Skip to content
2000
Volume 22, Issue 9
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Drug transporters are critical factors influencing the pharmacokinetics of drugs under hypoxic conditions. Studies have shown significant changes in drug transporter levels in the hypoxic environment. In addition to being regulated by HIF-1, nuclear receptors, and inflammatory factors, hypoxia can also regulate transporters through epigenetic modifications, thereby affecting drug absorption, distribution, metabolism, and excretion. In recent years, increasing attention has been paid to the role of epigenetic modifications in regulating drug transporters under hypoxic conditions at high altitudes. In this study, we comprehensively review the effects of hypoxia on drug transporters and epigenetic modifications and explore the regulatory mechanism of epigenetic modifications on drug transporter expression under hypoxic conditions. The aim is to provide a reference for exploring the epigenetic regulation mechanism of drug transporter expression in the hypoxic environment at high altitudes, guide the study of pharmacokinetics, and promote effective and safe medication at high altitudes.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018295087240620061102
2024-06-27
2026-01-30
Loading full text...

Full text loading...

References

  1. RibeiroA.L. RibeiroV. Drug metabolism and transport under hypoxia.Curr. Drug Metab.201314996997510.2174/138920021131409000324160293
    [Google Scholar]
  2. LuoB.F. YinQ. WangR. LiW.B. LuH. JiaZ.P. Effect of hypoxia on expressions of MDR1 and MRP2 in rats.Nan Fang Yi Ke Da Xue Xue Bao20163691169117227687645
    [Google Scholar]
  3. FradetteC. SouichP. Effect of hypoxia on cytochrome P450 activity and expression.Curr. Drug Metab.20045325727110.2174/138920004333557715180495
    [Google Scholar]
  4. LeeJ.W. KoJ. JuC. EltzschigH.K. Hypoxia signaling in human diseases and therapeutic targets.Exp. Mol. Med.201951611310.1038/s12276‑019‑0235‑131221962
    [Google Scholar]
  5. McKennaZ.J. Gorini PereiraF. GillumT.L. AmorimF.T. DeyhleM.R. MermierC.M. High-altitude exposures and intestinal barrier dysfunction.Am. J. Physiol. Regul. Integr. Comp. Physiol.20223223R192R20310.1152/ajpregu.00270.202135043679
    [Google Scholar]
  6. LuoB. LiJ. YangT. LiW. ZhangJ. WangC. ZhaoA. WangR. Evaluation of renal excretion and pharmacokinetics of furosemide in rats after acute exposure to high altitude at 4300 m.Biopharm. Drug Dispos.201839837838710.1002/bdd.215430120768
    [Google Scholar]
  7. ZhangJ. WangR. Changes in CYP3A4 enzyme expression and biochemical markers under acute hypoxia affect the pharmacokinetics of sildenafil.Front. Physiol.20221375576910.3389/fphys.2022.75576935153825
    [Google Scholar]
  8. LuoB. WangR. LiW. YangT. WangC. LuH. ZhaoA. ZhangJ. JiaZ. Pharmacokinetic changes of norfloxacin based on expression of MRP2 after acute exposure to high altitude at 4300 m.Biomed. Pharmacother.2017891078108510.1016/j.biopha.2017.02.09228292016
    [Google Scholar]
  9. LiW.B. LuoB.F. WangR. LuH. WangC. ZhaoA.P. JiaZ.P. [Changes of P-gp expression in rats’ small intestine and effects on uptake of levofloxacin after acute exposure to hypoxia].Yao Xue Xue Bao20165191412141629924524
    [Google Scholar]
  10. MinQ. FengS.L. LuH. LiW.B. WangC. ZhangJ.H. WangR. [Modulation of drug-metabolizing enzymes and transporters under hypoxia environment].Sheng Li Xue Bao201971233634231008494
    [Google Scholar]
  11. WangR. ZhaoY. MuH. ZhaoA. FengS. Research progress of epigenetic modification on the regulation of transporters under hypoxia.Curr. Drug Metab.202324210611310.2174/138920022466623040511544237038690
    [Google Scholar]
  12. AlipourM. SheikhnejadR. FouaniM.H. BardaniaH. HosseinkhaniS. DNAi-peptide nanohybrid smart particles target BCL-2 oncogene and induce apoptosis in breast cancer cells.Biomed. Pharmacother.202316611529910.1016/j.biopha.2023.11529937573657
    [Google Scholar]
  13. ChenL. RaoH. ZhangW. LiuF. JiangD. WeiL. Association of ATP-Binding Cassette Transporter (ABC) gene polymorphisms with viral load in patients with genotype 1 hepatitis c virus infection.Clin. Lab.20166209/20161643164910.7754/Clin.Lab.2016.16010528164591
    [Google Scholar]
  14. NigamS.K. The SLC22 transporter family: A paradigm for the impact of drug transporters on metabolic pathways, signaling, and disease.Annu. Rev. Pharmacol. Toxicol.201858166368710.1146/annurev‑pharmtox‑010617‑05271329309257
    [Google Scholar]
  15. ChenL. WangZ. XuQ. LiuY. ChenL. GuoS. WangH. ZengK. LiuJ. ZengS. YuL. The failure of DAC to induce OCT2 expression and its remission by hemoglobin-based nanocarriers under hypoxia in renal cell carcinoma.Theranostics20201083562357810.7150/thno.3994432206108
    [Google Scholar]
  16. ShiC. YanL. GaoJ. ChenS. ZhangL. Effects of ABCB1 DNA methylation in donors on tacrolimus blood concentrations in recipients following liver transplantation.Br. J. Clin. Pharmacol.202288104505451410.1111/bcp.1537635487881
    [Google Scholar]
  17. OzgürB. HelmsH.C.C. TornabeneE. BrodinB. Hypoxia increases expression of selected blood–brain barrier transporters GLUT-1, P-gp, SLC7A5 and TFRC, while maintaining barrier integrity, in brain capillary endothelial monolayers.Fluids Barriers CNS2022191110.1186/s12987‑021‑00297‑634983574
    [Google Scholar]
  18. MuY. LiW. WeiZ. HeL. ZhangW. ChenX. Transcriptome analysis reveals molecular strategies in gills and heart of large yellow croaker(Larimichthys crocea) under hypoxia stress.Fish Shellfish Immunol.202010430431310.1016/j.fsi.2020.06.02832544557
    [Google Scholar]
  19. ZhouX. NianY. YangM. XinY. QiaoY. ZhuL. YangJ. LiX. The protein and mRNA expression of drug transporters MDR1, MRP1, and BCRP after exposure to high-altitude hypoxia.J Chin High Alt Med Biol20173803183187
    [Google Scholar]
  20. ZhangM. Effect of plateau hypoxia on drug transporters in blood-brain barrier.LanzhouLanzhou University2018
    [Google Scholar]
  21. JiT. LuoB. ZhangX. LiW. ZhangJ. ZhangM. WangC. ZhaoA. WangR. Difference in effects of hypoxia on gene expressions of six drug transporters in rats.Pharm J Chin PLA20173304297301
    [Google Scholar]
  22. WojtalK.A. CeeA. LangS. GötzeO. FrühaufH. GeierA. Pastor-AngladaM. Torres-TorronterasJ. MartíR. FriedM. LutzT.A. MaggioriniM. GassmannM. RoglerG. VavrickaS.R. Downregulation of duodenal SLC transporters and activation of proinflammatory signaling constitute the early response to high altitude in humans.Am. J. Physiol. Gastrointest. Liver Physiol.20143077G673G68810.1152/ajpgi.00353.201324970780
    [Google Scholar]
  23. SunL. ZhangH. GaoP. Metabolic reprogramming and epigenetic modifications on the path to cancer.Protein Cell2022131287791910.1007/s13238‑021‑00846‑734050894
    [Google Scholar]
  24. ZhangL. LuQ. ChangC. Epigenetics in health and disease.Adv Exp Med Biol20201253355
    [Google Scholar]
  25. JurkowskaR.Z. JeltschA. Mechanisms and biological roles of DNA Methyltransferases and DNA Methylation: From Past Achievements to Future Challenges.Adv. Exp. Med. Biol.2022138911910.1007/978‑3‑031‑11454‑0_136350504
    [Google Scholar]
  26. BishtD. AroraA. SachanM. Role of DNA De-methylation intermediate ‘5-hydroxymethylcytosine’ in ovarian cancer management: A comprehensive review.Biomed. Pharmacother.202215511367410.1016/j.biopha.2022.11367436099791
    [Google Scholar]
  27. ZhangY. SunZ. JiaJ. DuT. ZhangN. TangY. FangY. FangD. Overview of histone modification.Adv. Exp. Med. Biol.2021128311610.1007/978‑981‑15‑8104‑5_133155134
    [Google Scholar]
  28. BarrèsR. YanJ. EganB. TreebakJ.T. RasmussenM. FritzT. CaidahlK. KrookA. O’GormanD.J. ZierathJ.R. Acute exercise remodels promoter methylation in human skeletal muscle.Cell Metab.201215340541110.1016/j.cmet.2012.01.00122405075
    [Google Scholar]
  29. LiX. XiaoJ. LeiH. BaiX. MengF. LiC. Investigation of DNA methylation difference in EPAS1 promoter region between tibetan and han population.J Clin Transfus Lab Med20212305569573
    [Google Scholar]
  30. WellmannS. BettkoberM. ZelmerA. SeegerK. FaigleM. EltzschigH.K. BührerC. Hypoxia upregulates the histone demethylase JMJD1A via HIF-1.Biochem. Biophys. Res. Commun.2008372489289710.1016/j.bbrc.2008.05.15018538129
    [Google Scholar]
  31. HeC. XuJ. ZhangJ. XieD. YeH. XiaoZ. CaiM. XuK. ZengY. LiH. WangJ. High expression of trimethylated histone H3 lysine 4 is associated with poor prognosis in hepatocellular carcinoma.Hum. Pathol.20124391425143510.1016/j.humpath.2011.11.00322406368
    [Google Scholar]
  32. PotéN. AlexandrovT. Le FaouderJ. LaouiremS. LégerT. MebarkiM. BelghitiJ. CamadroJ.M. BedossaP. ParadisV. Imaging mass spectrometry reveals modified forms of histone H4 as new biomarkers of microvascular invasion in hepatocellular carcinomas.Hepatology201358398399410.1002/hep.2643323553687
    [Google Scholar]
  33. MattickJ.S. RinnJ.L. Discovery and annotation of long noncoding RNAs.Nat. Struct. Mol. Biol.20152215710.1038/nsmb.294225565026
    [Google Scholar]
  34. LiuL.L. LiD. HeY.L. ZhouY.Z. GongS.H. WuL.Y. ZhaoY.Q. HuangX. ZhaoT. XuL. WuK.W. LiM.G. ZhuL.L. FanM. miR-210 protects renal cell against hypoxia-induced apoptosis by targeting HIF-1 alpha.Mol. Med.201723125827110.2119/molmed.2017.0001329387863
    [Google Scholar]
  35. NijhuisA. ThompsonH. AdamJ. ParkerA. GammonL. LewisA. BundyJ.G. SogaT. JalalyA. PropperD. JefferyR. SuraweeraN. McDonaldS. ThahaM.A. FeakinsR. LoweR. BishopC.L. SilverA. Remodelling of microRNAs in colorectal cancer by hypoxia alters metabolism profiles and 5-fluorouracil resistance.Hum. Mol. Genet.20172681552156410.1093/hmg/ddx05928207045
    [Google Scholar]
  36. TadanoT. KakutaY. HamadaS. ShimodairaY. KurohaM. KawakamiY. KimuraT. ShigaH. EndoK. MasamuneA. TakahashiS. KinouchiY. ShimosegawaT. MicroRNA-320 family is downregulated in colorectal adenoma and affects tumor proliferation by targeting CDK6.World J. Gastrointest. Oncol.20168753254210.4251/wjgo.v8.i7.53227559432
    [Google Scholar]
  37. ZappeK. Cichna-MarklM. Aberrant DNA methylation of ABC transporters in cancer.Cells2020910228110.3390/cells910228133066132
    [Google Scholar]
  38. LavoroA. FalzoneL. TomaselloB. ContiG.N. LibraM. CandidoS. In silico analysis of the solute carrier (SLC) family in cancer indicates a link among DNA methylation, metabolic adaptation, drug response, and immune reactivity.Front. Pharmacol.202314119126210.3389/fphar.2023.119126237397501
    [Google Scholar]
  39. YueX. The study of DNA methylation regulates drug transporter gene transcription under hypoxia conditions.LanzhouLanzhou University2019
    [Google Scholar]
  40. HuY. WuF. LiuY. ZhaoQ. TangH. DNMT1 recruited by EZH2-mediated silencing of miR-484 contributes to the malignancy of cervical cancer cells through MMP14 and HNF1A.Clin. Epigenetics201911118610.1186/s13148‑019‑0786‑y31810492
    [Google Scholar]
  41. VuuY.M. RobertsC.T. RastegarM. MeCP2 is an epigenetic factor that links DNA methylation with brain metabolism.Int. J. Mol. Sci.2023244421810.3390/ijms2404421836835623
    [Google Scholar]
  42. BallestarE. WolffeA.P. Methyl-CpG-binding proteins.Eur. J. Biochem.200126811610.1046/j.1432‑1327.2001.01869.x11121095
    [Google Scholar]
  43. ViréE. BrennerC. DeplusR. BlanchonL. FragaM. DidelotC. MoreyL. Van EyndeA. BernardD. VanderwindenJ.M. BollenM. EstellerM. Di CroceL. de LaunoitY. FuksF. The polycomb group protein EZH2 directly controls DNA methylation.Nature2006439707887187410.1038/nature0443116357870
    [Google Scholar]
  44. YuQ. LiuY. ZhengX. ZhuQ. ShenZ. WangH. HeH. LinN. JiangH. YuL. ZengS. Histone H3 lysine 4 trimethylation, lysine 27 trimethylation, and lysine 27 acetylation contribute to the transcriptional repression of solute carrier family 47 member 2 in renal cell carcinoma.Drug Metab. Dispos.201745110911710.1124/dmd.116.07373427821436
    [Google Scholar]
  45. ArrigoniE. GalimbertiS. PetriniM. DanesiR. Di PaoloA. ATP-binding cassette transmembrane transporters and their epigenetic control in cancer: an overview.Expert Opin. Drug Metab. Toxicol.201612121419143210.1080/17425255.2016.121542327459275
    [Google Scholar]
  46. TomiyasuH. Goto-KoshinoY. FujinoY. OhnoK. TsujimotoH. Epigenetic regulation of the ABCB1 gene in drug-sensitive and drug-resistant lymphoid tumour cell lines obtained from canine patients.Vet. J.2014199110310910.1016/j.tvjl.2013.10.02224332606
    [Google Scholar]
  47. HirotaT. TanakaT. TakesueH. IeiriI. Epigenetic regulation of drug transporter expression in human tissues.Expert Opin. Drug Metab. Toxicol.2017131193010.1080/17425255.2017.123019927579666
    [Google Scholar]
  48. ZhangY. KoppulaP. GanB. Regulation of H2A ubiquitination and SLC7A11 expression by BAP1 and PRC1.Cell Cycle201918877378310.1080/15384101.2019.159750630907299
    [Google Scholar]
  49. HsuK.F. WilkinsS.E. HopkinsonR.J. SekirnikR. FlashmanE. KawamuraA. McCullaghJ.S.O. WalportL.J. SchofieldC.J. Hypoxia and hypoxia mimetics differentially modulate histone post-translational modifications.Epigenetics2021161142710.1080/15592294.2020.178630532609604
    [Google Scholar]
  50. WangY. ZhuQ. HuH. ZhuH. YangB. HeQ. YuL. ZengS. Upregulation of histone acetylation reverses organic anion transporter 2 repression and enhances 5-fluorouracil sensitivity in hepatocellular carcinoma.Biochem. Pharmacol.202118811454610.1016/j.bcp.2021.11454633838133
    [Google Scholar]
  51. ZhengX. ZhangJ.V. BaiY. WangJ. JiangM. ZengS. WangL. Upregulation of OATP1A2 in human oesophageal squamous cell carcinoma cells via the HDAC6-GCN5/PCAF-H3K9Ac axis.Xenobiotica202151121453146210.1080/00498254.2021.200107634823432
    [Google Scholar]
  52. ZhuQ. YuL. QinZ. ChenL. HuH. ZhengX. ZengS. Regulation of OCT2 transcriptional repression by histone acetylation in renal cell carcinoma.Epigenetics201914879180310.1080/15592294.2019.161535431088315
    [Google Scholar]
  53. ShiB. XuF.F. XiangC.P. JiaR. YanC.H. MaS.Q. WangN. WangA.J. FanP. Effect of sodium butyrate on ABC transporters in lung cancer A549 and colorectal cancer HCT116 cells.Oncol. Lett.2020205110.3892/ol.2020.1201132934716
    [Google Scholar]
  54. ZhaoY. MouH. ZhangX. LuoL. FengS. HeJ. ZhaoA. WangR. Study on role of HDAC5 in P-gp expression in rats in high-altitude low oxygen environment and its effect on phenytoin sodium pharmacokinetics.Chin Pharmacol Bull2023390917401745
    [Google Scholar]
  55. DuanY. ZhuJ. YangJ. GuW. BaiX. LiuG. XiangyangL. A decade’s review of miRNA: A center of transcriptional regulation of drugmetabolizing enzymes and transporters under hypoxia.Curr. Drug Metab.202122970972510.2174/138920022266621051401131333992050
    [Google Scholar]
  56. BensonE.A. EadonM.T. DestaZ. LiuY. LinH. BurgessK.S. SegarM.W. GaedigkA. SkaarT.C. Rifampin regulation of drug transporters gene expression and the association of MicroRNAs in human hepatocytes.Front. Pharmacol.2016711110.3389/fphar.2016.0011127199754
    [Google Scholar]
  57. JamialahmadiK. ZahedipourF. KarimiG. The role of microRNAs on doxorubicin drug resistance in breast cancer.J. Pharm. Pharmacol.2021738997100610.1093/jpp/rgaa03133942851
    [Google Scholar]
  58. KongJ. QiuY. LiY. ZhangH. WangW. TGF-β1 elevates P-gp and BCRP in hepatocellular carcinoma through HOTAIR/miR-145 axis.Biopharm. Drug Dispos.2019402708010.1002/bdd.217230698830
    [Google Scholar]
  59. GuoJ. JinD. WuY. YangL. DuJ. GongK. ChenW. DaiJ. MiaoS. XiS. Retraction notice to ‘The miR 495-UBE2C-ABCG2/ERCC1 axis reverses cisplatin resistance by downregulating drug resistance genes in cisplatin-resistant non-small cell lung cancer cells.EBioMedicine20216310316810.1016/j.ebiom.2020.10316833487222
    [Google Scholar]
  60. O’BrienJ. HayderH. ZayedY. PengC. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation.Front. Endocrinol.2018940210.3389/fendo.2018.0040230123182
    [Google Scholar]
  61. XieY. ShaoY. DengX. WangM. ChenY. MicroRNA-298 reverses multidrug resistance to antiepileptic drugs by suppressing MDR1/P-gp expression in vitro. Front. Neurosci.20181260210.3389/fnins.2018.0060230210283
    [Google Scholar]
  62. do ImperioG.E. BloiseE. JavamM. LyeP. ConstantinofA. DunkC. dos ReisF.M. LyeS.J. GibbW. Ortiga-CarvalhoT.M. MatthewsS.G. Chorioamnionitis induces a specific signature of placental ABC transporters associated with an increase of miR-331-5p in the human preterm placenta.Cell. Physiol. Biochem.201845259160410.1159/00048710029402780
    [Google Scholar]
  63. DuanY. BaiX. YangJ. ZhouY. GuW. LiuG. WangQ. ZhuJ. LaL. LiX. Exposure to high-altitude environment is associated with drug transporters change: microRNA-873-5p-mediated alteration of function and expression levels of drug transporters under hypoxia.Drug Metab. Dispos.202250217418610.1124/dmd.121.00068134844996
    [Google Scholar]
  64. WangH. EllipilliS. LeeW.J. LiX. ViewegerM. HoY.S. GuoP. Multivalent rubber-like RNA nanoparticles for targeted co-delivery of paclitaxel and MiRNA to silence the drug efflux transporter and liver cancer drug resistance.J. Control. Release202133017318410.1016/j.jconrel.2020.12.00733316298
    [Google Scholar]
  65. DuanY. ZhuJ. YangJ. LiX. Effect of hypoxia on drug metabolizing enzymes and transporters and the role of microRNA.Yao Xue Xue Bao202156015060
    [Google Scholar]
  66. RamachandranS. IentJ. GöttgensE.L. KriegA. HammondE. Epigenetic therapy for solid tumors: Highlighting the impact of tumor hypoxia.Genes20156493595610.3390/genes604093526426056
    [Google Scholar]
  67. HenriqueR. OliveiraA.I. CostaV.L. BaptistaT. MartinsA.T. MoraisA. OliveiraJ. JerónimoC. Epigenetic regulation of MDR1 gene through post-translational histone modifications in prostate cancer.BMC Genomics201314189810.1186/1471‑2164‑14‑89824344919
    [Google Scholar]
  68. ChenK.G. SikicB.I. Molecular pathways: Regulation and therapeutic implications of multidrug resistance.Clin. Cancer Res.20121871863186910.1158/1078‑0432.CCR‑11‑159022344233
    [Google Scholar]
  69. TangD. YaoH. TangJ. MaoA. Mutual regulation of microRNAs and epigenetics in human cancers.Biotechnol Bull20203608194200
    [Google Scholar]
  70. ChoudhryH. CattoJ.W.F. Epigenetic regulation of microRNA expression in cancer.Methods Mol. Biol.201167616518410.1007/978‑1‑60761‑863‑8_1220931397
    [Google Scholar]
  71. XueP. HuangS. HanX. ZhangC. YangL. XiaoW. FuJ. LiH. ZhouY. Exosomal miR-101-3p and miR-423-5p inhibit medulloblastoma tumorigenesis through targeting FOXP4 and EZH2.Cell Death Differ.2022291829510.1038/s41418‑021‑00838‑434294888
    [Google Scholar]
  72. PavicicW. PerkiöE. KaurS. PeltomäkiP. Altered methylation at microRNA-associated CpG islands in hereditary and sporadic carcinomas: a methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA)-based approach.Mol. Med.2011177-872673510.2119/molmed.2010.0023921327300
    [Google Scholar]
  73. LiG. XieQ. YangZ. WangL. ZhangX. ZuoB. ZhangS. YangA. JiaL. Sp1-mediated epigenetic dysregulation dictates HDAC inhibitor susceptibility of HER2-overexpressing breast cancer.Int. J. Cancer2019145123285329810.1002/ijc.3242531111958
    [Google Scholar]
  74. WilkinsonA.L. ZorzanI. Rugg-GunnP.J. Epigenetic regulation of early human embryo development.Cell Stem Cell202330121569158410.1016/j.stem.2023.09.01037858333
    [Google Scholar]
  75. SchulzM. TeissandierA. De La Mata SantaellaE. ArmandM. IranzoJ. El MarjouF. GestraudP. WalterM. KinstonS. GöttgensB. GreenbergM.V.C. Bourc’hisD. DNA methylation restricts coordinated germline and neural fates in embryonic stem cell differentiation.Nat. Struct. Mol. Biol.202431110211410.1038/s41594‑023‑01162‑w38177678
    [Google Scholar]
  76. OrsolicI. CarrierA. EstellerM. Genetic and epigenetic defects of the RNA modification machinery in cancer.Trends Genet.2023391748810.1016/j.tig.2022.10.00436379743
    [Google Scholar]
  77. BersonA. NativioR. BergerS.L. BoniniN.M. Epigenetic regulation in neurodegenerative diseases.Trends Neurosci.201841958759810.1016/j.tins.2018.05.00529885742
    [Google Scholar]
  78. SongH. ChenJ. HuangJ. SunP. LiuY. XuL. WeiC. MuX. LuX. WangW. ZhangN. ShangM. MoM. ZhangW. ZhaoH. HanF. Epigenetic modification in Parkinson’s disease.Front. Cell Dev. Biol.202311112362110.3389/fcell.2023.112362137351278
    [Google Scholar]
  79. LiuQ. LiuL. ZhaoY. ZhangJ. WangD. ChenJ. HeY. WuJ. ZhangZ. LiuZ. Hypoxia induces genomic DNA demethylation through the activation of HIF-1α and transcriptional upregulation of MAT2A in hepatoma cells.Mol. Cancer Ther.20111061113112310.1158/1535‑7163.MCT‑10‑101021460102
    [Google Scholar]
  80. ZhangW.F. XiongY.W. ZhuT.T. XiongA.Z. BaoH. ChengX.S. MicroRNA let-7g inhibited hypoxia-induced proliferation of PASMCs via G0/G1 cell cycle arrest by targeting c-myc.Life Sci.201717091510.1016/j.lfs.2016.11.02027889560
    [Google Scholar]
  81. WawruszakA. BorkiewiczL. OkonE. Kukula-KochW. AfshanS. HalasaM. Vorinostat (SAHA) and breast cancer: An overview.Cancers20211318470010.3390/cancers1318470034572928
    [Google Scholar]
  82. ChenJ.H. ZhengY.L. XuC.Q. GuL.Z. DingZ.L. QinL. WangY. FuR. WanY.F. HuC.P. Valproic acid (VPA) enhances cisplatin sensitivity of non-small cell lung cancer cells via HDAC2 mediated down regulation of ABCA1.Biol. Chem.2017398778579210.1515/hsz‑2016‑030728002023
    [Google Scholar]
  83. BachyE. CamusV. ThieblemontC. SibonD. CasasnovasR.O. YsebaertL. DamajG. GuidezS. PicaG.M. KimW.S. LimS.T. AndréM. García-SanchoA.M. PenarrubiaM.J. StaberP.B. TrotmanJ. HüttmannA. StefoniV. ReA. GaulardP. Delfau-LarueM.H. de LevalL. MeignanM. LiJ. MorschhauserF. DelarueR. Romidepsin plus CHOP versus CHOP in Patients With Previously Untreated peripheral T-cell lymphoma: Results of the Ro-CHOP Phase III study (conducted by LYSA).J. Clin. Oncol.202240324225110.1200/JCO.21.0181534843406
    [Google Scholar]
  84. SinghV. SharmaP. CapalashN. DNA methyltransferase-1 inhibitors as epigenetic therapy for cancer.Curr. Cancer Drug Targets201313437939910.2174/1568009611313999007723517596
    [Google Scholar]
  85. LiY. SetoE. HDACs and HDAC inhibitors in cancer development and therapy.Cold Spring Harb. Perspect. Med.2016610a02683110.1101/cshperspect.a02683127599530
    [Google Scholar]
  86. ZhouY. YangL. LiuX. WangH. Lactylation may be a novel posttranslational modification in inflammation in neonatal hypoxic-ischemic encephalopathy.Front. Pharmacol.20221392680210.3389/fphar.2022.92680235721121
    [Google Scholar]
  87. JiangY. SongS. LiuJ. ZhangL. GuoX. LuJ. LiL. YangC. FuQ. ZengB. Epigenetic regulation of programmed cell death in hypoxia-induced pulmonary arterial hypertension.Front. Immunol.202314120645210.3389/fimmu.2023.120645237753070
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018295087240620061102
Loading
/content/journals/cdd/10.2174/0115672018295087240620061102
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test