Skip to content
2000
Volume 22, Issue 9
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Introduction/Objective

The spread of tumors (48% in men and 51% in women), as well as the protection of malignant tumors by stromal cells and complex blood vessels, pose significant challenges to drug delivery to tumors. Modern chemotherapy, on the other hand, addresses tumor growth suppression by at least 60% through versatile formulation systems and numerous modifications to drug delivery systems. The renewable and naturally occurring polymers present invariably in all living cells form the fundamental foundation for most anticancer drug development. The review aims to discuss in detail the preparations of polysaccharide, lipid, and protein-based drug-loading vehicles for the targeted delivery of prominent anticancer drugs. It also provides an explanation of drug distribution in blood (cumulative releases of nearly 80% drug) and drug accumulation at tumor sites (1–5 mg/kg) due to enhanced permeability and retention (EPR).

Methods

Specific delivery examples for treating colorectal and breast carcinomas have been presented to distinguish the varied drug administration, bioavailability, and tumor internalization mechanisms between sugar, fatty acid, and amino acid polymers. Current therapy possibilities based on cutting-edge literature are provided, along with drug delivery systems tailored to tumor location and invasive properties.

Results

The unique combinations of the three natural polymers provide unparalleled solutions to minimize the toxicity (<20% drug release) of the chemotherapeutic drugs on normal tissues. Moreover, the development of a consolidated drug delivery system has contributed to a substantial reduction (dose reduction from 10.43 µM to 1.9 µM) in the undesirable consequences of higher dosages of chemotherapeutic drugs.

Conclusion

The review extensively covers safe chemotherapeutic systems with significant advantages (tumor volume shrinkage of 4T1 cells from 1000 mm3 to 200 mm3) in clinical applications of carcinoma treatments using natural polymers.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018349688241008220007
2024-10-14
2026-01-30
Loading full text...

Full text loading...

/deliver/fulltext/cdd/22/9/CDD-22-9-03.html?itemId=/content/journals/cdd/10.2174/0115672018349688241008220007&mimeType=html&fmt=ahah

References

  1. ShihI.M. WangY. WangT.L. The origin of ovarian cancer species and precancerous landscape.Am. J. Pathol.20211911263910.1016/j.ajpath.2020.09.00633011111
    [Google Scholar]
  2. PattenJ. WangK. Fibronectin in development and wound healing.Adv. Drug Deliv. Rev.202117035336810.1016/j.addr.2020.09.00532961203
    [Google Scholar]
  3. MajidpoorJ. MortezaeeK. Steps in metastasis: An updated review.Med. Oncol.2021381310.1007/s12032‑020‑01447‑w33394200
    [Google Scholar]
  4. WangY. MindenA. Current molecular combination therapies used for the treatment of breast cancer.Int. J. Mol. Sci.202223191104610.3390/ijms23191104636232349
    [Google Scholar]
  5. MortezaeeK. NarmaniA. SalehiM. BagheriH. FarhoodB. Haghi-AminjanH. NajafiM. Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer.Life Sci.202126911902010.1016/j.lfs.2021.11902033450258
    [Google Scholar]
  6. YadavA. SinghS. SohiH. DangS. Advances in delivery of chemotherapeutic agents for cancer treatment.AAPS PharmSciTech20212312510.1208/s12249‑021‑02174‑934907501
    [Google Scholar]
  7. IoeleG. ChieffalloM. OcchiuzziM.A. De LucaM. GarofaloA. RagnoG. GrandeF. Anticancer drugs: Recent strategies to improve stability profile, pharmacokinetic and pharmacodynamic properties.Molecules20222717543610.3390/molecules2717543636080203
    [Google Scholar]
  8. RahimM.A. JanN. KhanS. ShahH. MadniA. KhanA. JabarA. KhanS. ElhissiA. HussainZ. AzizH.C. SohailM. KhanM. ThuH.E. Recent advancements in stimuli responsive drug delivery platforms for active and passive cancer targeting.Cancers (Basel)202113467010.3390/cancers1304067033562376
    [Google Scholar]
  9. van den BoogaardW.M.C. KomninosD.S.J. VermeijW.P. Chemotherapy side-effects: Not all DNA damage is equal.Cancers (Basel)202214362710.3390/cancers1403062735158895
    [Google Scholar]
  10. GaoQ. FengJ. LiuW. WenC. WuY. LiaoQ. ZouL. SuiX. XieT. ZhangJ. HuY. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment.Adv. Drug Deliv. Rev.202218811444510.1016/j.addr.2022.11444535820601
    [Google Scholar]
  11. AshrafizadehM. ZarrabiA. HashemiF. MoghadamE.R. HashemiF. EntezariM. HushmandiK. MohammadinejadR. NajafiM. Curcumin in cancer therapy: A novel adjunct for combination chemotherapy with paclitaxel and alleviation of its adverse effects.Life Sci.202025611798410.1016/j.lfs.2020.11798432593707
    [Google Scholar]
  12. WangH. HuangY. Combination therapy based on nano codelivery for overcoming cancer drug resistance.Med. Drug Discov.2020610002410.1016/j.medidd.2020.100024
    [Google Scholar]
  13. YapK.M. SekarM. FuloriaS. WuY.S. GanS.H. Mat RaniN.N.I. SubramaniyanV. KokareC. LumP.T. BegumM.Y. ManiS. MeenakshiD.U. SathasivamK.V. FuloriaN.K. Drug delivery of natural products through nanocarriers for effective breast cancer therapy: A comprehensive review of literature.Int. J. Nanomedicine2021167891794110.2147/IJN.S32813534880614
    [Google Scholar]
  14. SamadianH. MalekiH. AllahyariZ. JaymandM. Natural polymers-based light-induced hydrogels: Promising biomaterials for biomedical applications.Coord. Chem. Rev.202042021343210.1016/j.ccr.2020.213432
    [Google Scholar]
  15. Al-ShalawiF.D. Azmah HanimM.A. AriffinM.K.A. Looi Seng KimC. BrabazonD. CalinR. Al-OsaimiM.O. Biodegradable synthetic polymer in orthopaedic application: A review.Mater. Today Proc.20237454054610.1016/j.matpr.2022.12.254
    [Google Scholar]
  16. PreteS. DattiloM. PatitucciF. PezziG. ParisiO.I. PuociF. Natural and synthetic polymeric biomaterials for application in wound management.J. Funct. Biomater.202314945510.3390/jfb1409045537754869
    [Google Scholar]
  17. MengQ. ZhongS. XuL. WangJ. ZhangZ. GaoY. CuiX. Review on design strategies and considerations of polysaccharide-based smart drug delivery systems for cancer therapy.Carbohydr. Polym.202227911901310.1016/j.carbpol.2021.11901334980356
    [Google Scholar]
  18. DattiloM. PatitucciF. PreteS. ParisiO.I. PuociF. Polysaccharide-based hydrogels and their application as drug delivery systems in cancer treatment: A review.J. Funct. Biomater.20231425510.3390/jfb1402005536826854
    [Google Scholar]
  19. ZhangM. MaH. WangX. YuB. CongH. ShenY. Polysaccharide-based nanocarriers for efficient transvascular drug delivery.J. Control. Release202335416718710.1016/j.jconrel.2022.12.05136581260
    [Google Scholar]
  20. AshrafizadehM. DelfiM. HashemiF. ZabolianA. SalekiH. BagherianM. AzamiN. FarahaniM.V. SharifzadehS.O. HamzehlouS. HushmandiK. MakvandiP. ZarrabiA. HamblinM.R. VarmaR.S. Biomedical application of chitosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy.Carbohydr. Polym.202126011780910.1016/j.carbpol.2021.11780933712155
    [Google Scholar]
  21. ZhangY.M. LiuY.H. LiuY. Cyclodextrin‐based multistimuli‐responsive supramolecular assemblies and their biological functions.Adv. Mater.2020323180615810.1002/adma.20180615830773709
    [Google Scholar]
  22. XueH. JuY. YeX. DaiM. TangC. LiuL. Construction of intelligent drug delivery system based on polysaccharide-derived polymer micelles: A review.Int. J. Biol. Macromol.202312804810.1016/j.ijbiomac.2023.12804837967605
    [Google Scholar]
  23. ZhouY. ChenX. CaoJ. GaoH. Overcoming the biological barriers in the tumor microenvironment for improving drug delivery and efficacy.J. Mater. Chem. B Mater. Biol. Med.20208316765678110.1039/D0TB00649A32315375
    [Google Scholar]
  24. HeX. YangY. HanY. CaoC. ZhangZ. LiL. XiaoC. GuoH. WangL. HanL. QuZ. LiuN. HanS. XuF. Extracellular matrix physical properties govern the diffusion of nanoparticles in tumor microenvironment.Proc. Natl. Acad. Sci. USA20231201e220926012010.1073/pnas.220926012036574668
    [Google Scholar]
  25. WinklerJ. Abisoye-OgunniyanA. MetcalfK.J. WerbZ. Concepts of extracellular matrix remodelling in tumour progression and metastasis.Nat. Commun.2020111512010.1038/s41467‑020‑18794‑x33037194
    [Google Scholar]
  26. ShindeV.R. ReviN. MurugappanS. SinghS.P. RenganA.K. Enhanced permeability and retention effect: A key facilitator for solid tumor targeting by nanoparticles.Photodiagn. Photodyn. Ther.20223910291510.1016/j.pdpdt.2022.10291535597441
    [Google Scholar]
  27. PathakA. PalA.K. RoyS. NandaveM. JainK. Role of angiogenesis and its biomarkers in development of targeted tumor therapies.Stem Cells Int.202420241907792610.1155/2024/907792638213742
    [Google Scholar]
  28. WuQ. HuY. YuB. HuH. XuF.J. Polysaccharide-based tumor microenvironment-responsive drug delivery systems for cancer therapy.J. Control. Release2023362194310.1016/j.jconrel.2023.08.01937579973
    [Google Scholar]
  29. ZhouH. LiuC. YuS. ShafiqF. QiaoW. Hyaluronic acid anchored paclitaxel nanoparticles to solubilize for drug delivery.Eur. Polym. J.202320111254210.1016/j.eurpolymj.2023.112542
    [Google Scholar]
  30. ZhaoP. LiuS. WangL. LiuG. ChengY. LinM. SuiK. ZhangH. Alginate mediated functional aggregation of gold nanoclusters for systemic photothermal therapy and efficient renal clearance.Carbohydr. Polym.202024111634410.1016/j.carbpol.2020.11634432507204
    [Google Scholar]
  31. BritoA. KassemS. ReisR.L. UlijnR.V. PiresR.A. PashkulevaI. Carbohydrate amphiphiles for supramolecular biomaterials: Design, self-assembly, and applications.Chem20217112943296410.1016/j.chempr.2021.04.011
    [Google Scholar]
  32. LiH. DengC. TanY. DongJ. ZhaoY. WangX. YangX. LuoJ. GaoH. HuangY. ZhangZ.R. GongT. Chondroitin sulfate-based prodrug nanoparticles enhance photodynamic immunotherapy via Golgi apparatus targeting.Acta Biomater.202214635736910.1016/j.actbio.2022.05.01435577045
    [Google Scholar]
  33. JeongJ.Y. HongE.H. LeeS.Y. LeeJ.Y. SongJ.H. KoS.H. ShimJ.S. ChoeS. KimD.D. KoH.J. ChoH.J. Boronic acid-tethered amphiphilic hyaluronic acid derivative-based nanoassemblies for tumor targeting and penetration.Acta Biomater.20175341442610.1016/j.actbio.2017.02.03028216300
    [Google Scholar]
  34. ZhangW. Taheri-LedariR. GanjaliF. MirmohammadiS.S. QaziF.S. SaeidiradM. KashtiAray, A.; Zarei-Shokat, S.; Tian, Y.; Maleki, A. Effects of morphology and size of nanoscale drug carriers on cellular uptake and internalization process: A review.RSC Advances20221318011410.1039/D2RA06888E36605676
    [Google Scholar]
  35. BansalK. JhaC.K. BhatiaD. ShekharH. Ultrasound-enabled therapeutic delivery and regenerative medicine: Physical and biological perspectives.ACS Biomater. Sci. Eng.2021794371438710.1021/acsbiomaterials.1c0027634460238
    [Google Scholar]
  36. KalyaneD. RavalN. MaheshwariR. TambeV. KaliaK. TekadeR.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer.Mater. Sci. Eng. C2019981252127610.1016/j.msec.2019.01.06630813007
    [Google Scholar]
  37. GaoY. MaQ. CaoJ. ShiY. WangJ. MaH. SunY. SongY. Bifunctional alginate/chitosan stabilized perfluorohexane nanodroplets as smart vehicles for ultrasound and pH responsive delivery of anticancer agents.Int. J. Biol. Macromol.20211911068107810.1016/j.ijbiomac.2021.09.16634600955
    [Google Scholar]
  38. KhanA.R. YangX. DuX. YangH. LiuY. KhanA.Q. ZhaiG. Chondroitin sulfate derived theranostic and therapeutic nanocarriers for tumor-targeted drug delivery.Carbohydr. Polym.202023311583710.1016/j.carbpol.2020.11583732059890
    [Google Scholar]
  39. EnemarkM.B. HybelT.E. MadsenC. LauridsenK.L. HonoréB. PlesnerT.L. Hamilton-DutoitS. d’AmoreF. LudvigsenM. Tumor-tissue expression of the hyaluronic acid receptor RHAMM predicts histological transformation in follicular lymphoma patients.Cancers (Basel)2022145131610.3390/cancers1405131635267625
    [Google Scholar]
  40. SpinelliF.M. VitaleD.L. SevicI. AlanizL. Hyaluronan in the tumor microenvironment.Adv. Exp. Med. Biol.20201245678310.1007/978‑3‑030‑40146‑7_3
    [Google Scholar]
  41. LuanX. KongH. HeP. YangG. ZhuD. GuoL. WeiG. Self‐assembled peptide‐based nanodrugs: molecular design, synthesis, functionalization, and targeted tumor bioimaging and biotherapy.Small2023193220578710.1002/smll.20220578736440657
    [Google Scholar]
  42. PuluhulawaL.E. JoniI.M. ElaminK.M. MohammedA.F.A. MuchtaridiM. WathoniN. Chitosan–hyaluronic acid nanoparticles for active targeting in cancer therapy.Polymers (Basel)20221416341010.3390/polym1416341036015667
    [Google Scholar]
  43. BognanniN. VialeM. La PianaL. StranoS. GangemiR. LombardoC. CambriaM.T. VecchioG. Hyaluronan-cyclodextrin conjugates as doxorubicin delivery systems.Pharmaceutics202315237410.3390/pharmaceutics1502037436839696
    [Google Scholar]
  44. SuiJ. HeM. YangY. MaM. GuoZ. ZhaoM. LiangJ. SunY. FanY. ZhangX. Reversing P-glycoprotein-associated multidrug resistance of breast cancer by targeted acid-cleavable polysaccharide nanoparticles with lapatinib sensitization.ACS Appl. Mater. Interfaces20201246511985121110.1021/acsami.0c1398633147005
    [Google Scholar]
  45. HouX. ZhongD. ChenH. GuZ. GongQ. MaX. ZhangH. ZhuH. LuoK. Recent advances in hyaluronic acid-based nanomedicines: Preparation and application in cancer therapy.Carbohydr. Polym.202229211966210.1016/j.carbpol.2022.11966235725165
    [Google Scholar]
  46. ZhengS. JinZ. HanJ. ChoS. NguyenV.D. KoS.Y. ParkJ.O. ParkS. Preparation of HIFU-triggered tumor-targeted hyaluronic acid micelles for controlled drug release and enhanced cellular uptake.Colloids Surf. B Biointerfaces2016143273610.1016/j.colsurfb.2016.03.01926998864
    [Google Scholar]
  47. YangZ. LiP. ChenY. DongE. FengZ. HeZ. ZhouC. WangC. LiuY. FengC. Preparation of zinc phthalocyanine-loaded amphiphilic phosphonium chitosan nanomicelles for enhancement of photodynamic therapy efficacy.Colloids Surf. B Biointerfaces202120211169310.1016/j.colsurfb.2021.11169333774518
    [Google Scholar]
  48. IshidaJ. AlliS. BondocA. GolbournB. SabhaN. MikloskaK. KrumholtzS. SrikanthanD. FujitaN. LuckA. MaslinkC. SmithC. HynynenK. RutkaJ. MRI-guided focused ultrasound enhances drug delivery in experimental diffuse intrinsic pontine glioma.J. Control. Release20213301034104510.1016/j.jconrel.2020.11.01033188825
    [Google Scholar]
  49. MaghsoudiniaF. Akbari-ZadehH. AminolroayaeiF. BirganiF.F. ShaneiA. SamaniR.K. Ultrasound responsive Gd-DOTA/doxorubicin-loaded nanodroplet as a theranostic agent for magnetic resonance image-guided controlled release drug delivery of melanoma cancer.Eur. J. Pharm. Sci.202217410620710.1016/j.ejps.2022.10620735577179
    [Google Scholar]
  50. NelJ. ElkhouryK. VelotÉ. BianchiA. AcherarS. FranciusG. TamayolA. GrandemangeS. Arab-TehranyE. Functionalized liposomes for targeted breast cancer drug delivery.Bioact. Mater.20232440143710.1016/j.bioactmat.2022.12.02736632508
    [Google Scholar]
  51. PasseriE. BunP. ElkhouryK. LinderM. MalaplateC. YenF.T. Arab-TehranyE. Transfer phenomena of nanoliposomes by live imaging of primary cultures of cortical neurons.Pharmaceutics20221410217210.3390/pharmaceutics1410217236297607
    [Google Scholar]
  52. MusacchioT. TorchilinV.P. Advances in polymeric and lipid-core micelles as drug delivery systems.Polymeric biomaterials.CRC Press20201007102610.1201/9780429142413
    [Google Scholar]
  53. EbertR. AdlerA. SuzukiH. FromellK. EkdahlK.N. NilssonB. TeramuraY. Liposome surface modifications-engineering techniques.Liposomes in Drug Delivery.Academic Press202419321510.1016/B978‑0‑443‑15491‑1.00019‑5
    [Google Scholar]
  54. LimaP.H.C. ButeraA.P. CabeçaL.F. Ribeiro-VianaR.M. Liposome surface modification by phospholipid chemical reactions.Chem. Phys. Lipids202123710508410.1016/j.chemphyslip.2021.10508433891960
    [Google Scholar]
  55. MajumderJ. MinkoT. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery.Expert Opin. Drug Deliv.202118220522710.1080/17425247.2021.182833932969740
    [Google Scholar]
  56. HoushmandM. GarelloF. CircostaP. StefaniaR. AimeS. SaglioG. GiachinoC. Nanocarriers as magic bullets in the treatment of leukemia.Nanomaterials (Basel)202010227610.3390/nano1002027632041219
    [Google Scholar]
  57. ChaiY.J. ChengC.Y. LiaoY.H. LinC.H. HsiehC.L. Heterogeneous nanoscopic lipid diffusion in the live cell membrane and its dependency on cholesterol.Biophys. J.2022121163146316110.1016/j.bpj.2022.07.00835841144
    [Google Scholar]
  58. GoteV. PalD. Octreotide-targeted Lcn2 siRNA PEGylated liposomes as a treatment for metastatic breast cancer.Bioengineering (Basel)2021844410.3390/bioengineering804004433916786
    [Google Scholar]
  59. LiY. TanX. LiuX. LiuL. FangY. RaoR. RenY. YangX. LiuW. Enhanced anticancer effect of doxorubicin by TPGS-coated liposomes with Bcl-2 siRNA-corona for dual suppression of drug resistance.Asian J. Pharm. Sci.202015564666010.1016/j.ajps.2019.10.00333193866
    [Google Scholar]
  60. AshrafizadehM. DelfiM. ZarrabiA. BighamA. SharifiE. RabieeN. Paiva-SantosA.C. KumarA.P. TanS.C. HushmandiK. RenJ. ZareE.N. MakvandiP. Stimuli-responsive liposomal nanoformulations in cancer therapy: Pre-clinical & clinical approaches.J. Control. Release2022351508010.1016/j.jconrel.2022.08.00135934254
    [Google Scholar]
  61. ZhangK. FangX. YouQ. LinY. MaL. XuS. GeY. XuH. YangY. WangC. Novel peptide-directed liposomes for targeted combination therapy of breast tumors.Mater. Adv.2020193483349510.1039/D0MA00536C
    [Google Scholar]
  62. CarvalhoL.S. GonçalvesN. FonsecaN.A. MoreiraJ.N. Cancer stem cells and nucleolin as drivers of carcinogenesis.Pharmaceuticals (Basel)20211416010.3390/ph1401006033451077
    [Google Scholar]
  63. Valério-FernandesÂ. FonsecaN.A. GonçalvesN. CruzA.F. PereiraM.I. GregórioA.C. MouraV. LadeirinhaA.F. AlarcãoA. GonçalvesJ. AbrunhosaA. MeloJ.B. CarvalhoL. SimõesS. MoreiraJ.N. Nucleolin overexpression predicts patient prognosis while providing a framework for targeted therapeutic intervention in lung cancer.Cancers (Basel)2022149221710.3390/cancers1409221735565346
    [Google Scholar]
  64. GuZ. Da SilvaC. Van der MaadenK. OssendorpF. CruzL. Liposome-based drug delivery systems in cancer immunotherapy.Pharmaceutics20201211105410.3390/pharmaceutics1211105433158166
    [Google Scholar]
  65. KamounW.S. DugastA.S. SuchyJ.J. GrabowS. FultonR.B. SampsonJ.F. LuusL. SantiagoM. KoshkaryevA. SunG. AskoxylakisV. TamE. HuangZ.R. DrummondD.C. SawyerA.J. Synergy between EphA2-ILs-DTXp, a novel EphA2-targeted nanoliposomal taxane, and PD-1 inhibitors in preclinical tumor models.Mol. Cancer Ther.202019127028110.1158/1535‑7163.MCT‑19‑041431597714
    [Google Scholar]
  66. FerrarisC. CavalliR. PancianiP.P. BattagliaL. Overcoming the blood–brain barrier: Successes and challenges in developing nanoparticle-mediated drug delivery systems for the treatment of brain tumours.Int. J. Nanomedicine2020152999302210.2147/IJN.S23147932431498
    [Google Scholar]
  67. DongC. YuX. JinK. QianJ. Overcoming brain barriers through surface-functionalized liposomes for glioblastoma therapy; Current status, challenges and future perspective.Nanomedicine (Lond.)202318302161218410.2217/nnm‑2023‑017238180008
    [Google Scholar]
  68. LiM. LiS. LiY. LiX. YangG. LiM. XieY. SuW. WuJ. JiaL. LiS. MaW. LiH. GuoN. YuP. Cationic liposomes co-deliver chemotherapeutics and siRNA for the treatment of breast cancer.Eur. J. Med. Chem.202223311419810.1016/j.ejmech.2022.11419835245829
    [Google Scholar]
  69. KumarV.B. OzguneyB. VlachouA. ChenY. GazitE. TamamisP. Peptide self-assembled nanocarriers for cancer drug delivery.J. Phys. Chem. B202312791857187110.1021/acs.jpcb.2c0675136812392
    [Google Scholar]
  70. LiY. SiR. WangJ. HaiP. ZhengY. ZhangQ. PanX. ZhangJ. Discovery of novel antibody-drug conjugates bearing tissue protease specific linker with both anti-angiogenic and strong cytotoxic effects.Bioorg. Chem.202313710657510.1016/j.bioorg.2023.10657537148706
    [Google Scholar]
  71. KaramiE. SabatierJ.M. BehdaniM. IraniS. Kazemi-LomedashtF. A nanobody-derived mimotope against VEGF inhibits cancer angiogenesis.J. Enzyme Inhib. Med. Chem.20203511233123910.1080/14756366.2020.175869032441172
    [Google Scholar]
  72. MehrotraN. KharbandaS. SinghH. Peptide-based combination nanoformulations for cancer therapy.Nanomedicine (Lond.)202015222201221710.2217/nnm‑2020‑022032914691
    [Google Scholar]
  73. Márquez-LópezA. FanarragaM.L. AB toxins as high-affinity ligands for cell targeting in cancer therapy.Int. J. Mol. Sci.202324131122710.3390/ijms24131122737446406
    [Google Scholar]
  74. PaulM. ItooA.M. GhoshB. BiswasS. Current trends in the use of human serum albumin for drug delivery in cancer.Expert Opin. Drug Deliv.202219111449147010.1080/17425247.2022.213434136253957
    [Google Scholar]
  75. SongZ. ChenX. YouX. HuangK. DhinakarA. GuZ. WuJ. Self-assembly of peptide amphiphiles for drug delivery: The role of peptide primary and secondary structures.Biomater. Sci.20175122369238010.1039/C7BM00730B29051950
    [Google Scholar]
  76. PitzM.E. NukovicA.M. ElpersM.A. Alexander-BryantA.A. Factors affecting secondary and supramolecular structures of self‐assembling peptide nanocarriers.Macromol. Biosci.2022222210034710.1002/mabi.20210034734800001
    [Google Scholar]
  77. SivagnanamS. DasK. BasakM. MahataT. StewartA. MaityB. DasP. Self-assembled dipeptide based fluorescent nanoparticles as a platform for developing cellular imaging probes and targeted drug delivery chaperones.Nanoscale Adv.2022461694170610.1039/D1NA00885D36134376
    [Google Scholar]
  78. ParisiE. GarciaA.M. MarsonD. PosoccoP. MarchesanS. Supramolecular tripeptide hydrogel assembly with 5-fluorouracil.Gels201951510.3390/gels501000530691142
    [Google Scholar]
  79. KumarS. BajajA. Advances in self-assembled injectable hydrogels for cancer therapy.Biomater. Sci.2020882055207310.1039/D0BM00146E32129390
    [Google Scholar]
  80. SajidM.I. MoazzamM. StueberR. ParkS.E. ChoY. MalikN.A. TiwariR.K. Applications of amphipathic and cationic cyclic cell-penetrating peptides: Significant therapeutic delivery tool.Peptides202114117054210.1016/j.peptides.2021.17054233794283
    [Google Scholar]
  81. GongZ. LiuX. ZhouB. WangG. GuanX. XuY. ZhangJ. HongZ. CaoJ. SunX. GaoZ. LuH. PanX. BaiJ. Tumor acidic microenvironment-induced drug release of RGD peptide nanoparticles for cellular uptake and cancer therapy.Colloids Surf. B Biointerfaces202120211167310.1016/j.colsurfb.2021.11167333714186
    [Google Scholar]
  82. ChengS. Brenière-LetuffeD. AholaV. WongA.O.T. KeungH.Y. GurungB. ZhengZ. CostaK.D. LieuD.K. KeungW. LiR.A. Single-cell RNA sequencing reveals maturation trajectory in human pluripotent stem cell-derived cardiomyocytes in engineered tissues.iScience202326410630210.1016/j.isci.2023.10630236950112
    [Google Scholar]
  83. ChenY. OrrA.A. TaoK. WangZ. RuggieroA. ShimonL.J.W. SchnaiderL. GoodallA. Rencus-LazarS. GileadS. SlutskyI. TamamisP. TanZ. GazitE. High-efficiency fluorescence through bioinspired supramolecular self-assembly.ACS Nano20201432798280710.1021/acsnano.9b1002432013408
    [Google Scholar]
  84. QingR. HaoS. SmorodinaE. JinD. ZalevskyA. ZhangS. Protein design: From the aspect of water solubility and stability.Chem. Rev.202212218140851417910.1021/acs.chemrev.1c0075735921495
    [Google Scholar]
  85. DuJ. LinZ. FuX.H. GuX.R. LuG. HouJ. Research progress of the chemokine/chemokine receptor axes in the oncobiology of multiple myeloma (MM).Cell Commun. Signal.202422117710.1186/s12964‑024‑01544‑738475811
    [Google Scholar]
  86. FerrerF. FanciullinoR. MilanoG. CiccoliniJ. Towards rational cancer therapeutics: optimizing dosing, delivery, scheduling, and combinations.Clin. Pharmacol. Ther.2020108345847010.1002/cpt.195432557660
    [Google Scholar]
  87. XiY. XuP. Global colorectal cancer burden in 2020 and projections to 2040.Transl. Oncol.2021141010117410.1016/j.tranon.2021.10117434243011
    [Google Scholar]
  88. ArnoldM. MorganE. RumgayH. MafraA. SinghD. LaversanneM. VignatJ. GralowJ.R. CardosoF. SieslingS. SoerjomataramI. Current and future burden of breast cancer: Global statistics for 2020 and 2040.Breast202266152310.1016/j.breast.2022.08.01036084384
    [Google Scholar]
  89. KimM.Y. Breast cancer metastasis.Adv. Exp. Med. Biol.2021118718320410.1007/978‑981‑32‑9620‑6_9
    [Google Scholar]
  90. TangM. WangH. CaoY. ZengZ. ShanX. WangL. Nomogram for predicting occurrence and prognosis of liver metastasis in colorectal cancer: A population-based study.Int. J. Colorectal Dis.202136227128210.1007/s00384‑020‑03722‑832965529
    [Google Scholar]
  91. ZafarS.N. HuC.Y. SnyderR.A. CuddyA. YouY.N. LowensteinL.M. VolkR.J. ChangG.J. Predicting risk of recurrence after colorectal cancer surgery in the United States: An analysis of a special commission on cancer national study.Ann. Surg. Oncol.20202782740274910.1245/s10434‑020‑08238‑732080809
    [Google Scholar]
  92. RiggioA.I. VarleyK.E. WelmA.L. The lingering mysteries of metastatic recurrence in breast cancer.Br. J. Cancer20211241132610.1038/s41416‑020‑01161‑433239679
    [Google Scholar]
  93. KrastevaN. GeorgievaM. Promising therapeutic strategies for colorectal cancer treatment based on nanomaterials.Pharmaceutics2022146121310.3390/pharmaceutics1406121335745786
    [Google Scholar]
  94. van der ZandenS.Y. QiaoX. NeefjesJ. New insights into the activities and toxicities of the old anticancer drug doxorubicin.FEBS J.2021288216095611110.1111/febs.1558333022843
    [Google Scholar]
  95. AskarizadehA. MashreghiM. MirhadiE. MirzaviF. SharghV.H. BadieeA. AlavizadehS.H. ArabiL. JaafariM.R. Doxorubicin-loaded liposomes surface engineered with the matrix metalloproteinase-2 cleavable polyethylene glycol conjugate for cancer therapy.Cancer Nanotechnol.20231411810.1186/s12645‑023‑00169‑836910721
    [Google Scholar]
  96. Yazdian-RobatiR. AmiriE. KamaliH. KhosraviA. TaghdisiS.M. JaafariM.R. MashreghiM. MoosavianS.A. CD44-specific short peptide A6 boosts cellular uptake and anticancer efficacy of PEGylated liposomal doxorubicin in vitro and in vivo.Cancer Nanotechnol.20231418410.1186/s12645‑023‑00236‑0
    [Google Scholar]
  97. SolomevichS.O. AharodnikauU.E. DmitrukE.I. NikishauP.A. BychkovskyP.M. SalamevichD.A. JiangG. PavlovK.I. SunY. YurkshtovichT.L. Chitosan – dextran phosphate carbamate hydrogels for locally controlled co-delivery of doxorubicin and indomethacin: From computation study to in vivo pharmacokinetics.Int. J. Biol. Macromol.202322827328510.1016/j.ijbiomac.2022.12.24336581023
    [Google Scholar]
  98. RajabiA. NejatiM. HomayoonfalM. ArjA. RazaviZ.S. OstadianA. MohammadzadehB. VosoughM. KarimiM. RahimianN. HamblinM.R. AnoushirvaniA.A. MirzaeiH. Doxorubicin-loaded zymosan nanoparticles: Synergistic cytotoxicity and modulation of apoptosis and Wnt/β-catenin signaling pathway in C26 colorectal cancer cells.Int. J. Biol. Macromol.2024260Pt 212894910.1016/j.ijbiomac.2023.12894938143055
    [Google Scholar]
  99. ZhaoB. DuJ. ZhangY. GuZ. LiZ. ChengL. LiC. HongY. Polysaccharide-coated porous starch-based oral carrier for paclitaxel: Adsorption and sustained release in colon.Carbohydr. Polym.202229111957110.1016/j.carbpol.2022.11957135698392
    [Google Scholar]
  100. KianpourM. HuangC.W. VejvisithsakulP.P. WangJ.Y. LiC.F. ShiaoM.S. PanC.T. ShiueY.L. Aptamer/doxorubicin-conjugated nanoparticles target membranous CEMIP2 in colorectal cancer.Int. J. Biol. Macromol.202324512551010.1016/j.ijbiomac.2023.12551037353120
    [Google Scholar]
  101. ShenL. ZhouP. WangY.M. ZhuZ. YuanQ. CaoS. LiJ. Supramolecular nanoparticles based on elastin-like peptides modified capsid protein as drug delivery platform with enhanced cancer chemotherapy efficacy.Int. J. Biol. Macromol.2024256Pt 212810710.1016/j.ijbiomac.2023.12810738007030
    [Google Scholar]
  102. IranpourS. BahramiA.R. DayyaniM. SaljooghiA.S. MatinM.M. A potent multifunctional ZIF-8 nanoplatform developed for colorectal cancer therapy by triple-delivery of chemo/radio/targeted therapy agents.J. Mater. Chem. B Mater. Biol. Med.20241241096111410.1039/D3TB02571C38229578
    [Google Scholar]
  103. HasanniaM. LameiK. AbnousK. TaghdisiS.M. NekooeiS. NekooeiN. RamezaniM. AlibolandiM. Targeted poly(L-glutamic acid)-based hybrid peptosomes co-loaded with doxorubicin and USPIONs as a theranostic platform for metastatic breast cancer.Nanomedicine20234810264510.1016/j.nano.2022.10264536549556
    [Google Scholar]
  104. ZhengG. ZhengM. YangB. FuH. LiY. Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: Synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo.Biomed. Pharmacother.201911610900610.1016/j.biopha.2019.10900631152925
    [Google Scholar]
  105. GhoshS. LalaniR. MaitiK. BanerjeeS. BhattH. BobdeY.S. PatelV. BiswasS. BhowmickS. MisraA. Synergistic co-loading of vincristine improved chemotherapeutic potential of pegylated liposomal doxorubicin against triple negative breast cancer and non-small cell lung cancer.Nanomedicine20213110232010.1016/j.nano.2020.10232033075540
    [Google Scholar]
  106. YuJ. XuJ. JiangR. YuanQ. DingY. RenJ. JiangD. WangY. WangL. ChenP. ZhangL. Versatile chondroitin sulfate-based nanoplatform for chemo-photodynamic therapy against triple-negative breast cancer.Int. J. Biol. Macromol.2024265Pt 113070910.1016/j.ijbiomac.2024.13070938462120
    [Google Scholar]
  107. ZhangB. ZhangY. DangW. XingB. YuC. GuoP. PiJ. DengX. QiD. LiuZ. The anti-tumor and renoprotection study of E-[c(RGDfK)2]/folic acid co-modified nanostructured lipid carrier loaded with doxorubicin hydrochloride/salvianolic acid A.J. Nanobiotechnology202220142510.1186/s12951‑022‑01628‑x36153589
    [Google Scholar]
  108. CombaA. FaisalS.M. DunnP.J. ArgentoA.E. HollonT.C. Al-HolouW.N. VarelaM.L. ZamlerD.B. QuassG.L. ApostolidesP.F. AbelC.I.I. BrownC.E. KishP.E. KahanaA. KleerC.G. MotschS. CastroM.G. LowensteinP.R. Spatiotemporal analysis of glioma heterogeneity reveals COL1A1 as an actionable target to disrupt tumor progression.Nat. Commun.2022131360610.1038/s41467‑022‑31340‑135750880
    [Google Scholar]
  109. TarantinoP. Carmagnani PestanaR. CortiC. ModiS. BardiaA. TolaneyS.M. CortesJ. SoriaJ.C. CuriglianoG. Antibody–drug conjugates: Smart chemotherapy delivery across tumor histologies.CA Cancer J. Clin.202272216518210.3322/caac.2170534767258
    [Google Scholar]
  110. LiuY. YangG. JinS. XuL. ZhaoC.X. Development of high‐drug‐loading nanoparticles.ChemPlusChem20208592143215710.1002/cplu.20200049632864902
    [Google Scholar]
  111. LooY.S. ZahidN.I. MadheswaranT. Mat AzmiI.D. Recent advances in the development of multifunctional lipid-based nanoparticles for co-delivery, combination treatment strategies, and theranostics in breast and lung cancer.J. Drug Deliv. Sci. Technol.20227110330010.1016/j.jddst.2022.103300
    [Google Scholar]
  112. SongS. ShimM.K. YangS. LeeJ. YunW.S. ChoH. MoonY. MinJ.Y. HanE.H. YoonH.Y. KimK. All-in-one glycol chitosan nanoparticles for co-delivery of doxorubicin and anti-PD-L1 peptide in cancer immunotherapy.Bioact. Mater.20232835837510.1016/j.bioactmat.2023.05.01637334068
    [Google Scholar]
  113. KhodarahmiM. AbbasiH. KouchakM. MahdaviniaM. HandaliS. RahbarN. Nanoencapsulation of aptamer-functionalized 5-Fluorouracil liposomes using alginate/chitosan complex as a novel targeting strategy for colon-specific drug delivery.J. Drug Deliv. Sci. Technol.20227110329910.1016/j.jddst.2022.103299
    [Google Scholar]
  114. dos SantosA.M. CarvalhoS.G. MeneguinA.B. SábioR.M. GremiãoM.P.D. ChorilliM. Oral delivery of micro/nanoparticulate systems based on natural polysaccharides for intestinal diseases therapy: Challenges, advances and future perspectives.J. Control. Release202133435336610.1016/j.jconrel.2021.04.02633901582
    [Google Scholar]
  115. DehghaniS. AlibolandiM. TehranizadehZ.A. OskueeR.K. NosratiR. SoltaniF. RamezaniM. Self-assembly of an aptamer-decorated chimeric peptide nanocarrier for targeted cancer gene delivery.Colloids Surf. B Biointerfaces202120811204710.1016/j.colsurfb.2021.11204734418722
    [Google Scholar]
  116. AgazziM.L. HerreraS.E. CortezM.L. MarmisolléW.A. AzzaroniO. Self-assembled peptide dendrigraft supraparticles with potential application in pH/enzyme-triggered multistage drug release.Colloids Surf. B Biointerfaces202019011089510.1016/j.colsurfb.2020.11089532145605
    [Google Scholar]
  117. PaiF.T. LinW.J. Synergistic cytotoxicity of irinotecan combined with polysaccharide-based nanoparticles for colorectal carcinoma.Biomater. Adv.202315321357710.1016/j.bioadv.2023.21357737572599
    [Google Scholar]
  118. TiwariA. GajbhiyeV. JainA. VermaA. ShaikhA. SalveR. JainS.K. Hyaluronic acid functionalized liposomes embedded in biodegradable beads for duo drugs delivery to oxaliplatin-resistant colon cancer.J. Drug Deliv. Sci. Technol.20227710389110.1016/j.jddst.2022.103891
    [Google Scholar]
  119. FangX. CaoJ. ShenA. Advances in anti-breast cancer drugs and the application of nano-drug delivery systems in breast cancer therapy.J. Drug Deliv. Sci. Technol.20205710166210.1016/j.jddst.2020.101662
    [Google Scholar]
  120. JiaY. ChenS. WangC. SunT. YangL. Hyaluronic acid-based nano drug delivery systems for breast cancer treatment: Recent advances.Front. Bioeng. Biotechnol.20221099014510.3389/fbioe.2022.99014536091467
    [Google Scholar]
  121. JanssonM. LindbergJ. RaskG. SvenssonJ. BillingO. NazemroayaA. BerglundA. WärnbergF. SundM. Prognostic value of stromal type IV collagen expression in small invasive breast cancers.Front. Mol. Biosci.2022990452610.3389/fmolb.2022.90452635693557
    [Google Scholar]
  122. LindgrenM. JanssonM. TavelinB. DirixL. VermeulenP. NyströmH. Type IV collagen as a potential biomarker of metastatic breast cancer.Clin. Exp. Metastasis202138217518510.1007/s10585‑021‑10082‑233655422
    [Google Scholar]
  123. Ikeda-ImafukuM. GaoY. ShahaS. WangL.L.W. ParkK.S. NakajimaM. AdebowaleO. MitragotriS. Extracellular matrix degrading enzyme with stroma-targeting peptides enhance the penetration of liposomes into tumors.J. Control. Release20223521093110310.1016/j.jconrel.2022.11.00736351520
    [Google Scholar]
  124. ChaudhariR. PatelV. KumarA. Cutting-edge approaches for targeted drug delivery in breast cancer: Beyond conventional therapies.Nanoscale Adv.2024692270228610.1039/D4NA00086B38694472
    [Google Scholar]
  125. ChenH. FanX. ZhaoY. ZhiD. CuiS. ZhangE. LanH. DuJ. ZhangZ. ZhangS. ZhenY. Stimuli-responsive polysaccharide enveloped liposome for targeting and penetrating delivery of survivin-shRNA into breast tumor.ACS Appl. Mater. Interfaces20201219220742208710.1021/acsami.9b2244032083833
    [Google Scholar]
  126. ChenY. WangS. HuQ. ZhouL. Self-emulsifying system co-loaded with paclitaxel and coix seed oil deeply penetrated to enhance efficacy in cervical cancer.Curr. Drug Deliv.202320791992610.2174/156720181966622062809423935762559
    [Google Scholar]
  127. ZhouY. WangL. ChenL. WuW. YangZ. WangY. WangA. JiangS. QinX. YeZ. HuZ. WangZ. Glioblastoma cell-derived exosomes functionalized with peptides as efficient nanocarriers for synergistic chemotherapy of glioblastoma with improved biosafety.Nano Res.20231612132831329310.1007/s12274‑023‑5921‑6
    [Google Scholar]
  128. GadadeD.D. JainN. SareenR. GiramP.S. ModiA. Strategies for cancer targeting: Novel drug delivery systems opportunities and future challenges.Targeted Cancer Therapy in Biomedical Engineering202314210.1007/978‑981‑19‑9786‑0_1
    [Google Scholar]
  129. JiangY. YanC. LiM. ChenS. ChenZ. YangL. LuoK. Delivery of natural products via polysaccharide-based nanocarriers for cancer therapy: A review on recent advances and future challenges.Int. J. Biol. Macromol.2024278Pt 413507210.1016/j.ijbiomac.2024.13507239191341
    [Google Scholar]
  130. BhattP. KumarV. SubramaniyanV. NagarajanK. SekarM. ChinniS.V. RamachawolranG. Plasma modification techniques for natural polymer-based drug delivery systems.Pharmaceutics2023158206610.3390/pharmaceutics1508206637631280
    [Google Scholar]
  131. WuD. LiM. Current state and challenges of physiologically based biopharmaceutics modeling (PBBM) in oral drug product development.Pharm. Res.202340232133610.1007/s11095‑022‑03373‑036076007
    [Google Scholar]
  132. YuanD. GuoY. PuF. YangC. XiaoX. DuH. HeJ. LuS. Opportunities and challenges in enhancing the bioavailability and bioactivity of dietary flavonoids: A novel delivery system perspective.Food Chem.202443013711510.1016/j.foodchem.2023.13711537566979
    [Google Scholar]
  133. LeeJ. ChoiM.K. SongI.S. Recent advances in doxorubicin formulation to enhance pharmacokinetics and tumor targeting.Pharmaceuticals (Basel)202316680210.3390/ph1606080237375753
    [Google Scholar]
  134. ElumalaiK. SrinivasanS. ShanmugamA. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment.Biomed Technol2024510912210.1016/j.bmt.2023.09.001
    [Google Scholar]
  135. PiresP.C. Mascarenhas-MeloF. PedrosaK. LopesD. LopesJ. Macário-SoaresA. PeixotoD. GiramP.S. VeigaF. Paiva-SantosA.C. Polymer-based biomaterials for pharmaceutical and biomedical applications: A focus on topical drug administration.Eur. Polym. J.202318711186810.1016/j.eurpolymj.2023.111868
    [Google Scholar]
  136. GrewalA.K. SalarR.K. Chitosan nanoparticle delivery systems: An effective approach to enhancing efficacy and safety of anticancer drugs.Nano TransMed2024310004010.1016/j.ntm.2024.100040
    [Google Scholar]
  137. KandasamyG. MaityD. Current advancements in self-assembling nanocarriers-based siRNA delivery for cancer therapy.Colloids Surf. B Biointerfaces202322111300210.1016/j.colsurfb.2022.11300236370645
    [Google Scholar]
  138. MolinarC. TannousM. MeloniD. CavalliR. ScomparinA. Current status and trends in nucleic acids for cancer therapy: A focus on polysaccharide‐based nanomedicines.Macromol. Biosci.2023239230010210.1002/mabi.20230010237212473
    [Google Scholar]
  139. MiyazakiM. YubaE. HayashiH. HaradaA. KonoK. Development of pH-responsive hyaluronic acid-based antigen carriers for induction of antigen-specific cellular immune responses.ACS Biomater. Sci. Eng.20195115790579710.1021/acsbiomaterials.9b0127833405671
    [Google Scholar]
  140. GagnejaS. CapalashN. SharmaP. Hyaluronic acid as a tumor progression agent and a potential chemotherapeutic biomolecule against cancer: A review on its dual role.Int. J. Biol. Macromol.2024275Pt 213374410.1016/j.ijbiomac.2024.13374438986990
    [Google Scholar]
  141. RazaF. EvansL. MotallebiM. ZafarH. Pereira-SilvaM. SaleemK. PeixotoD. RahdarA. SharifiE. VeigaF. HoskinsC. Paiva-SantosA.C. Liposome-based diagnostic and therapeutic applications for pancreatic cancer.Acta Biomater.202315712310.1016/j.actbio.2022.12.01336521673
    [Google Scholar]
  142. ShuklaR. SinghA. SinghK.K. Vincristine-based nanoformulations: A preclinical and clinical studies overview.Drug Deliv. Transl. Res.202414111610.1007/s13346‑023‑01389‑637552393
    [Google Scholar]
  143. LopesJ. LopesD. Macário-SoaresA. Ferreira-FariaI. PeixotoD. MotallebiM. MohammadI.S. GiramP.S. PiresP.C. RazaF. Cell membrane-coated biomaterials for bone cancer-targeted diagnosis and therapy: A critical update on osteosarcoma applications.Mater Chem Horizons202321657910.22128/mch.2022.615.1032
    [Google Scholar]
  144. WangR. LiY. LiZ. YaoH. ZhaiZ. Hyaluronic acid filler‐induced vascular occlusion: Three case reports and overview of prevention and treatment.J. Cosmet. Dermatol.20242341217122310.1111/jocd.1614738131127
    [Google Scholar]
  145. BrancoF. CunhaJ. MendesM. VitorinoC. SousaJ.J. Peptide-hitchhiking for the development of nanosystems in glioblastoma.ACS Nano20241826163591639410.1021/acsnano.4c0179038861272
    [Google Scholar]
  146. CavallaroP.A. De SantoM. BelsitoE.L. LongobuccoC. CurcioM. MorelliC. PasquaL. LeggioA. Peptides targeting HER2-positive breast cancer cells and applications in tumor imaging and delivery of chemotherapeutics.Nanomaterials (Basel)20231317247610.3390/nano1317247637686984
    [Google Scholar]
  147. KulkarniD. DamiriF. RojekarS. ZehraviM. RamproshadS. DhokeD. MusaleS. MulaniA.A. ModakP. ParadhiR. VitoreJ. RahmanM.H. BerradaM. GiramP.S. CavaluS. Recent advancements in microneedle technology for multifaceted biomedical applications.Pharmaceutics2022145109710.3390/pharmaceutics1405109735631683
    [Google Scholar]
  148. JinK.T. LuZ.B. ChenJ.Y. LiuY.Y. LanH.R. DongH.Y. YangF. ZhaoY.Y. ChenX.Y. Recent trends in nanocarrier‐based targeted chemotherapy: Selective delivery of anticancer drugs for effective lung, colon, cervical, and breast cancer treatment.J. Nanomater.20202020111410.1155/2020/9184284
    [Google Scholar]
  149. VaidyaF.U. Sufiyan ChhipaA. MishraV. GuptaV.K. RawatS.G. KumarA. PathakC. Molecular and cellular paradigms of multidrug resistance in cancer.Cancer Rep.2022512e129110.1002/cnr2.129133052041
    [Google Scholar]
  150. AnandU. DeyA. ChandelA.K.S. SanyalR. MishraA. PandeyD.K. De FalcoV. UpadhyayA. KandimallaR. ChaudharyA. DhanjalJ.K. DewanjeeS. VallamkonduJ. Pérez de la LastraJ.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.00737397557
    [Google Scholar]
  151. WangY. ZhangT. HuangY. LiW. ZhaoJ. YangY. LiC. WangL. BiN. Real-world safety and efficacy of consolidation durvalumab after chemoradiation therapy for stage III non-small cell lung cancer: A systematic review and meta-analysis.Int. J. Radiat. Oncol. Biol. Phys.202211251154116410.1016/j.ijrobp.2021.12.15034963558
    [Google Scholar]
  152. CaoJ. HuangD. PeppasN.A. Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites.Adv. Drug Deliv. Rev.202016717018810.1016/j.addr.2020.06.03032622022
    [Google Scholar]
  153. LiangP. BallouB. LvX. SiW. BruchezM.P. HuangW. DongX. Monotherapy and combination therapy using anti‐angiogenic nanoagents to fight cancer.Adv. Mater.20213315200515510.1002/adma.20200515533684242
    [Google Scholar]
  154. PasarinD. GhizdareanuA.I. EnascutaC.E. MateiC.B. BilbieC. Paraschiv-PaladaL. VeresP.A. Coating materials to increase the stability of liposomes.Polymers (Basel)202315378210.3390/polym1503078236772080
    [Google Scholar]
  155. MakwanaV. KaranjiaJ. HaselhorstT. Anoopkumar-DukieS. RudrawarS. Liposomal doxorubicin as targeted delivery platform: Current trends in surface functionalization.Int. J. Pharm.202159312011710.1016/j.ijpharm.2020.12011733259901
    [Google Scholar]
  156. ImamS.S. AlshehriS. AltamimiM.A. AlmalkiR.K.H. HussainA. BukhariS.I. MahdiW.A. QamarW. Formulation of chitosan-coated apigenin bilosomes: In vitro characterization, antimicrobial and cytotoxicity assessment.Polymers (Basel)202214592110.3390/polym1405092135267744
    [Google Scholar]
  157. HaridasV. Tailoring of peptide vesicles: A bottom-up chemical approach.Acc. Chem. Res.20215481934194910.1021/acs.accounts.0c0069033823579
    [Google Scholar]
  158. GhafoorM.H. SongB.L. ZhouL. QiaoZ.Y. WangH. Self-assembly of peptides as an alluring approach toward cancer treatment and imaging.ACS Biomater. Sci. Eng.20241052841286210.1021/acsbiomaterials.4c0049138644736
    [Google Scholar]
  159. SamecT. BoulosJ. GilmoreS. HazeltonA. Alexander-BryantA. Peptide-based delivery of therapeutics in cancer treatment.Mater. Today Bio20221410024810.1016/j.mtbio.2022.10024835434595
    [Google Scholar]
  160. NajafiM. MajidpoorJ. TooleeH. MortezaeeK. The current knowledge concerning solid cancer and therapy.J. Biochem. Mol. Toxicol.20213511e2290010.1002/jbt.2290034462987
    [Google Scholar]
  161. MorelD. JefferyD. AspeslaghS. AlmouzniG. Postel-VinayS. Combining epigenetic drugs with other therapies for solid tumours — Past lessons and future promise.Nat. Rev. Clin. Oncol.20201729110710.1038/s41571‑019‑0267‑431570827
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018349688241008220007
Loading
/content/journals/cdd/10.2174/0115672018349688241008220007
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): breast carcinoma; chemotherapy; colon carcinoma; liposome; peptide; Polysaccharide
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test