Skip to content
2000
Volume 18, Issue 1
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Aims: In the presented work we successfully discovered several novel NQO1 inducers using the computational approaches. Background: The phytochemical sulforaphane (SFN) is a potent inducer of carcinogen detoxication enzymes like NAD(P)H:quinone oxidoreductase 1 (NQO1) through the Kelch-like erythroid cellderived protein with CNC homology[ECH]-associated protein 1 (Keap1)-[NF-E2]-related factor 2 (Nrf2) signaling pathway. Objective: In this paper, we report the first QSAR and pharmacophore modeling study of sulforaphane analogues as NQO1 inducers. The pharmacophore model and understanding the relationships between the structures and activities of the known inducers will give useful information on the structural basis for NQO1 enzymatic activity and lead optimization for future rational design of new sulforaphane analogues as potent NQO1 inducers. Methods: In this study, a combination of QSAR modeling, pharmacophore generation, virtual screening and molecular docking was performed on a series of sulforaphane analogues as NQO1 inducers. Results: In deriving the QSAR model, the stepwise multiple linear regression established a reliable model with the training set (N: 43, R: 0.971, RMSE: 0.216) and test set (N: 14, R: 0.870, RMSE: 0.324, Q2: 0.80) molecules. The best ligand-based pharmacophore model comprised two hydrophobic (HY), one ring aromatic (RA) and three hydrogen bond acceptor (HBA) sites. The model was validated by a testing set and the decoys set, Güner-Henry (GH) scoring methods, etc. The enrichment of model was assessed by the sensitivity (0.92) and specificity (0.95). Moreover, the values of enrichment factor (EF) and the area under the receiver operating characteristics curve (AUC) were 12 and 0.94, respectively. This well-validated model was applied to screen two Asinex libraries for the novel NQO1 inducers. The hits were subsequently subjected to molecular docking after being filtering by Lipinski’s, MDDR-like, and Veber rules as well as evaluating their interaction with three major drugmetabolizing P450 enzymes, CYP2C9, CYP2D6 and CYP3A4. Ultimately, 12 hits filtered by molecular docking were subjected to validated QSAR model for calculating their inducer potencies and were introduced as potential NQO1 inducers for further investing action. Conclusion: Conclusively, the validated QSAR model was applied on the hits to calculate their inducer potencies and these 12 hits were introduced as potential NQO1 inducers for further investigations.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/1570163816666191112122047
2021-01-01
2025-09-06
Loading full text...

Full text loading...

/content/journals/cddt/10.2174/1570163816666191112122047
Loading

  • Article Type:
    Research Article
Keyword(s): drug discovery; molecular docking; NQO1 inducer; pharmacophore; QSAR; Sulforaphane
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test