Skip to content
2000
Volume 22, Issue 9
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Plant bioactives are being used since the early days of medicinal discovery for their various therapeutic activities and are safer compared to modern medicines. According to World Health Organization (WHO), approximately 180,000 deaths from burns occur every year with the majority in countries. Recent years have witnessed significant advancements in this domain, with numerous plant bioactive and their various nanoformulations demonstrating promising preclinical burn wound healing activity and identified plant-based nanotechnology of various materials through some variations of cellular mechanisms. A comprehensive search was conducted on scientific databases like PubMed, Web of Science, ScienceDirect and Google Scholar to retrieve relevant literature on burn wound, plants, nano formulations and studies from 1990 to 2024. From a total of approximately 180 studies, 40 studies were screened out following the inclusion and exclusion criteria, which reported 40 different plants and plant extracts with their various nano-formulations (NFs) that were used against burn wounds preclinically. This study provides the current scenario of naturally-derived targeted therapy, exploring the impact of natural products on various nanotechnology in burn wound healing on a preclinical model. This comprehensive review provides the application of herbal nano-formulations (HBNF) for the treatment of burn wounds. Natural products and their derivatives may include many unidentified bioactive chemicals or untested nano-formulations that might be useful in today's medical toolbox. Mostly, nano-delivery system modulates the bioactive compound's effectiveness on burn wounds and increases compatibility by suppressing inflammation. However, their exploration remains incomplete, necessitating possible pathways and mechanisms of action using clinical models.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018343042241120072749
2024-12-03
2025-12-08
Loading full text...

Full text loading...

References

  1. WangW. LuK. YuC. HuangQ. DuY.Z. Nano-drug delivery systems in wound treatment and skin regeneration.J. Nanobiotechnology20191718210.1186/s12951‑019‑0514‑y31291960
    [Google Scholar]
  2. SoutoE.B. RibeiroA.F. FerreiraM.I. TeixeiraM.C. ShimojoA.A.M. SorianoJ.L. NaverosB.C. DurazzoA. LucariniM. SoutoS.B. SantiniA. New nanotechnologies for the treatment and repair of skin burns infections.Int. J. Mol. Sci.202021239310.3390/ijms2102039331936277
    [Google Scholar]
  3. SmolleC. Cambiaso-DanielJ. ForbesA.A. WurzerP. HundeshagenG. BranskiL.K. HussF. KamolzL.P. Recent trends in burn epidemiology worldwide: A systematic review.Burns201743224925710.1016/j.burns.2016.08.01327600982
    [Google Scholar]
  4. DesforgesJ.F. DeitchE.A. The management of burns.N. Engl. J. Med.1990323181249125310.1056/NEJM1990110132318062120587
    [Google Scholar]
  5. WildT. RahbarniaA. KellnerM. SobotkaL. EberleinT. Basics in nutrition and wound healing.Nutrition201026986286610.1016/j.nut.2010.05.00820692599
    [Google Scholar]
  6. HermansM.H.E. Results of an internet survey on the treatment of partial thickness burns, full thickness burns, and donor sites.J. Burn Care Res.200728683584710.1097/BCR.0b013e3181599b8817925651
    [Google Scholar]
  7. RoshangarL. RadJ. KheirjouR. RanjkeshM. KhosroshahiA. Skin burns: Review of molecular mechanisms and therapeutic approaches.Wounds20193112308315[PMID: 31730513].
    [Google Scholar]
  8. GuoS. DiPietroL.A. Factors affecting wound healing.J. Dent. Res.201089321922910.1177/002203450935912520139336
    [Google Scholar]
  9. GhoshP.K. GabaA. Phyto-extracts in wound healing.J. Pharm. Pharm. Sci.201316576082010.18433/J3831V24393557
    [Google Scholar]
  10. SandhiyaV. UbaidullaU. A review on herbal drug loaded into pharmaceutical carrier techniques and its evaluation process.Fut. J. Pharmaceut. Sci.2020615110.1186/s43094‑020‑00050‑0
    [Google Scholar]
  11. XuR. LuoG. XiaH. HeW. ZhaoJ. LiuB. TanJ. ZhouJ. LiuD. WangY. YaoZ. ZhanR. YangS. WuJ. Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction.Biomaterials20154011110.1016/j.biomaterials.2014.10.07725498800
    [Google Scholar]
  12. AndritoiuC.V. AndriescuC.E. IbanescuC. LunguC. IvanescuB. VlaseL. HavarneanuC. PopaM. Effects and Characterization of Some Topical Ointments Based on Vegetal Extracts on Incision, Excision, and Thermal Wound Models.Molecules20202522535610.3390/molecules2522535633207838
    [Google Scholar]
  13. MartinP. Wound healing--aiming for perfect skin regeneration.Science (80-)1997276758110.1126/science.276.5309.75
    [Google Scholar]
  14. GainzaG. VillullasS. PedrazJ.L. HernandezR.M. IgartuaM. Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration.Nanomedicine20151161551157310.1016/j.nano.2015.03.00225804415
    [Google Scholar]
  15. EmingS.A. KriegT. DavidsonJ.M. Inflammation in wound repair: molecular and cellular mechanisms.J. Invest. Dermatol.2007127351452510.1038/sj.jid.570070117299434
    [Google Scholar]
  16. VelnarT. BaileyT. SmrkoljV. The wound healing process: an overview of the cellular and molecular mechanisms.J. Int. Med. Res.20093751528154210.1177/14732300090370053119930861
    [Google Scholar]
  17. MalindaK.M. SidhuG.S. BanaudhaK.K. GaddipatiJ.P. MaheshwariR.K. GoldsteinA.L. KleinmanH.K. Thymosin α 1 stimulates endothelial cell migration, angiogenesis, and wound healing.J. Immunol.199816021001100610.4049/jimmunol.160.2.10019551940
    [Google Scholar]
  18. LiB. WangJ.H.C. Fibroblasts and myofibroblasts in wound healing: Force generation and measurement.J. Tissue Viability201120410812010.1016/j.jtv.2009.11.00419995679
    [Google Scholar]
  19. MontesinosM.C. GadangiP. LongakerM. SungJ. LevineJ. NilsenD. ReibmanJ. LiM. JiangC.K. HirschhornR. RechtP.A. OstadE. LevinR.I. CronsteinB.N. Wound healing is accelerated by agonists of adenosine A2 (G α s-linked) receptors.J. Exp. Med.199718691615162010.1084/jem.186.9.16159348321
    [Google Scholar]
  20. StadelmannW.K. DigenisA.G. TobinG.R. Physiology and healing dynamics of chronic cutaneous wounds.Am. J. Surg.19981762Suppl.26S38S10.1016/S0002‑9610(98)00183‑49777970
    [Google Scholar]
  21. PawarH.V. TettehJ. BoatengJ.S. Preparation, optimisation and characterisation of novel wound healing film dressings loaded with streptomycin and diclofenac.Colloids Surf. B Biointerfaces201310210211010.1016/j.colsurfb.2012.08.01423006557
    [Google Scholar]
  22. SabithaM. RajivS. Preparation and characterization of ampicillin-incorporated electrospun polyurethane scaffolds for wound healing and infection control.Polym. Eng. Sci.201555354154810.1002/pen.23917
    [Google Scholar]
  23. PásztorN. RédaiE. SzabóZ.I. SiposE. Preparation and Characterization of Levofloxacin-Loaded Nanofibers as Potential Wound Dressings.Acta Med. Marisiensis2017632666910.1515/amma‑2017‑0014
    [Google Scholar]
  24. PariharA. PariharM.S. MilnerS. BhatS. Oxidative stress and anti-oxidative mobilization in burn injury.Burns200834161710.1016/j.burns.2007.04.00917905515
    [Google Scholar]
  25. SüntarI. AkkolE.K. NaharL. SarkerS.D. Wound healing and antioxidant properties: do they coexist in plants?Free Radic. Antioxid.2012221710.5530/ax.2012.2.2.1
    [Google Scholar]
  26. BlassS.C. GoostH. TolbaR.H. Stoffel-WagnerB. KabirK. BurgerC. StehleP. EllingerS. Time to wound closure in trauma patients with disorders in wound healing is shortened by supplements containing antioxidant micronutrients and glutamine: A PRCT.Clin. Nutr.201231446947510.1016/j.clnu.2012.01.00222284340
    [Google Scholar]
  27. RuszymahB.H.I. ChowdhuryS.R. MananN.A.B.A. FongO.S. AdenanM.I. SaimA.B. Aqueous extract of Centella asiatica promotes corneal epithelium wound healing in vitro.J. Ethnopharmacol.2012140233333810.1016/j.jep.2012.01.02322301444
    [Google Scholar]
  28. ThangP.T. PatrickS. TeikL.S. YungC.S. Anti-oxidant effects of the extracts from the leaves of Chromolaena odorata on human dermal fibroblasts and epidermal keratinocytes against hydrogen peroxide and hypoxanthine–xanthine oxidase induced damage.Burns200127431932710.1016/S0305‑4179(00)00137‑611348739
    [Google Scholar]
  29. UmachigiS.P. JayaveeraK.N. Ashok KumarC.K. KumarG.S. Vrushabendra swamy, B.M.; Kishore Kumar, D.V. Studies on Wound Healing Properties of <i>Quercus infectoria</i>.Trop. J. Pharm. Res.20087110.4314/tjpr.v7i1.14677
    [Google Scholar]
  30. MensahA.Y. SampsonJ. HoughtonP.J. HylandsP.J. WestbrookJ. DunnM. HughesM.A. CherryG.W. Effects of Buddleja globosa leaf and its constituents relevant to wound healing.J. Ethnopharmacol.2001772-321922610.1016/S0378‑8741(01)00297‑511535367
    [Google Scholar]
  31. ShuklaA. RasikA.M. DhawanB.N. Asiaticoside-induced elevation of antioxidant levels in healing wounds.Phytother. Res.1999131505410.1002/(SICI)1099‑1573(199902)13:1<50:AID‑PTR368>3.0.CO;2‑V10189951
    [Google Scholar]
  32. LiH. LiB. MaJ. YeJ. GuoP. LiL. Fate of antibiotic-resistant bacteria and antibiotic resistance genes in the electrokinetic treatment of antibiotic-polluted soil.Chem. Eng. J.201833758459410.1016/j.cej.2017.12.154
    [Google Scholar]
  33. GaoW. ChenY. ZhangY. ZhangQ. ZhangL. Nanoparticle-based local antimicrobial drug delivery.Adv. Drug Deliv. Rev.2018127465710.1016/j.addr.2017.09.01528939377
    [Google Scholar]
  34. Mofazzal JahromiM.A. Sahandi ZangabadP. Moosavi BasriS.M. Sahandi ZangabadK. GhamarypourA. ArefA.R. KarimiM. HamblinM.R. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing.Adv. Drug Deliv. Rev.2018123336410.1016/j.addr.2017.08.00128782570
    [Google Scholar]
  35. RajendranN.K. KumarS.S.D. HoureldN.N. AbrahamseH. A review on nanoparticle based treatment for wound healing.J. Drug Deliv. Sci. Technol.20184442143010.1016/j.jddst.2018.01.009
    [Google Scholar]
  36. RahmanM. KamalM.A. Special issue: Cancer nanotherapeutics: Targeted medicine, therapeutic vaccination and challenges with cancer nanomedicines.Semin. Cancer Biol.2021691410.1016/j.semcancer.2021.02.00333571666
    [Google Scholar]
  37. HuangR. HuJ. QianW. ChenL. ZhangD. Recent advances in nanotherapeutics for the treatment of burn wounds.Burns Trauma20219tkab02610.1093/burnst/tkab02634778468
    [Google Scholar]
  38. DeboneH.S. LopesP.S. SeverinoP. YoshidaC.M.P. SoutoE.B. da SilvaC.F. Chitosan/Copaiba oleoresin films for would dressing application.Int. J. Pharm.201955514615210.1016/j.ijpharm.2018.11.05430468843
    [Google Scholar]
  39. Blanco-FernandezB. CastañoO. Mateos-TimonedaM.Á. EngelE. Pérez-AmodioS. Nanotechnology Approaches in Chronic Wound Healing.Adv. Wound Care (New Rochelle)202110523425610.1089/wound.2019.109432320364
    [Google Scholar]
  40. RahimM.A. JanN. KhanS. ShahH. MadniA. KhanA. JabarA. KhanS. ElhissiA. HussainZ. AzizH.C. SohailM. KhanM. ThuH.E. Recent Advancements in Stimuli Responsive Drug Delivery Platforms for Active and Passive Cancer Targeting.Cancers (Basel)202113467010.3390/cancers1304067033562376
    [Google Scholar]
  41. HussainZ. ThuH.E. Rawas-QalajiM. NaseemM. KhanS. SohailM. Recent developments and advanced strategies for promoting burn wound healing.J. Drug Deliv. Sci. Technol.20226810309210.1016/j.jddst.2022.103092
    [Google Scholar]
  42. DashB. XuZ. LinL. KooA. NdonS. BerthiaumeF. DardikA. HsiaH. Stem Cells and Engineered Scaffolds for Regenerative Wound Healing.Bioengineering (Basel)2018512310.3390/bioengineering501002329522497
    [Google Scholar]
  43. MaziniL. RochetteL. AdmouB. AmalS. MalkaG. Hopes and Limits of Adipose-Derived Stem Cells (ADSCs) and Mesenchymal Stem Cells (MSCs) in Wound Healing.Int. J. Mol. Sci.2020214130610.3390/ijms2104130632075181
    [Google Scholar]
  44. RasulovM.F. Vasil’chenkovA.V. OnishchenkoN.A. KrasheninnikovM.E. KravchenkoV.I. GorsheninT.L. PidtsanR.E. PotapovI.V. First experience in the use of bone marrow mesenchymal stem cells for the treatment of a patient with deep skin burns.Bull. Exp. Biol. Med.2005139114114410.1007/s10517‑005‑0232‑316142297
    [Google Scholar]
  45. PanS.C. Burn blister fluids in the neovascularization stage of burn wound healing: A comparison between superficial and deep partial-thickness burn wounds.Burns Trauma201311273110.4103/2321‑3868.11333227574619
    [Google Scholar]
  46. WangX.Q. KravchukO. WinterfordC. KimbleR.M. The correlation of in vivo burn scar contraction with the level of α-smooth muscle actin expression.Burns20113781367137710.1016/j.burns.2011.07.01821855218
    [Google Scholar]
  47. WoodF.M. KolybabaM.L. AllenP. The use of cultured epithelial autograft in the treatment of major burn wounds: Eleven years of clinical experience.Burns200632553854410.1016/j.burns.2006.02.02516777338
    [Google Scholar]
  48. CharruyerA. GhadiallyR. Stem cells and tissue-engineered skin.Skin Pharmacol. Physiol.2009222556210.1159/00017886419188753
    [Google Scholar]
  49. WongM. ChuaA. TanB.K. Cultured epithelial autografts for the coverage of large wounds: minimizing skin graft donor sites in the sick patient.Eur. J. Plast. Surg.201336637137610.1007/s00238‑012‑0770‑7
    [Google Scholar]
  50. CiroddeA. LeclercT. JaultP. DuhamelP. LatailladeJ.J. BarguesL. Cultured epithelial autografts in massive burns: A single-center retrospective study with 63 patients.Burns201137696497210.1016/j.burns.2011.03.01121550174
    [Google Scholar]
  51. ObengM.K. McCauleyR.L. BarnettJ.R. HeggersJ.P. SheridanK. SchutzlerS.S. Cadaveric allograft discards as a result of positive skin cultures.Burns200127326727110.1016/S0305‑4179(00)00116‑911311520
    [Google Scholar]
  52. KuaE.H.J. GohC.Q. TingY. ChuaA. SongC. Comparing the use of glycerol preserved and cryopreserved allogenic skin for the treatment of severe burns: differences in clinical outcomes and in vitro tissue viability.Cell Tissue Bank.201213226927910.1007/s10561‑011‑9254‑421484230
    [Google Scholar]
  53. RogersA.D. AllortoN.L. AdamsS. AdamsK.G. HudsonD.A. RodeH. Isn’t it time for a cadaver skin bank in South Africa?Ann. Burns Fire Disasters2013263142146[PMID: 24563640].
    [Google Scholar]
  54. LorentiA. Wound Healing: From Epidermis Culture to Tissue Engineering.Cellbio (Irvine Calif.)201212172910.4236/cellbio.2012.12003
    [Google Scholar]
  55. SachlosE. CzernuszkaJ.T. Making Tissue Engineering Scaffolds Work. Review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds.Eur. Cell. Mater.20035294010.22203/eCM.v005a0314562270
    [Google Scholar]
  56. Sierra-SánchezÁ. KimK.H. Blasco-MorenteG. Arias-SantiagoS. Cellular human tissue-engineered skin substitutes investigated for deep and difficult to heal injuries.NPJ Regen. Med.2021613510.1038/s41536‑021‑00144‑034140525
    [Google Scholar]
  57. AshleyE.A. Towards precision medicine.Nat. Rev. Genet.201617950752210.1038/nrg.2016.8627528417
    [Google Scholar]
  58. SrinivasaraoM. GallifordC.V. LowP.S. Principles in the design of ligand-targeted cancer therapeutics and imaging agents.Nat. Rev. Drug Discov.201514320321910.1038/nrd451925698644
    [Google Scholar]
  59. PéczkaN. OrgovánZ. Ábrányi-BaloghP. KeserűG.M. Electrophilic warheads in covalent drug discovery: an overview.Expert Opin. Drug Discov.202217441342210.1080/17460441.2022.203478335129005
    [Google Scholar]
  60. LiY. ChenM. YaoB. LuX. ZhangX. HeP. VasilatosS.N. RenX. BianW. YaoC. Transferrin receptor-targeted redox/pH-sensitive podophyllotoxin prodrug micelles for multidrug-resistant breast cancer therapy.J. Mater. Chem. B Mater. Biol. Med.20197385814582410.1039/C9TB00651F31495855
    [Google Scholar]
  61. FaniM. TammaM.L. NicolasG.P. LasriE. MedinaC. RaynalI. PortM. WeberW.A. MaeckeH.R. In vivo imaging of folate receptor positive tumor xenografts using novel 68Ga-NODAGA-folate conjugates.Mol. Pharm.2012951136114510.1021/mp200418f22497506
    [Google Scholar]
  62. JinS.E. JinH.E. HongS.S. Targeted delivery system of nanobiomaterials in anticancer therapy: from cells to clinics.BioMed Res. Int.2014201412310.1155/2014/81420824672796
    [Google Scholar]
  63. ScarantiM. CojocaruE. BanerjeeS. BanerjiU. Exploiting the folate receptor α in oncology.Nat. Rev. Clin. Oncol.202017634935910.1038/s41571‑020‑0339‑532152484
    [Google Scholar]
  64. YamasakiT. LiL. LauB.H.S. Garlic compounds protect vascular endothelial cells from hydrogen peroxide‐induced oxidant injury.Phytother. Res.19948740841210.1002/ptr.2650080706
    [Google Scholar]
  65. RavindranP.N. BabuK.N. SivaramanK. TurmericCRC Press200710.1201/9781420006322
    [Google Scholar]
  66. GopinathD. AhmedM.R. GomathiK. ChitraK. SehgalP.K. JayakumarR. Dermal wound healing processes with curcumin incorporated collagen films.Biomaterials200425101911191710.1016/S0142‑9612(03)00625‑214738855
    [Google Scholar]
  67. MarwahR.G. FatopeM.O. MahrooqiR.A. VarmaG.B. AbadiH.A. Al-BurtamaniS.K.S. Antioxidant capacity of some edible and wound healing plants in Oman.Food Chem.2007101246547010.1016/j.foodchem.2006.02.001
    [Google Scholar]
  68. PattanayakS.P. SunitaP. Wound healing, anti-microbial and antioxidant potential of Dendrophthoe falcata (L.f).Ettingsh. J. Ethnopharmacol.2008120224124710.1016/j.jep.2008.08.01918790035
    [Google Scholar]
  69. DemilewW. AdinewG.M. AsradeS. Evaluation of the Wound Healing Activity of the Crude Extract of Leaves of Acanthus polystachyus Delile (Acanthaceae).Evid. Based Complement. Alternat. Med.201820181204789610.1155/2018/204789629991951
    [Google Scholar]
  70. LinY.H. LinJ.H. HongY.S. Development of chitosan/poly‐γ‐glutamic acid/pluronic/curcumin nanoparticles in chitosan dressings for wound regeneration.J. Biomed. Mater. Res. B Appl. Biomater.20171051819010.1002/jbm.b.3339426426455
    [Google Scholar]
  71. SchrandA.M. RahmanM.F. HussainS.M. SchlagerJ.J. SmithD.A. SyedA.F. Metal‐based nanoparticles and their toxicity assessment.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20102554456810.1002/wnan.10320681021
    [Google Scholar]
  72. QadirA. JahanS. AqilM. WarsiM.H. AlhakamyN.A. AlfalehM.A. KhanN. AliA. Phytochemical-Based Nano-Pharmacotherapeutics for Management of Burn Wound Healing.Gels20217420910.3390/gels704020934842674
    [Google Scholar]
  73. TangT. YinL. YangJ. ShanG. Emodin, an anthraquinone derivative from Rheum officinale Baill, enhances cutaneous wound healing in rats.Eur. J. Pharmacol.2007567317718510.1016/j.ejphar.2007.02.03317540366
    [Google Scholar]
  74. DaiX.Y. NieW. WangY.C. ShenY. LiY. GanS.J. Electrospun emodin polyvinylpyrrolidone blended nanofibrous membrane: a novel medicated biomaterial for drug delivery and accelerated wound healing.J. Mater. Sci. Mater. Med.201223112709271610.1007/s10856‑012‑4728‑x22875606
    [Google Scholar]
  75. SuwantongO. RuktanonchaiU. SupapholP. In vitro biological evaluation of electrospun cellulose acetate fiber mats containing asiaticoside or curcumin.J. Biomed. Mater. Res. A201094A41216122510.1002/jbm.a.3279720694988
    [Google Scholar]
  76. PanichpakdeeJ. PavasantP. SupapholP. Electrospinning of Asiaticoside/2-Hydroxypropyl-β-cyclodextrin Inclusion Complex-loaded Cellulose Acetate Fiber Mats: Release Characteristics and Potential for Use as Wound Dressing.Porrime201438333835010.7317/pk.2014.38.3.338
    [Google Scholar]
  77. SuwantongO. RuktanonchaiU. SupapholP. Electrospun cellulose acetate fiber mats containing asiaticoside or Centella asiatica crude extract and the release characteristics of asiaticoside.Polymer (Guildf.)200849194239424710.1016/j.polymer.2008.07.020
    [Google Scholar]
  78. Momtazi-BorojeniA.A. HaftcheshmehS.M. EsmaeiliS.A. JohnstonT.P. AbdollahiE. SahebkarA. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus.Autoimmun. Rev.201817212513510.1016/j.autrev.2017.11.01629180127
    [Google Scholar]
  79. LiakosI. RizzelloL. HajialiH. BrunettiV. CarzinoR. PompaP.P. AthanassiouA. MeleE. Fibrous wound dressings encapsulating essential oils as natural antimicrobial agents.J. Mater. Chem. B Mater. Biol. Med.2015381583158910.1039/C4TB01974A32262430
    [Google Scholar]
  80. HuangS. FuX. Naturally derived materials-based cell and drug delivery systems in skin regeneration.J. Control. Release2010142214915910.1016/j.jconrel.2009.10.01819850093
    [Google Scholar]
  81. KorrapatiP.S. KarthikeyanK. SatishA. KrishnaswamyV.R. VenugopalJ.R. RamakrishnaS. Recent advancements in nanotechnological strategies in selection, design and delivery of biomolecules for skin regeneration.Mater. Sci. Eng. C20166774776510.1016/j.msec.2016.05.07427287175
    [Google Scholar]
  82. GardnerJ.C. WuH. NoelJ.G. RamserB.J. PitstickL. SaitoA. NikolaidisN.M. McCormackF.X. Keratinocyte growth factor supports pulmonary innate immune defense through maintenance of alveolar antimicrobial protein levels and macrophage function.Am. J. Physiol. Lung Cell. Mol. Physiol.20163109L868L87910.1152/ajplung.00363.201526919897
    [Google Scholar]
  83. FengZ.G. PangS.F. GuoD.J. YangY.T. LiuB. WangJ.W. ZhengK.Q. LinY. Recombinant keratinocyte growth factor 1 in tobacco potentially promotes wound healing in diabetic rats.BioMed Res. Int.201420141910.1155/2014/57963224783215
    [Google Scholar]
  84. KoriaP. YagiH. KitagawaY. MegeedZ. NahmiasY. SheridanR. YarmushM.L. Self-assembling elastin-like peptides growth factor chimeric nanoparticles for the treatment of chronic wounds.Proc. Natl. Acad. Sci. USA201110831034103910.1073/pnas.100988110821193639
    [Google Scholar]
  85. YeM. KimS. ParkK. Issues in long-term protein delivery using biodegradable microparticles.J. Control. Release2010146224126010.1016/j.jconrel.2010.05.01120493221
    [Google Scholar]
  86. ChereddyK.K. VandermeulenG. PréatV. PLGA based drug delivery systems: Promising carriers for wound healing activity.Wound Repair Regen.201624222323610.1111/wrr.1240426749322
    [Google Scholar]
  87. ZhangY. WischkeC. MittalS. MitraA. SchwendemanS.P. Design of Controlled Release PLGA Microspheres for Hydrophobic Fenretinide.Mol. Pharm.20161382622263010.1021/acs.molpharmaceut.5b0096127144450
    [Google Scholar]
  88. ChereddyK.K. HerC.H. ComuneM. MoiaC. LopesA. PorporatoP.E. VanackerJ. LamM.C. SteinstraesserL. SonveauxP. ZhuH. FerreiraL.S. VandermeulenG. PréatV. PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing.J. Control. Release201419413814710.1016/j.jconrel.2014.08.01625173841
    [Google Scholar]
  89. DaiT. TegosG.P. BurkatovskayaM. CastanoA.P. HamblinM.R. Chitosan acetate bandage as a topical antimicrobial dressing for infected burns.Antimicrob. Agents Chemother.200953239340010.1128/AAC.00760‑0819015341
    [Google Scholar]
  90. KarimiM. Sahandi ZangabadP. GhasemiA. AmiriM. BahramiM. MalekzadH. Ghahramanzadeh AslH. MahdiehZ. BozorgomidM. GhasemiA. Rahmani Taji BoyukM.R. HamblinM.R. Temperature-Responsive Smart Nanocarriers for Delivery Of Therapeutic Agents: Applications and Recent Advances.ACS Appl. Mater. Interfaces2016833211072113310.1021/acsami.6b0037127349465
    [Google Scholar]
  91. ShresthaA. HamblinM.R. KishenA. Characterization of a conjugate between Rose Bengal and chitosan for targeted antibiofilm and tissue stabilization effects as a potential treatment of infected dentin.Antimicrob. Agents Chemother.20125694876488410.1128/AAC.00810‑1222777042
    [Google Scholar]
  92. DaiT. TanakaM. HuangY.Y. HamblinM.R. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects.Expert Rev. Anti Infect. Ther.20119785787910.1586/eri.11.5921810057
    [Google Scholar]
  93. HolbanA.M. GrumezescuV. GrumezescuA.M. VasileB.Ş. TruşcăR. CristescuR. SocolG. IordacheF. Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique.Beilstein J. Nanotechnol.2014587288010.3762/bjnano.5.9924991524
    [Google Scholar]
  94. BaxterR.M. DaiT. KimballJ. WangE. HamblinM.R. WiesmannW.P. McCarthyS.J. BakerS.M. Chitosan dressing promotes healing in third degree burns in mice: Gene expression analysis shows biphasic effects for rapid tissue regeneration and decreased fibrotic signaling.J. Biomed. Mater. Res. A2013101A234034810.1002/jbm.a.3432822847951
    [Google Scholar]
  95. KarimiM. AvciP. AhiM. GazoriT. HamblinM.R. Naderi-ManeshH. Evaluation of Chitosan-Tripolyphosphate Nanoparticles as a p-shRNA Delivery Vector: Formulation, Optimization and Cellular Uptake Study.J. Nanopharm. Drug Deliv.20131326627810.1166/jnd.2013.102726989641
    [Google Scholar]
  96. AbbasiE. AvalS.F. AkbarzadehA. MilaniM. NasrabadiH.T. JooS.W. HanifehpourY. Nejati-KoshkiK. Pashaei-AslR. Dendrimers: synthesis, applications, and properties.Nanoscale Res. Lett.20149124710.1186/1556‑276X‑9‑24724994950
    [Google Scholar]
  97. ChaniotakisN. ThermosK. KalomirakiM. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications.Int. J. Nanomedicine20151110.2147/IJN.S93069
    [Google Scholar]
  98. NusbaumA.G. GilJ. RippyM.K. WarneB. ValdesJ. ClaroA. DavisS.C. Effective method to remove wound bacteria: comparison of various debridement modalities in an in vivo porcine model.J. Surg. Res.2012176270170710.1016/j.jss.2011.11.104022440935
    [Google Scholar]
  99. MancaM.L. MatricardiP. CencettiC. PerisJ.E. MelisV. CarboneC. EscribanoE. ZaruM. FaddaA.M. ManconiM. Combination of argan oil and phospholipids for the development of an effective liposome-like formulation able to improve skin hydration and allantoin dermal delivery.Int. J. Pharm.20165051-220421110.1016/j.ijpharm.2016.04.00827063848
    [Google Scholar]
  100. ZhaoY.Z. LuC.T. ZhangY. XiaoJ. ZhaoY.P. TianJ.L. XuY.Y. FengZ.G. XuC.Y. Selection of high efficient transdermal lipid vesicle for curcumin skin delivery.Int. J. Pharm.2013454130230910.1016/j.ijpharm.2013.06.05223830940
    [Google Scholar]
  101. Sumi MariaB. DevadigaA. Shetty KodialbailV. SaiduttaM.B. Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract.Appl. Nanosci.20155675576210.1007/s13204‑014‑0372‑8
    [Google Scholar]
  102. El MaghrabyG.M. BarryB.W. WilliamsA.C. Liposomes and skin: From drug delivery to model membranes.Eur. J. Pharm. Sci.2008344-520322210.1016/j.ejps.2008.05.00218572392
    [Google Scholar]
  103. Ranjbar-MohammadiM. RabbaniS. BahramiS.H. JoghataeiM.T. MoayerF. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers.Mater. Sci. Eng. C2016691183119110.1016/j.msec.2016.08.03227612816
    [Google Scholar]
  104. BayatS. AmiriN. PishavarE. KalaliniaF. MovaffaghJ. HashemiM. Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models.Life Sci.2019229576610.1016/j.lfs.2019.05.02831085247
    [Google Scholar]
  105. Pinzón-GarcíaA.D. Cassini-VieiraP. RibeiroC.C. de Matos JensenC.E. BarcelosL.S. CortesM.E. SinisterraR.D. Efficient cutaneous wound healing using bixin-loaded PCL nanofibers in diabetic mice.J. Biomed. Mater. Res. B Appl. Biomater.201710571938194910.1002/jbm.b.3372427292445
    [Google Scholar]
  106. EhteramiA. SalehiM. FarzamfarS. VaezA. SamadianH. SahrapeymaH. MirzaiiM. GhorbaniS. GoodarziA. In vitro and in vivo study of PCL/COLL wound dressing loaded with insulin-chitosan nanoparticles on cutaneous wound healing in rats model.Int. J. Biol. Macromol.201811760160910.1016/j.ijbiomac.2018.05.18429807077
    [Google Scholar]
  107. ZhangJ. ZhengT. AlarçinE. ByambaaB. GuanX. DingJ. ZhangY.S. LiZ. Porous electrospun fibers with self‐sealing functionality: An enabling strategy for trapping biomacromolecules.Small20171347170194910.1002/smll.20170194929094479
    [Google Scholar]
  108. Naseri-NosarM. FarzamfarS. SahrapeymaH. GhorbaniS. BastamiF. VaezA. SalehiM. Cerium oxide nanoparticle-containing poly (ε-caprolactone)/gelatin electrospun film as a potential wound dressing material: In vitro and in vivo evaluation.Mater. Sci. Eng. C20178136637210.1016/j.msec.2017.08.01328887985
    [Google Scholar]
  109. HaseebM.T. HussainM.A. AbbasK. YoussifB.G.M. BashirS. YukS.H. BukhariS.N.A. Linseed hydrogel-mediated green synthesis of silver nanoparticles for antimicrobial and wound-dressing applications.Int. J. Nanomedicine2017122845285510.2147/IJN.S13397128435262
    [Google Scholar]
  110. PhilipD. UnniC. AromalS.A. VidhuV.K. Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles.Spectrochim. Acta A Mol. Biomol. Spectrosc.201178289990410.1016/j.saa.2010.12.06021215687
    [Google Scholar]
  111. ShanB. SchaafC. SchmidtA. LuciaK. BuchfelderM. LosaM. KuhlenD. KreutzerJ. PeroneM.J. ArztE. StallaG.K. RennerU. Curcumin suppresses HIF1A synthesis and VEGFA release in pituitary adenomas.J. Endocrinol.2012214338939810.1530/JOE‑12‑020722739211
    [Google Scholar]
  112. KabirM.T. RahmanM.H. AkterR. BehlT. KaushikD. MittalV. PandeyP. AkhtarM.F. SaleemA. AlbadraniG.M. KamelM. KhalifaS.A.M. El-SeediH.R. Abdel-DaimM.M. Potential role of curcumin and its nanoformulations to treat various types of cancers.Biomolecules202111339210.3390/biom1103039233800000
    [Google Scholar]
  113. KumariA. RainaN. WahiA. GohK.W. SharmaP. NagpalR. JainA. MingL.C. GuptaM. Wound-healing effects of curcumin and its nanoformulations: A comprehensive review.Pharmaceutics20221411228810.3390/pharmaceutics1411228836365107
    [Google Scholar]
  114. CaoM. DuanZ. WangX. GongP. ZhangL. RuanB. Curcumin promotes diabetic foot ulcer wound healing by inhibiting miR-152-3p and activating the FBN1/TGF-β pathway.Mol. Biotechnol.20246651266127810.1007/s12033‑023‑01027‑z38206528
    [Google Scholar]
  115. ChoudharyM.K. KatariaJ. CameotraS.S. SinghJ. A facile biomimetic preparation of highly stabilized silver nanoparticles derived from seed extract of Vigna radiata and evaluation of their antibacterial activity.Appl. Nanosci.20166110511110.1007/s13204‑015‑0418‑6
    [Google Scholar]
  116. AhmedS. AhmadM. SwamiB.L. IkramS. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise.J. Adv. Res.201671172810.1016/j.jare.2015.02.00726843966
    [Google Scholar]
  117. FongJ. WoodF. Nanocrystalline silver dressings in wound management: a review.Int. J. Nanomedicine20061444144910.2147/nano.2006.1.4.44117722278
    [Google Scholar]
  118. ThomasR. SoumyaK.R. MathewJ. RadhakrishnanE.K. Electrospun polycaprolactone membrane incorporated with biosynthesized silver nanoparticles as effective wound dressing material.Appl. Biochem. Biotechnol.201517682213222410.1007/s12010‑015‑1709‑926113218
    [Google Scholar]
  119. GowdaB.H.J. MohantoS. SinghA. BhuniaA. AbdelgawadM.A. GhoshS. AnsariM.J. PramanikS. Nanoparticle-based therapeutic approaches for wound healing: a review of the state-of-the-art.Mater. Today Chem.20232710131910.1016/j.mtchem.2022.101319
    [Google Scholar]
  120. MathewS. AbrahamT.E. In vitro antioxidant activity and scavenging effects of Cinnamomum verum leaf extract assayed by different methodologies.Food Chem. Toxicol.200644219820610.1016/j.fct.2005.06.01316087283
    [Google Scholar]
  121. GiriS.P. VarmaS.B. Study of wound healing activity ofTectona grandis Linn. leaf extract on rats.Anc. Sci. Life201332424124410.4103/0257‑7941.13198424991074
    [Google Scholar]
  122. JadhavN. PowarT. ShindeS. NadafS. Herbal nanoparticles: A patent review.Asian J. Pharm.2014815810.4103/0973‑8398.134101
    [Google Scholar]
  123. HromadkaM. CollinsJ.B. ReedC. HanL. KolappaK.K. CairnsB.A. AndradyT. van AalstJ.A. Nanofiber applications for burn care.J. Burn Care Res.200829569570310.1097/BCR.0b013e31818480c918779672
    [Google Scholar]
  124. HafeziF. RadH.E. NaghibzadehB. NouhiA. NaghibzadehG. Actinidia deliciosa (kiwifruit), a new drug for enzymatic debridement of acute burn wounds.Burns201036335235510.1016/j.burns.2009.04.02119616384
    [Google Scholar]
  125. JalaliF.S.S. TajikH. HadianM. Efficacy of topical application of alcoholic extract of yarrow in the healing process of experimental burn wounds in rabbit.Comp. Clin. Pathol.201221217718110.1007/s00580‑010‑1081‑7
    [Google Scholar]
  126. BaruaC.C. TalukdarA. BegumS.A. PathakD.C. SarmaD.K. BorahR.S. GuptaA. In vivo wound-healing efficacy and antioxidant activity of Achyranthes aspera in experimental burns.Pharm. Biol.201250789289910.3109/13880209.2011.64288522480137
    [Google Scholar]
  127. LvR.L. WuB.Y. ChenX.D. JiangQ. [he effects of aloe extract on nitric oxide and endothelin levels in deep-partial thickness burn wound tissue in rat.Zhonghua Shao Shang Za Zhi2006225362365\17283882
    [Google Scholar]
  128. HajhashemiV. GhannadiA. HeidariA.H. Anti-inflammatory and wound healing activities of Aloe littoralis in rats.Res. Pharm. Sci.2012727378[PMID: 23181083].
    [Google Scholar]
  129. SomboonwongJ. ThanamittramaneeS. JariyapongskulA. PatumrajS. Therapeutic effects of Aloe vera on cutaneous microcirculation and wound healing in second degree burn model in rats.J. Med. Assoc. Thai.2000834417425[PMID: 10808702].
    [Google Scholar]
  130. BaruC.C. TalukdarA. BegumS.A. BuragohainB. RoyJ.D. PathakD.C. SarmaD.K. GuptaA.K. BoraR.S. Effect of Alternanthera brasiliana (L) Kuntze on healing of dermal burn wound.Indian J. Exp. Biol.20125015660[PMID: 22279942].
    [Google Scholar]
  131. AsdaqS.M.B. RaoG.S. AnanthK.V. AsadM. Prem KumarN. Evaluation of wound healing potential of bauhinia purpurea leaf extracts in rats.Indian J. Pharm. Sci.201072112212710.4103/0250‑474X.6225020582204
    [Google Scholar]
  132. KouhihabibidehkordiG. KheiriS. KarimiI. TaheriF. BijadE. BahadoramM. AlibabaieZ. AsgharianS. ZamaniH. Rafieian-KopaeiM. Effect of white tea (Camellia sinensis) extract on skin wound healing process in rats.World J. Plast. Surg.2021101859510.29252/wjps.10.1.8533833959
    [Google Scholar]
  133. GomesF.S.L. SpínolaC.V. RibeiroH.A. LopesM.T. CassaliG.D. SalasC.E. Wound-healing activity of a proteolytic fraction from Carica candamarcensis on experimentally induced burn.Burns201036227728310.1016/j.burns.2009.04.00719577373
    [Google Scholar]
  134. SanwalR. ChaudharyA.K. Wound healing and antimicrobial potential of Carissa spinarum Linn. in albino mice.J. Ethnopharmacol.2011135379279610.1016/j.jep.2011.04.02521527332
    [Google Scholar]
  135. CsuporD. BlazsóG. BaloghÁ. HohmannJ. The traditional Hungarian medicinal plant Centaurea sadleriana Janka accelerates wound healing in rats.J. Ethnopharmacol.2010127119319510.1016/j.jep.2009.09.04919799977
    [Google Scholar]
  136. WuF. BianD. XiaY. GongZ. TanQ. ChenJ. DaiY. Identification of major active ingredients responsible for burn wound healing of Centella asiatica herbs.Evid. Based Complement. Alternat. Med.2012201211310.1155/2012/84809323346217
    [Google Scholar]
  137. DurgaprasadS. SrivastavaP. Burn wound healing property of Cocos nucifera: An appraisal.Indian J. Pharmacol.200840414414610.4103/0253‑7613.4315920040946
    [Google Scholar]
  138. PriyaK.S. GnanamaniA. RadhakrishnanN. BabuM. Healing potential of Datura alba on burn wounds in albino rats.J. Ethnopharmacol.200283319319910.1016/S0378‑8741(02)00195‑212426086
    [Google Scholar]
  139. TuhinR.H. BegumM.M. RahmanM.S. KarimR. BegumT. AhmedS.U. MostofaR. HossainA. Abdel-DaimM. BegumR. Wound healing effect of Euphorbia hirta linn. (Euphorbiaceae) in alloxan induced diabetic rats.BMC Complement. Altern. Med.201717142310.1186/s12906‑017‑1930‑x28836990
    [Google Scholar]
  140. SakarcanA. SehirliO. Velioglu-OvünçA. ErcanF. ErkanlG. GedikN. SenerG. Ginkgo biloba extract improves oxidative organ damage in a rat model of thermal trauma.J. Burn Care Rehabil.200526651552410.1097/01.bcr.0000185115.17261.5016278567
    [Google Scholar]
  141. UpadhyayN.K. KumarR. MandotraS.K. MeenaR.N. SiddiquiM.S. SawhneyR.C. GuptaA. Safety and healing efficacy of Sea buckthorn (Hippophae rhamnoides L.) seed oil on burn wounds in rats.Food Chem. Toxicol.20094761146115310.1016/j.fct.2009.02.00219425187
    [Google Scholar]
  142. AfsharM. RavarianB. ZardastM. MoallemS.A. FardM.H. ValaviM. Evaluation of cutaneous wound healing activity of Malva sylvestris aqueous extract in BALB/c mice.Iran. J. Basic Med. Sci.2015186616622[PMID: 26221487].
    [Google Scholar]
  143. YamanI. DurmusA.S. CeribasiS. YamanM. Effects of Nigella sativa and silver sulfadiazine on burn wound healing in rats.Vet. Med. (Praha)2010551261962410.17221/2948‑VETMED
    [Google Scholar]
  144. SafaviF. FarimaniM.M. GolalipourM. LeungP.C. LauK.M. KwokH.F. WongC.W. BayatH. LauC.B.S. Investigations on the wound healing properties of Onosma dichroantha Boiss root extracts.S. Afr. J. Bot.201912534435210.1016/j.sajb.2019.08.005
    [Google Scholar]
  145. KawahiraK. SumiyoshiM. SakanakaM. KimuraY. Effects of ginsenoside Rb1 at low doses on histamine, substance P, and monocyte chemoattractant protein 1 in the burn wound areas during the process of acute burn wound repair.J. Ethnopharmacol.2008117227828410.1016/j.jep.2008.01.03218329832
    [Google Scholar]
  146. DjerrouJ. MaameriZ. Hamdo-PachaY. SeraktaM. RiachiF. DjaalabH. BoukelouaA. Effect of virgin fatty oil of Pistacia lentiscus on experimental burn wound’s healing in rabbits.Afr. J. Tradit. Complement. Altern. Med.20107325826310.4314/ajtcam.v7i3.5478821461154
    [Google Scholar]
  147. PirbaloutiA.G. AziziS. KoohpayehA. Healing potential of Iranian traditional medicinal plants on burn wounds in alloxan-induced diabetic rats.Rev. Bras. Farmacogn.201222239740310.1590/S0102‑695X2011005000183
    [Google Scholar]
  148. PasdaranA. HamediA. The genus Scrophularia: a source of iridoids and terpenoids with a diverse biological activity.Pharm. Biol.20175512211223310.1080/13880209.2017.139717829125010
    [Google Scholar]
  149. TokluH.Z. Tunalı-AkbayT. ErkanlıG. YükselM. ErcanF. ŞenerG. Silymarin, the antioxidant component of Silybum marianum, protects against burn-induced oxidative skin injury.Burns200733790891610.1016/j.burns.2006.10.40717521818
    [Google Scholar]
  150. MajumdarM. NayeemN. KamathJ.V. AsadM. Evaluation ofTectona grandis leaves for wound healing activity.Pak. J. Pharm. Sci.2007202120124[PMID: 17416566].
    [Google Scholar]
  151. LodhiS. PawarR.S. JainA.P. JainA. SinghaiA.K. Effect of Tephrosia purpurea (L) pers. on partial thickness and full thickness burn wounds in rats.J. Complement. Integr. Med.20107110.2202/1553‑3840.1344
    [Google Scholar]
  152. KangS.Y. JungH.W. NamJ.H. KimW.K. KangJ.S. KimY.H. ChoC.W. ChoC.W. ParkY.K. BaeH.S. Effects of the fruit extract of Tribulus terrestris on skin inflammation in mice with oxazolone‐induced atopic dermatitis through regulation of calcium channels, orai‐1 and trpv3, and mast cell activation.Evid. Based Complement. Alternat. Med.201720171831294610.1155/2017/831294629348776
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018343042241120072749
Loading
/content/journals/cdd/10.2174/0115672018343042241120072749
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test