestinal fluid and human liver microsomes, fragmentation behavior study and metabolite identification were investigated by LC-Q-TOF/MS, and metabolic stability study, along with metabolic enzyme screening were analyzed using LC-MS/MS.

Results

Almost all the cathinone derivatives tested were stable in the simulated gastric/intestinal fluid; characteristic fragmentation pathway and diagnostic fragment ions of the cathinone derivatives were analyzed; the key metabolic pathways of 4/3-methylmethcathinone and 4/3-methoxymethcathinone revealed were hydroxylation and demethylation, which were catalyzed by CYP2D6. The methyl-substituted position would significantly affect the metabolic pathway of the methylmethcathinone.

Conclusion

This study revealed the mass spectral fragmentation pattern and the metabolic behavior of the selected cathinone derivatives, providing meaningful information and scientific evidence in predicting their metabolic potential , and also promoting their analysis, detection, and clinical use.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002348484250309011657
2025-03-17
2025-10-10
Loading full text...

Full text loading...

References

  1. NPS Data Visualisations.2024Available from: unodc.org/LSS/Page/NPS/DataVisualisations
  2. EmontsP. ServaisA. C. ZiemonsE. HubertP. FilletM. DispasA. Development of a sensitive MEKC-LIF method for synthetic cathinones analysis.Electrophoresis2021429-1011271134
    [Google Scholar]
  3. SimmlerL.D. BuserT.A. DonzelliM. SchrammY. DieuL-H. HuwylerJ. ChabozS. HoenerM.C. LiechtiM.E. Pharmacological characterization of designer cathinones in vitro.Br. J. Pharmacol.2013168245847010.1111/j.1476‑5381.2012.02145.x22897747
    [Google Scholar]
  4. CoppolaM. MondolaR. Synthetic cathinones: Chemistry, pharmacology and toxicology of a new class of designer drugs of abuse marketed as “bath salts” or “plant food”.Toxicol. Lett.2012211214414910.1016/j.toxlet.2012.03.00922459606
    [Google Scholar]
  5. KellyJ.P. Cathinone derivatives: A review of their chemistry, pharmacology and toxicology.Drug Test. Anal.201137-843945310.1002/dta.31321755607
    [Google Scholar]
  6. Paillet-LoilierM. CesbronA. Le BoisselierR. BourgineJ. DebruyneD. Emerging drugs of abuse: Current perspectives on substituted cathinones.Subst. Abuse Rehabil.20145375224966713
    [Google Scholar]
  7. DazianiG. Lo FaroA.F. MontanaV. GoteriG. PesaresiM. BambagiottiG. MontanariE. GiorgettiR. MontanaA. Synthetic cathinones and neurotoxicity risks: A systematic review.Int. J. Mol. Sci.2023247623010.3390/ijms2407623037047201
    [Google Scholar]
  8. Lo FaroA.F. BerrettaP. MontanaA. Synthetic cathinones and cardiotoxicity risks.Clin. Ter.2022173652452536373448
    [Google Scholar]
  9. PedersenA.J. ReitzelL.A. JohansenS.S. LinnetK. In vitro metabolism studies on mephedrone and analysis of forensic cases.Drug Test. Anal.20135643043810.1002/dta.136922573603
    [Google Scholar]
  10. ProsserJ.M. NelsonL.S. The toxicology of bath salts: A review of synthetic cathinones.J. Med. Toxicol.201281334210.1007/s13181‑011‑0193‑z22108839
    [Google Scholar]
  11. FratantonioJ. AndradeL. FeboM. Designer drugs: A synthetic catastrophe.J. Reward Defic. Syndr.201512828610.17756/jrds.2015‑01427617301
    [Google Scholar]
  12. RileyA.L. NelsonK.H. ToP. López-ArnauR. XuP. WangD. WangY. ShenH. KuhnD.M. Angoa-PerezM. AnnekenJ.H. MuskiewiczD. HallF.S. Abuse potential and toxicity of the synthetic cathinones (i.e., “Bath salts”).Neurosci. Biobehav. Rev.202011015017310.1016/j.neubiorev.2018.07.01531101438
    [Google Scholar]
  13. SchneirA. LyB.T. CasagrandeK. DarracqM. OffermanS.R. ThorntonS. SmollinC. VohraR. RangunC. TomaszewskiC. GeronaR.R. Comprehensive analysis of “bath salts” purchased from California stores and the internet.Clin. Toxicol.201452765165810.3109/15563650.2014.93323125089721
    [Google Scholar]
  14. WinstockA.R. MitchesonL.R. DelucaP. DaveyZ. CorazzaO. SchifanoF. Mephedrone, new kid for the chop?Addiction2011106115416110.1111/j.1360‑0443.2010.03130.x20735367
    [Google Scholar]
  15. FanS.Y. ZangC.Z. ShihP.H. KoY.C. HsuY.H. LinM.C. TsengS.H. WangD.Y. A LC-MS/MS method for determination of 73 synthetic cathinones and related metabolites in urine.Forensic Sci. Int.202031511042910.1016/j.forsciint.2020.11042932784041
    [Google Scholar]
  16. KohyamaE. ChikumotoT. TadaH. KitaichiK. HoriuchiT. ItoT. Differentiation of the isomers of n-alkylated cathinones by gc-ei-ms-ms and lc-pda.Anal. Sci.201632883183710.2116/analsci.32.83127506708
    [Google Scholar]
  17. MajchrzakM. CelińskiR. KuśP. KowalskaT. SajewiczM. The newest cathinone derivatives as designer drugs: An analytical and toxicological review.Forensic Toxicol.2018361335010.1007/s11419‑017‑0385‑629367861
    [Google Scholar]
  18. MeyerM.R. WilhelmJ. PetersF.T. MaurerH.H. Beta-keto amphetamines: Studies on the metabolism of the designer drug mephedrone and toxicological detection of mephedrone, butylone, and methylone in urine using gas chromatography–mass spectrometry.Anal. Bioanal. Chem.201039731225123310.1007/s00216‑010‑3636‑520333362
    [Google Scholar]
  19. Nic DaeidN. SavageK.A. RamsayD. HollandC. SutcliffeO.B. Development of gas chromatography–mass spectrometry (GC–MS) and other rapid screening methods for the analysis of 16 ‘legal high’ cathinone derivatives.Sci. Justice2014541223110.1016/j.scijus.2013.08.00424438774
    [Google Scholar]
  20. AldubayyanA. CastrignanòE. ElliottS. AbbateV. A quantitative lc-ms/ms method for the detection of 16 synthetic cathinones and 10 metabolites and its application to suspicious clinical and forensic urine samples.Pharmaceuticals202215551010.3390/ph1505051035631341
    [Google Scholar]
  21. ZhaoY. WuB. HuaZ. XuP. XuH. ShenW. DiB. WangY. SuM. Quantification of cathinone analogues without reference standard using (1)h quantitative nmr.Anal. Sci.202137111578158210.2116/analsci.21P04833994416
    [Google Scholar]
  22. JiJ. ZhangY. WangJ. Rapid detection of nine synthetic cathinones in blood and urine by direct analysis in real-time-tandem mass spectrometry.Rapid Commun. Mass Spectrom.20213515e913610.1002/rcm.913634080240
    [Google Scholar]
  23. FornalE. Formation of odd-electron product ions in collision-induced fragmentation of electrospray-generated protonated cathinone derivatives: Aryl α-primary amino ketones.Rapid Commun. Mass Spectrom.201327161858186610.1002/rcm.663523857931
    [Google Scholar]
  24. DavidsonJ.T. SasieneZ.J. JacksonG.P. Fragmentation pathways of odd- and even-electron N-alkylated synthetic cathinones.Int. J. Mass Spectrom.202045311635410.1016/j.ijms.2020.116354
    [Google Scholar]
  25. FornalE. Study of collision-induced dissociation of electrospray-generated protonated cathinones.Drug Test. Anal.201467-870571510.1002/dta.157324259394
    [Google Scholar]
  26. MatsutaS. ShimaN. KakehashiH. IshikawaA. AsaiR. NittaA. WadaM. NakanoS. KamataH. NishiyamaY. NagataniH. ImuraH. KatagiM. Dehydration-fragmentation mechanism of cathinones and their metabolites in ESI-CID.J. Mass Spectrom.2020559e453810.1002/jms.453832627947
    [Google Scholar]
  27. Tyler DavidsonJ. PiacentinoE.L. SasieneZ.J. AbiedallaY. DeRuiterJ. ClarkC.R. BerdenG. OomensJ. RyzhovV. JacksonG.P. Identification of novel fragmentation pathways and fragment ion structures in the tandem mass spectra of protonated synthetic cathinones.Forensic Chem.20201910024510.1016/j.forc.2020.100245
    [Google Scholar]
  28. López-ArnauR. Martínez-ClementeJ. CarbóM. PubillD. EscubedoE. CamarasaJ. An integrated pharmacokinetic and pharmacodynamic study of a new drug of abuse, methylone, a synthetic cathinone sold as “bath salts”.Prog. Neuropsychopharmacol. Biol. Psychiatry201345647210.1016/j.pnpbp.2013.04.00723603357
    [Google Scholar]
  29. Martínez-ClementeJ. López-ArnauR. CarbóM. PubillD. CamarasaJ. EscubedoE. Mephedrone pharmacokinetics after intravenous and oral administration in rats: relation to pharmacodynamics.Psychopharmacology2013229229530610.1007/s00213‑013‑3108‑723649883
    [Google Scholar]
  30. ValenteM.J. Guedes de PinhoP. de Lourdes BastosM. CarvalhoF. CarvalhoM. Khat and synthetic cathinones: A review.Arch. Toxicol.2014881154510.1007/s00204‑013‑1163‑924317389
    [Google Scholar]
  31. LopesB.T. CaldeiraM.J. GasparH. AntunesA.M.M. Metabolic profile of four selected cathinones in microsome incubations: Identification of phase i and ii metabolites by liquid chromatography high resolution mass spectrometry.Front Chem.2021860925110.3389/fchem.2020.60925133511100
    [Google Scholar]
  32. AraújoA.M. CarvalhoM. CostaV.M. DuarteJ.A. Dinis-OliveiraR.J. BastosM.L. Guedes de PinhoP. CarvalhoF. In vivo toxicometabolomics reveals multi-organ and urine metabolic changes in mice upon acute exposure to human-relevant doses of 3,4-methylenedioxypyrovalerone (MDPV).Arch. Toxicol.202195250952710.1007/s00204‑020‑02949‑233215236
    [Google Scholar]
  33. CzerwinskaJ. ParkinM.C. GeorgeC. KicmanA.T. DarganP.I. AbbateV. Excretion of mephedrone and its phase I metabolites in urine after a controlled intranasal administration to healthy human volunteers.Drug Test. Anal.202214474174610.1002/dta.321434984836
    [Google Scholar]
  34. OlestiE. FarréM. PapaseitE. KrotonoulasA. PujadasM. de la TorreR. PozoÓ.J. J. Pharmacokinetics of mephedrone and its metabolites in human by lc-ms/ms.AAPS J.20171961767177810.1208/s12248‑017‑0132‑228828691
    [Google Scholar]
  35. LopesR.P. FerroR.A. MilhazesM. FigueiraM. CaldeiraM.J. AntunesA.M.M. GasparH. Metabolic stability and metabolite profiling of emerging synthetic cathinones.Front. Pharmacol.202314114514010.3389/fphar.2023.114514037033613
    [Google Scholar]
  36. WuL. LiD. WangP. DongL. ZhangW. XuJ. JinX. In vitro stability and pharmacokinetic study of pedunculoside and its beta-cd polymer inclusion complex.Pharmaceutics202416559110.3390/pharmaceutics1605059138794253
    [Google Scholar]
  37. WuL. KangA. JinX. BaoY. MiaoP. LvT. ZhouZ. Ilexsaponin A1: In vitro metabolites identification and evaluation of inhibitory drug-drug interactions.Drug Metab. Pharmacokinet.20214010041510.1016/j.dmpk.2021.10041534461570
    [Google Scholar]
  38. WuL. KangA. ShanC. ChaiC. ZhouZ. LinY. BianY. LC-Q-TOF/MS-oriented systemic metabolism study of pedunculoside with in vitro and in vivo biotransformation.J. Pharm. Biomed. Anal.201917511276210.1016/j.jpba.2019.07.01031336286
    [Google Scholar]
  39. ZhouS. SongX. FangP. XuJ. LiuS. ZhengT. WuG. WuL. Lc-q-tof/ms-based fragmentation behavior study and in vitro metabolites identification of nine benzodiazepines.Curr. Drug Metab.202324322323710.2174/138920022466623041909073337114779
    [Google Scholar]
  40. KimH.J. LeeH. JiH.K. LeeT. LiuK.H. Screening of ten cytochrome P450 enzyme activities with 12 probe substrates in human liver microsomes using cocktail incubation and liquid chromatography–tandem mass spectrometry.Biopharm. Drug Dispos.2019403-410111110.1002/bdd.217430730576
    [Google Scholar]
  41. PengY. WuH. ZhangX. ZhangF. QiH. ZhongY. WangY. SangH. WangG. SunJ. A comprehensive assay for nine major cytochrome P450 enzymes activities with 16 probe reactions on human liver microsomes by a single LC/MS/MS run to support reliable in vitro inhibitory drug–drug interaction evaluation.Xenobiotica2015451196197710.3109/00498254.2015.103695426007223
    [Google Scholar]
  42. WuL. LiL. WangM. ShanC. CuiX. WangJ. DingN. YuD. TangY. Target and non-target identification of chemical components in Lamiophlomis rotata by liquid chromatography/quadrupole time-of-flight mass spectrometry using a three-step protocol.Rapid Commun. Mass Spectrom.201630192145215410.1002/rcm.769527470976
    [Google Scholar]
  43. Strano RossiS. OdoardiS. GregoriA. PelusoG. RipaniL. OrtarG. SerpelloniG. RomoloF.S. An analytical approach to the forensic identification of different classes of new psychoactive substances (NPSs) in seized materials.Rapid Commun. Mass Spectrom.201428171904191610.1002/rcm.696925088134
    [Google Scholar]
  44. KhreitO.I.G. GrantM.H. ZhangT. HendersonC. WatsonD.G. SutcliffeO.B. Elucidation of the Phase I and Phase II metabolic pathways of (±)-4′-methylmethcathinone (4-MMC) and (±)-4′-(trifluoromethyl)methcathinone (4-TFMMC) in rat liver hepatocytes using LC–MS and LC–MS2.J. Pharm. Biomed. Anal.20137217718510.1016/j.jpba.2012.08.01522985528
    [Google Scholar]
  45. UraletsV. RanaS. MorganS. RossW. Testing for designer stimulants: Metabolic profiles of 16 synthetic cathinones excreted free in human urine.J. Anal. Toxicol.201438523324110.1093/jat/bku02124668489
    [Google Scholar]
  46. CheP. DavidsonJ.T. StillK. KoolJ. KohlerI. In vitro metabolism of cathinone positional isomers: Does sex matter?Anal. Bioanal. Chem.2023415225403542010.1007/s00216‑023‑04815‑337452840
    [Google Scholar]
  47. NegreiraN. ErraticoC. KosjekT. van NuijsA.L.N. HeathE. NeelsH. CovaciA. In vitro Phase I and Phase II metabolism of α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV) and methedrone by human liver microsomes and human liver cytosol.Anal. Bioanal. Chem.2015407195803581610.1007/s00216‑015‑8763‑626014283
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002348484250309011657
Loading
/content/journals/cdm/10.2174/0113892002348484250309011657
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test