Skip to content
2000
Volume 22, Issue 10
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Diabetic Foot Ulcer (DFU) is a chronic wound, and a person with diabetes has an increased lifetime risk of foot ulcers (19%-34%) and high morbidity (65% recurrence in 3-5 years, 20% lifetime amputation). Recent data have shown rising amputation rates, especially in the younger and minority populations. This abstract discusses innovative approaches for addressing this issue. This highlights the use of nanotechnology-based drug nanocomposite systems for natural wound healing therapies, with a focus on nanoparticles, nano-emulsions, and nanogels. This review also emphasizes the potential of hydrogels for drug delivery, highlighting their versatility in various medical applications. Furthermore, it delves into the use of silver nanoparticles (AgNP's) for treating diabetic wounds while acknowledging the need to address potential toxicity concerns. Finally, the abstract discusses the utilization of traditional herbal medicine and the integration of modern science to advance wound care, particularly focusing on wound microbiome, immune response, and controlled herbal medicine delivery. This study also highlights clinical trials conducted on DFU. Overall, these abstracts highlight the importance of exploring diverse and innovative solutions to chronic wound management.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018322140241023054041
2024-11-07
2025-12-18
Loading full text...

Full text loading...

References

  1. ArtasensiA. PedrettiA. VistoliG. FumagalliL. Type 2 diabetes mellitus: A review of multi-target drugs.Molecules2020258198710.3390/molecules2508198732340373
    [Google Scholar]
  2. ColeJ.B. FlorezJ.C. Genetics of diabetes mellitus and diabetes complications.Nat. Rev. Nephrol.202016737739010.1038/s41581‑020‑0278‑532398868
    [Google Scholar]
  3. Berlanga-AcostaJ. Fernández-MontequínJ. Valdés-PérezC. Savigne-GutiérrezW. Mendoza-MaríY. García-OjalvoA. Falcón-CamaV. García del Barco-HerreraD. Fernández-MayolaM. Pérez-SaadH. Pimentel-VázquezE. Urquiza-RodríguezA. KulikovskyM. Guillén-NietoG. Diabetic foot ulcers and epidermal growth factor: Revisiting the local delivery route for a successful outcome.BioMed Res. Int.20172017111010.1155/2017/292375928904951
    [Google Scholar]
  4. McDermottK. FangM. BoultonA.J.M. SelvinE. HicksC.W. Etiology, epidemiology, and disparities in the burden of diabetic foot ulcers.Diabetes Care202346120922110.2337/dci22‑004336548709
    [Google Scholar]
  5. NoorS. ZubairM. AhmadJ. Diabetic foot ulcer — A review on pathophysiology, classification and microbial etiology.Diabetes Metab. Syndr.20159319219910.1016/j.dsx.2015.04.00725982677
    [Google Scholar]
  6. EverettE. MathioudakisN. Update on management of diabetic foot ulcers.Ann. N. Y. Acad. Sci.20181411115316510.1111/nyas.1356929377202
    [Google Scholar]
  7. KavithaK.V. TiwariS. PurandareV.B. KhedkarS. BhosaleS.S. UnnikrishnanA.G. Choice of wound care in diabetic foot ulcer: A practical approach.World J. Diabetes20145454655610.4239/wjd.v5.i4.54625126400
    [Google Scholar]
  8. AldanaP.C. KhachemouneA. Diabetic foot ulcers: Appraising standard of care and reviewing new trends in management.Am. J. Clin. Dermatol.202021225526410.1007/s40257‑019‑00495‑x31848923
    [Google Scholar]
  9. DoğruelH. AydemirM. BalciM.K. Management of diabetic foot ulcers and the challenging points: An endocrine view.World J. Diabetes2022131273610.4239/wjd.v13.i1.2735070057
    [Google Scholar]
  10. NavesC.C.L.M. The diabetic foot: A historical overview and gaps in current treatment.Adv. Wound Care (New Rochelle)20165519119710.1089/wound.2013.051827134763
    [Google Scholar]
  11. AbbasM. SaeedF. AnjumF.M. AfzaalM. TufailT. BashirM.S. IshtiaqA. HussainS. SuleriaH.A.R. Natural polyphenols: An overview.Int. J. Food Prop.20172081689169910.1080/10942912.2016.1220393
    [Google Scholar]
  12. KhursheedR. SinghS.K. WadhwaS. GulatiM. KapoorB. AwasthiA. KrA. KumarR. PottooF.H. KumarV. DurejaH. AnandK. ChellappanD.K. DuaK. GowthamarajanK. Opening eyes to therapeutic perspectives of bioactive polyphenols and their nanoformulations against diabetic neuropathy and related complications.Expert Opin. Drug Deliv.202118442744810.1080/17425247.2021.184651733356647
    [Google Scholar]
  13. JonesO.G. McClementsD.J. Recent progress in biopolymer nanoparticle and microparticle formation by heat-treating electrostatic protein-polysaccharide complexes.Adv. Colloid Interface Sci.20111671-2496210.1016/j.cis.2010.10.00621094486
    [Google Scholar]
  14. VenerandaM. HuQ. WangT. LuoY. CastroK. MadariagaJ.M. Formation and characterization of zein-caseinate-pectin complex nanoparticles for encapsulation of eugenol.Lebensm. Wiss. Technol.20188959660310.1016/j.lwt.2017.11.040
    [Google Scholar]
  15. MilinčićD.D. PopovićD.A. LevićS.M. KostićA.Ž. TešićŽ.L. NedovićV.A. PešićM.B. Application of polyphenol-loaded nanoparticles in food industry.Nanomaterials (Basel)2019911162910.3390/nano911162931744091
    [Google Scholar]
  16. DengH. LiB. ShenQ. ZhangC. KuangL. ChenR. WangS. MaZ. LiG. Mechanisms of diabetic foot ulceration: A review.J. Diabetes202315429931210.1111/1753‑0407.1337236891783
    [Google Scholar]
  17. RajaJ.M. MaturanaM.A. KayaliS. KhouzamA. EfeovbokhanN. Diabetic foot ulcer: A comprehensive review of pathophysiology and management modalities.World J. Clin. Cases20231181684169310.12998/wjcc.v11.i8.168436970004
    [Google Scholar]
  18. SyafrilS. Pathophysiology diabetic foot ulcer.OP Conf. Ser.: Earth Environ. Sci.201812501216110.1088/1755‑1315/125/1/012161
    [Google Scholar]
  19. PougetC. Dunyach-RemyC. PantelA. SchuldinerS. SottoA. LavigneJ.P. Biofilms in diabetic foot ulcers: Significance and clinical relevance.Microorganisms2020810158010.3390/microorganisms810158033066595
    [Google Scholar]
  20. AliR. ShahidA. AliN. HasanS.K. MajedF. SultanaS. Amelioration of Benzo[a]pyrene-induced oxidative stress and pulmonary toxicity by Naringenin in Wistar rats: A plausible role of COX-2 and NF-κB.Hum. Exp. Toxicol.201736434936410.1177/096032711665000927206700
    [Google Scholar]
  21. GuimarãesI. Baptista-SilvaS. PintadoM. Polyphenols: A promising avenue in therapeutic solutions for wound care.Appl. Sci. (Basel)2021113123010.3390/app11031230
    [Google Scholar]
  22. SinglaR.K. DubeyA.K. GargA. SharmaR.K. FiorinoM. AmeenS.M. HaddadM.A. Al-HiaryM. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures.J. AOAC Int.201910251397140010.5740/jaoacint.19‑013331200785
    [Google Scholar]
  23. Maleki DanaP. SadoughiF. MansourniaM.A. MirzaeiH. AsemiZ. YousefiB. Targeting Wnt signaling pathway by polyphenols: Implication for aging and age-related diseases.Biogerontology202122547949410.1007/s10522‑021‑09934‑x34480268
    [Google Scholar]
  24. JinT. Curcumin and dietary polyphenol research: Beyond drug discovery.Acta Pharmacol. Sin.201839577978610.1038/aps.2017.17929542686
    [Google Scholar]
  25. AmawiH. AshbyC.Jr SamuelT. PeramanR. TiwariA. Polyphenolic nutrients in cancer chemoprevention and metastasis: Role of the epithelial-to-mesenchymal (EMT) pathway.Nutrients20179891110.3390/nu908091128825675
    [Google Scholar]
  26. EgbunaC. Dable-TupasG. Functional foods and nutraceuticals; Springer Nature.Switzerland AG202011632
    [Google Scholar]
  27. TsaoR. Chemistry and biochemistry of dietary polyphenols.Nutrients20102121231124610.3390/nu212123122254006
    [Google Scholar]
  28. SilvaL.C.R.C. DavidJ.M. BorgesR.S.Q. FerreiraS.L.C. DavidJ.P. ReisP.S. BrunsR.E. Determination of flavanones in orange juices obtained from different sources by HPLC/DAD.J. Anal. Methods Chem.2014201411510.1155/2014/29683825180132
    [Google Scholar]
  29. AdetunjiJ.A. FasaeK.D. AweA.I. PaimoO.K. AdegokeA.M. AkintundeJ.K. SekhoachaM.P. The protective roles of citrus flavonoids, naringenin, and naringin on endothelial cell dysfunction in diseases.Heliyon202396e1716610.1016/j.heliyon.2023.e1716637484296
    [Google Scholar]
  30. AkrawiS.H. GorainB. NairA.B. ChoudhuryH. PandeyM. ShahJ.N. VenugopalaK.N. Development and optimization of naringenin-loaded chitosan-coated nanoemulsion for topical therapy in wound healing.Pharmaceutics202012989310.3390/pharmaceutics1209089332962195
    [Google Scholar]
  31. YeoE. Yew ChiengC.J. ChoudhuryH. PandeyM. GorainB. Tocotrienols-rich naringenin nanoemulgel for the management of diabetic wound: Fabrication, characterization and comparative in vitro evaluations.Curr. Res. Pharmacol. Drug Disc.2021210001910.1016/j.crphar.2021.10001934909654
    [Google Scholar]
  32. OkurM.E. ŞakulA.A. AylaŞ. KaradağA.E. ŞenyüzC.Ş. BaturŞ. DaylanB. Özdemı̇rE.M. Yücelı̇kŞ.S. Sı̇pahı̇H. AydinA. Wound healing effect of naringin gel in alloxan induced diabetic mice.Ankara Universitesi Eczacilik Fakultesi Dergisi202044339741410.33483/jfpau.742224
    [Google Scholar]
  33. KandhareA.D. AlamJ. PatilM.V.K. SinhaA. BodhankarS.L. Wound healing potential of naringin ointment formulation via regulating the expression of inflammatory, apoptotic and growth mediators in experimental rats.Pharm. Biol.201654341943210.3109/13880209.2015.103875525894211
    [Google Scholar]
  34. SahinerM. SahinerN. SagbasS. FullertonM.L. BlakeD.A. Fabrication of biodegradable poly (naringin) particles with antioxidant activity and low toxicity.ACS Omega2018312173591736710.1021/acsomega.8b02292
    [Google Scholar]
  35. MiaoH. ChenZ. XuW. WangW. SongY. WangZ. Preparation and characterization of naringenin microparticles via a supercritical anti-Solvent process.J. Supercrit. Fluids2018131192510.1016/j.supflu.2017.08.013
    [Google Scholar]
  36. BalachandranA. ChoiS.B. BeataM.M. Ma,gorzataJ. FroemmingG.R.A. LavillaC.A.Jr BillacuraM.P. SiyumbwaS.N. OkechukwuP.N. Antioxidant, wound healing potential and in silico assessment of naringin, eicosane and octacosane.Molecules2023283104310.3390/molecules2803104336770709
    [Google Scholar]
  37. JiP. YuT. LiuY. JiangJ. XuJ. ZhaoY. HaoY. QiuY. ZhaoW. WuC. Naringenin-loaded solid lipid nanoparticles: Preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics.Drug Des. Devel. Ther.201610911925[PMID: 27041995
    [Google Scholar]
  38. VabeiryureilaiM. LalrinzualiK. JagetiaG.C. NF-κB and COX-2 repression with topical application of hesperidin and naringin hydrogels augments repair and regeneration of deep dermal wounds.Burns202248113214510.1016/j.burns.2021.04.01633972147
    [Google Scholar]
  39. QuintãoW.S.C. Silva-CarvalhoA.E. HilgertL.A. GratieriT. Cunha-FilhoM. Saldanha-AraújoF. GelfusoG.M. Anti-inflammatory effect evaluation of naringenin and its incorporation into a chitosan-based film for transdermal delivery.Int. J. Pharm.202262712223110.1016/j.ijpharm.2022.12223136167188
    [Google Scholar]
  40. SalehiM. EhteramiA. FarzamfarS. VaezA. Ebrahimi-BaroughS. Accelerating healing of excisional wound with alginate hydrogel containing naringenin in rat model.Drug Deliv. Transl. Res.202111114215310.1007/s13346‑020‑00731‑632086788
    [Google Scholar]
  41. FarzaeiM.H. DerayatP. PourmanouchehriZ. KahrarianM. SamimiZ. HajialyaniM. BahramiG. HosseinzadehL. RashidiK. TajehmiriA. BehboodL. Characterization and evaluation of antibacterial and wound healing activity of naringenin-loaded polyethylene glycol/polycaprolactone electrospun nanofibers.J. Drug Deliv. Sci. Technol.20238110418210.1016/j.jddst.2023.104182
    [Google Scholar]
  42. Kaur SandhuS. RautJ. KumarS. SinghM. AhmedB. SinghJ. RanaV. RishiP. GaneshN. DuaK. Pal KaurI. Nanocurcumin and viable Lactobacillus plantarum based sponge dressing for skin wound healing.Int. J. Pharm.202364312318710.1016/j.ijpharm.2023.12318737394156
    [Google Scholar]
  43. KantV. GopalA. PathakN.N. KumarP. TandanS.K. KumarD. Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats.Int. Immunopharmacol.201420232233010.1016/j.intimp.2014.03.00924675438
    [Google Scholar]
  44. LiF. ShiY. LiangJ. ZhaoL. Curcumin-loaded chitosan nanoparticles promote diabetic wound healing via attenuating inflammation in a diabetic rat model.J. Biomater. Appl.201934447648610.1177/088532821986092931280635
    [Google Scholar]
  45. DehghaniS. DalirfardoueiR. Jafari Najaf AbadiM.H. Ebrahimi NikM. JaafariM.R. MahdipourE. Topical application of curcumin regulates the angiogenesis in diabetic - impaired cutaneous wound.Cell Biochem. Funct.202038555856610.1002/cbf.350032030812
    [Google Scholar]
  46. KarriV.V.S.R. KuppusamyG. TalluriS.V. MannemalaS.S. KolliparaR. WadhwaniA.D. MulukutlaS. RajuK.R.S. MalayandiR. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing.Int. J. Biol. Macromol.201693Pt B1519152910.1016/j.ijbiomac.2016.05.03827180291
    [Google Scholar]
  47. MohantyC. PradhanJ. A human epidermal growth factor-curcumin bandage bioconjugate loaded with mesenchymal stem cell for in vivo diabetic wound healing.Mater. Sci. Eng. C202011111075110.1016/j.msec.2020.11075132279771
    [Google Scholar]
  48. Ranjbar-MohammadiM. RabbaniS. BahramiS.H. JoghataeiM.T. MoayerF. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers.Mater. Sci. Eng. C2016691183119110.1016/j.msec.2016.08.03227612816
    [Google Scholar]
  49. VenkatasubbuG.D. AnusuyaT. Investigation on Curcumin nanocomposite for wound dressing.Int. J. Biol. Macromol.20179836637810.1016/j.ijbiomac.2017.02.00228167107
    [Google Scholar]
  50. ShendeP. GuptaH. Formulation and comparative characterization of nanoparticles of curcumin using natural, synthetic and semi-synthetic polymers for wound healing.Life Sci.202025311758810.1016/j.lfs.2020.11758832220621
    [Google Scholar]
  51. RezaeiM. OryanS. NouraniM.R. MofidM. MozafariM. Curcumin nanoparticle-incorporated collagen/chitosan scaffolds for enhanced wound healing. Bioinspired.Biomimetic Nanobiomater.20187315916610.1680/jbibn.17.00036
    [Google Scholar]
  52. AndrabiS.M. MajumderS. GuptaK.C. KumarA. Dextran based amphiphilic nano-hybrid hydrogel system incorporated with curcumin and cerium oxide nanoparticles for wound healing.Colloids Surf. B Biointerfaces202019511126310.1016/j.colsurfb.2020.11126332717624
    [Google Scholar]
  53. AhmadN AhmadR Al-QudaihiA AlaseelSE FitaIZ KhalidMS PottooFH BollaSR A novel self-nanoemulsifying drug delivery system for curcumin used in the treatment of wound healing and inflammation.3 Biotech.2019910360
    [Google Scholar]
  54. AlibolandiM. MohammadiM. TaghdisiS.M. AbnousK. RamezaniM. Synthesis and preparation of biodegradable hybrid dextran hydrogel incorporated with biodegradable curcumin nanomicelles for full thickness wound healing.Int. J. Pharm.2017532146647710.1016/j.ijpharm.2017.09.04228927842
    [Google Scholar]
  55. AhmadN. AhmadR. Al-QudaihiA. AlaseelS.E. FitaI.Z. KhalidM.S. PottooF.H. Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation.RSC Advances2019935201922020610.1039/C9RA03102B35514703
    [Google Scholar]
  56. HussainZ. PandeyM. ChoudhuryH. YingP.C. XianT.M. KaurT. JiaG.W. GorainB. Hyaluronic acid functionalized nanoparticles for simultaneous delivery of curcumin and resveratrol for management of chronic diabetic wounds: Fabrication, characterization, stability and in vitro release kinetics.J. Drug Deliv. Sci. Technol.20205710174710.1016/j.jddst.2020.101747
    [Google Scholar]
  57. ZhaoC.C. ZhuL. WuZ. YangR. XuN. LiangL. Resveratrol-loaded peptide-hydrogels inhibit scar formation in wound healing through suppressing inflammation.Regen. Biomater.20207199107[PMID: 32440361
    [Google Scholar]
  58. SinghA. IqubalM.K. MittalS. QizilbashF.F. SartazA. KumarS. AliJ. BabootaS. Designing and evaluation of dermal targeted combinatorial nanostructured lipid carrier gel loaded with curcumin and resveratrol for accelerating cutaneous wound healing.Particul. Sci. Technol.20244218810610.1080/02726351.2023.2205348
    [Google Scholar]
  59. AmanatS. TaymouriS. VarshosazJ. MinaiyanM. TalebiA. Carboxymethyl cellulose-based wafer enriched with resveratrol-loaded nanoparticles for enhanced wound healing.Drug Deliv. Transl. Res.20201051241125410.1007/s13346‑020‑00711‑w31981141
    [Google Scholar]
  60. JeeJ.P. PangeniR. JhaS.K. ByunY. ParkJ.W. Preparation and in vivo evaluation of a topical hydrogel system incorporating highly skin-permeable growth factors, quercetin, and oxygen carriers for enhanced diabetic wound-healing therapy.Int. J. Nanomedicine2019145449547510.2147/IJN.S21388331409998
    [Google Scholar]
  61. ChoudharyA. KantV. JangirB.L. JoshiV.G. Quercetin loaded chitosan tripolyphosphate nanoparticles accelerated cutaneous wound healing in Wistar rats.Eur. J. Pharmacol.202088017317210.1016/j.ejphar.2020.17317232407724
    [Google Scholar]
  62. JangdeR. SrivastavaS. SinghM.R. SinghD. In vitro and in vivo characterization of quercetin loaded multiphase hydrogel for wound healing application.Int. J. Biol. Macromol.20181151211121710.1016/j.ijbiomac.2018.05.01029730004
    [Google Scholar]
  63. JangdeR. SinghD. Preparation and optimization of quercetin-loaded liposomes for wound healing, using response surface methodology.Artif. Cells Nanomed. Biotechnol.201644263564110.3109/21691401.2014.97523825375215
    [Google Scholar]
  64. BairagiU. MittalP. SinghJ. MishraB. Preparation, characterization, and in vivo evaluation of nano formulations of ferulic acid in diabetic wound healing.Drug Dev. Ind. Pharm.201844111783179610.1080/03639045.2018.149644829973105
    [Google Scholar]
  65. PoornimaB. KorrapatiP.S. Fabrication of chitosan-polycaprolactone composite nanofibrous scaffold for simultaneous delivery of ferulic acid and resveratrol.Carbohydr. Polym.20171571741174910.1016/j.carbpol.2016.11.05627987890
    [Google Scholar]
  66. AnandS. PandeyP. BegumM.Y. ChidambaramK. AryaD.K. GuptaR.K. SankhwarR. JaiswalS. ThakurS. RajinikanthP.S. Electrospun biomimetic multifunctional nanofibers loaded with ferulic acid for enhanced antimicrobial and wound-healing activities in STZ-Induced diabetic rats.Pharmaceuticals (Basel)202215330210.3390/ph1503030235337100
    [Google Scholar]
  67. AggarwalB.B. KumarA. BhartiA.C. Anticancer potential of curcumin: Preclinical and clinical studies.Anticancer Res.20032310A363398
    [Google Scholar]
  68. AnsariL. Mashayekhi-SardooH. Baradaran RahimiV. YahyazadehR. Ghayour-MobarhanM. AskariV.R. Curcumin-based nanoformulations alleviate wounds and related disorders: A comprehensive review.Biofactors202349473678110.1002/biof.194536961254
    [Google Scholar]
  69. SharmaA. DheerD. SinghI. PuriV. KumarP. Phytoconstituent-loaded nanofibrous meshes as wound dressings: A concise review.Pharmaceutics2023154105810.3390/pharmaceutics1504105837111544
    [Google Scholar]
  70. PignetA.L. SchellneggerM. HeckerA. KohlhauserM. KotzbeckP. KamolzL.P. Resveratrol-induced signal transduction in wound healing.Int. J. Mol. Sci.202122231261410.3390/ijms22231261434884419
    [Google Scholar]
  71. D'AndreaG. Quercetin: A flavonol with multifaceted therapeutic applications?Fitoterapia201510625627110.1016/j.fitote.2015.09.01826393898
    [Google Scholar]
  72. TomouE.M. PapakyriakopoulouP. SaitaniE.M. ValsamiG. PippaN. SkaltsaH. Recent advances in nanoformulations for quercetin delivery.Pharmaceutics2023156165610.3390/pharmaceutics1506165637376104
    [Google Scholar]
  73. WadhwaK. KadianV. PuriV. BhardwajB.Y. SharmaA. PahwaR. RaoR. GuptaM. SinghI. New insights into quercetin nanoformulations for topical delivery.Phytomedicine Plus20222210025710.1016/j.phyplu.2022.100257
    [Google Scholar]
  74. BozH. Ferulic acid in cereals - a review.Czech J. Food Sci.20153311710.17221/401/2014‑CJFS
    [Google Scholar]
  75. ShuklaD. NandiN.K. SinghB. SinghA. KumarB. NarangR.K. SinghC. Ferulic acid-loaded drug delivery systems for biomedical applications.J. Drug Deliv. Sci. Technol.20227510362110.1016/j.jddst.2022.103621
    [Google Scholar]
  76. LobiucA. PavălN.E. MangalagiuI.I. GheorghițăR. TelibanG.C. Amăriucăi-MantuD. StoleruV. Future antimicrobials: Natural and functionalized phenolics.Molecules2023283111410.3390/molecules2803111436770780
    [Google Scholar]
  77. ZhangH. TsaoR. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects.Curr. Opin. Food Sci.20168334210.1016/j.cofs.2016.02.002
    [Google Scholar]
  78. JinL. ZengW. ZhangF. ZhangC. LiangW. Naringenin ameliorates acute inflammation by regulating intracellular cytokine degradation.J. Immunol.2017199103466347710.4049/jimmunol.160201628993518
    [Google Scholar]
  79. BasiouniS. Tellez-IsaiasG. LatorreJ.D. GrahamB.D. Petrone-GarciaV.M. El-SeediH.R. YalçınS. El-WahabA.A. VisscherC. May-SimeraH.L. HuberC. EisenreichW. ShehataA.A. Anti-Inflammatory and antioxidative phytogenic substances against secret killers in poultry.Current Status and Prospects. Vet. Sci.20231015510.3390/vetsci1001005536669057
    [Google Scholar]
  80. YangJ. LiuL. LiM. HuangX. YangH. LiK. Naringenin inhibits pro inflammatory cytokine production in macrophages through inducing MT1G to suppress the activation of NF κB.Mol. Immunol.202113715516210.1016/j.molimm.2021.07.00334252709
    [Google Scholar]
  81. ShilpaV.S. ShamsR. DashK.K. PandeyV.K. DarA.H. Ayaz MukarramS. HarsányiE. KovácsB. Phytochemical properties, extraction, and pharmacological benefits of naringin: A review.Molecules20232815562310.3390/molecules2815562337570594
    [Google Scholar]
  82. XuF.W. LvY.L. ZhongY.F. XueY.N. WangY. ZhangL.Y. HuX. TanW.Q. Beneficial effects of green tea EGCG on skin wound healing: A comprehensive review.Molecules20212620612310.3390/molecules2620612334684703
    [Google Scholar]
  83. SunR. LiuC. LiuJ. YinS. SongR. MaJ. CaoG. LuY. ZhangG. WuZ. ChenA. WangY. Integrated network pharmacology and experimental validation to explore the mechanisms underlying naringenin treatment of chronic wounds.Sci. Rep.202313113210.1038/s41598‑022‑26043‑y36599852
    [Google Scholar]
  84. ZhangY. WangJ. ZhouS. XieZ. WangC. GaoY. ZhouJ. ZhangX. LiQ. Flavones hydroxylated at 5, 7, 3' and 4' ameliorate skin fibrosis via inhibiting activin receptor-like kinase 5 kinase activity.Cell Death Dis.201910212410.1038/s41419‑019‑1333‑730741930
    [Google Scholar]
  85. ZhangM. ChenX. ZhangY. ZhaoX. ZhaoJ. WangX. The potential of functionalized dressing releasing flavonoids facilitates scar-free healing.Front. Med. (Lausanne)2022997812010.3389/fmed.2022.97812036262272
    [Google Scholar]
  86. EmadNA ZaiI. AhmadS. PanditJ. KhanM.A. SultanaY. Role of polyphenols, their nano-formulations, and biomaterials in diabetic wound healing.Endocr. Metab. Immune Disord. Drug Targets202424662664110.2174/0118715303242310230927104709
    [Google Scholar]
  87. MehtaP. SharmaM. DeviM. Hydrogels: An overview of its classifications, properties, and applications.J. Mech. Behav. Biomed. Mater.202314710614510.1016/j.jmbbm.2023.10614537797557
    [Google Scholar]
  88. AliA. AhmedS. An introduction to hydrogels.Polysaccharides-Based Hydrogels: Synthesis Characterization and Applications.AmsterdamElsevier202410.1016/B978‑0‑323‑99341‑8.00001‑6
    [Google Scholar]
  89. ZamaniA. TaherzadehM.J. Effects of partial dehydration and freezing temperature on the morphology and water binding capacity of carboxymethyl chitosan-based superabsorbents.Ind. Eng. Chem. Res.201049178094809910.1021/ie100257s
    [Google Scholar]
  90. AdairA. KaesamanA. KlinpituksaP. Superabsorbent materials derived from hydroxyethyl cellulose and bentonite: Preparation, characterization and swelling capacities.Polym. Test.20176432132910.1016/j.polymertesting.2017.10.018
    [Google Scholar]
  91. VargheseSA RangappaSM SiengchinS ParameswaranpillaiJ Natural polymers and the hydrogels prepared from them.Hydrogels Based on Natural Polymers.AmsterdamElsevier202010.1016/B978‑0‑12‑816421‑1.00002‑1
    [Google Scholar]
  92. UllahF. OthmanM.B.H. JavedF. AhmadZ. AkilH.M. Classification, processing and application of hydrogels: A review.Mater. Sci. Eng. C20155741443310.1016/j.msec.2015.07.05326354282
    [Google Scholar]
  93. KoettingM.C. PetersJ.T. SteichenS.D. PeppasN.A. Stimulus-responsive hydrogels: Theory, modern advances, and applications.Mater. Sci. Eng. Rep.20159314910.1016/j.mser.2015.04.00127134415
    [Google Scholar]
  94. ZhangS. GeG. QinY. LiW. DongJ. MeiJ. MaR. ZhangX. BaiJ. ZhuC. ZhangW. GengD. Recent advances in responsive hydrogels for diabetic wound healing.Mater. Today Bio20231810050810.1016/j.mtbio.2022.10050836504542
    [Google Scholar]
  95. KesharwaniP. BishtA. AlexanderA. DaveV. SharmaS. Biomedical applications of hydrogels in drug delivery system: An update.J. Drug Deliv. Sci. Technol.20216610291410.1016/j.jddst.2021.102914
    [Google Scholar]
  96. TavakoliS. KlarA.S. Advanced hydrogels as wound dressings.Biomolecules2020108116910.3390/biom1008116932796593
    [Google Scholar]
  97. KaurM. SharmaA. PuriV. AggarwalG. MamanP. HuanbuttaK. NagpalM. SangnimT. Chitosan-based polymer blends for drug delivery systems.Polymers (Basel)2023159202810.3390/polym1509202837177176
    [Google Scholar]
  98. PandeyS. ShamimA. ShaifM. KushwahaP. Development and evaluation of Resveratrol-loaded liposomes in hydrogel-based wound dressing for diabetic foot ulcer.Naunyn Schmiedebergs Arch. Pharmacol.202339681811182510.1007/s00210‑023‑02441‑536862150
    [Google Scholar]
  99. RezvanianM. NgS.F. AlaviT. AhmadW. In vivo evaluation of Alginate-Pectin hydrogel film loaded with Simvastatin for diabetic wound healing in Streptozotocin-induced diabetic rats.Int. J. Biol. Macromol.202117130831910.1016/j.ijbiomac.2020.12.22133421467
    [Google Scholar]
  100. ZhaoL. NiuL. LiangH. TanH. LiuC. ZhuF. pH and glucose dual-responsive injectable hydrogels with insulin and fibroblasts as bioactive dressings for diabetic wound healing.ACS Appl. Mater. Interfaces2017943375633757410.1021/acsami.7b0939528994281
    [Google Scholar]
  101. LeeY.H. LinS.J. Chitosan/PVA hetero-composite hydrogel containing antimicrobials, perfluorocarbon nanoemulsions, and growth factor-loaded nanoparticles as a multifunctional dressing for diabetic wound healing: Synthesis, characterization, and in vitro/in vivo evaluation.Pharmaceutics202214353710.3390/pharmaceutics1403053735335913
    [Google Scholar]
  102. El-SalamouniN.S. GowayedM.A. SeiffeinN.L. Abdel- Moneim, R.A.; Kamel, M.A.; Labib, G.S. Valsartan solid lipid nanoparticles integrated hydrogel: A challenging repurposed use in the treatment of diabetic foot ulcer, in vitro/in vivo experimental study.Int. J. Pharm.202159212009110.1016/j.ijpharm.2020.12009133197564
    [Google Scholar]
  103. LiZ. ZhaoY. LiuH. RenM. WangZ. WangX. LiuH. FengY. LinQ. WangC. WangJ. pH-responsive hydrogel loaded with insulin as a bioactive dressing for enhancing diabetic wound healing.Mater. Des.202121011010410.1016/j.matdes.2021.110104
    [Google Scholar]
  104. LeeY.H. HongY.L. WuT.L. Novel silver and nanoparticle-encapsulated growth factor co-loaded chitosan composite hydrogel with sustained antimicrobility and promoted biological properties for diabetic wound healing.Mater. Sci. Eng. C202111811138510.1016/j.msec.2020.11138533254992
    [Google Scholar]
  105. BadhwarR. ManglaB. NeupaneY.R. KhannaK. PopliH. Quercetin loaded silver nanoparticles in hydrogel matrices for diabetic wound healing.Nanotechnology2021325050510210.1088/1361‑6528/ac253634500444
    [Google Scholar]
  106. ChenG. HeL. ZhangP. ZhangJ. MeiX. WangD. ZhangY. RenX. ChenZ. Encapsulation of green tea polyphenol nanospheres in PVA/alginate hydrogel for promoting wound healing of diabetic rats by regulating PI3K/AKT pathway.Mater. Sci. Eng. C202011011068610.1016/j.msec.2020.11068632204114
    [Google Scholar]
  107. MasoodN. AhmedR. TariqM. AhmedZ. MasoudM.S. AliI. AsgharR. AndleebA. HasanA. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits.Int. J. Pharm.2019559233610.1016/j.ijpharm.2019.01.01930668991
    [Google Scholar]
  108. KamarS.S. Abdel-KaderD.H. RashedL.A. Beneficial effect of Curcumin Nanoparticles-Hydrogel on excisional skin wound healing in type-I diabetic rat: Histological and immunohistochemical studies.Ann. Anat.20192229410210.1016/j.aanat.2018.11.00530521949
    [Google Scholar]
  109. DingZ. ZhangY. GuoP. DuanT. ChengW. GuoY. ZhengX. LuG. LuQ. KaplanD.L. Injectable desferrioxamine-laden silk nanofiber hydrogels for accelerating diabetic wound healing.ACS Biomater. Sci. Eng.2021731147115810.1021/acsbiomaterials.0c0150233522800
    [Google Scholar]
  110. FanY. WuW. LeiY. GaucherC. PeiS. ZhangJ. XiaX. Edaravone-loaded alginate-based nanocomposite hydrogel accelerated chronic wound healing in diabetic mice.Mar. Drugs201917528510.3390/md1705028531083588
    [Google Scholar]
  111. ParkY.G. LeeI.H. ParkE.S. KimJ.Y. Hydrogel and platelet-rich plasma combined treatment to accelerate wound healing in a nude mouse model.Arch. Plast. Surg.201744319420110.5999/aps.2017.44.3.19428573093
    [Google Scholar]
  112. BadhwarR. SinghR. PopliH. Implementation of quality by design (qbd) approach in development of qct-smedds with combination of agnps for diabetic foot ulcer management.Indian J. Pharm. Educ. Res.20215512071223
    [Google Scholar]
  113. LiuM. LiuT. ChenX. YangJ. DengJ. HeW. ZhangX. LeiQ. HuX. LuoG. WuJ. Nano-silver-incorporated biomimetic polydopamine coating on a thermoplastic polyurethane porous nanocomposite as an efficient antibacterial wound dressing.J. Nanobiotechnol.20181618910.1186/s12951‑018‑0416‑430419925
    [Google Scholar]
  114. RenukaR.R. JuliusA. YoganandhamS.T. UmapathyD. RamadossR. SamrotA.V. VijayD.D. Diverse nanocomposites as a potential dressing for diabetic wound healing.Front. Endocrinol. (Lausanne)202313107456810.3389/fendo.2022.107456836714604
    [Google Scholar]
  115. Nagarjuna ReddyV. NyamathullaS. Abdul Kadir PahirulzamanK. MokhtarS.I. GiribabuN. PasupuletiV.R. Gallocatechin-silver nanoparticles embedded in cotton gauze patches accelerated wound healing in diabetic rats by promoting proliferation and inhibiting apoptosis through the Wnt/β-catenin signaling pathway.PLoS One2022176e026850510.1371/journal.pone.026850535737691
    [Google Scholar]
  116. GuptaA. BriffaS.M. SwinglerS. GibsonH. KannappanV. AdamusG. KowalczukM. MartinC. RadeckaI. Synthesis of silver nanoparticles using curcumin-cyclodextrins loaded into bacterial cellulose-based hydrogels for wound dressing applications.Biomacromolecules20202151802181110.1021/acs.biomac.9b0172431967794
    [Google Scholar]
  117. KaurP. SharmaA.K. NagD. DasA. DattaS. GanguliA. GoelV. RajputS. ChakrabartiG. BasuB. ChoudhuryD. Novel nano-insulin formulation modulates cytokine secretion and remodeling to accelerate diabetic wound healing.Nanomedicine2019151475710.1016/j.nano.2018.08.01330213518
    [Google Scholar]
  118. AnishaB.S. BiswasR. ChennazhiK.P. JayakumarR. Chitosan-hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds.Int. J. Biol. Macromol.20136231032010.1016/j.ijbiomac.2013.09.01124060281
    [Google Scholar]
  119. GainzaG. AguirreJ.J. PedrazJ.L. HernA­ndezR.M. IgartuaM. rhEGF-loaded PLGA-Alginate microspheres enhance the healing of full-thickness excisional wounds in diabetised Wistar rats.Eur. J. Pharm. Sci.2013503-424325210.1016/j.ejps.2013.07.00323872142
    [Google Scholar]
  120. GainzaG. PastorM. AguirreJ.J. VillullasS. PedrazJ.L. HernandezR.M. IgartuaM. A novel strategy for the treatment of chronic wounds based on the topical administration of rhEGF-loaded lipid nanoparticles: In vitro bioactivity and in vivo effectiveness in healing-impaired db/db mice.J. Control. Release2014185516110.1016/j.jconrel.2014.04.03224794895
    [Google Scholar]
  121. SalemH.F. NafadyM.M. EweesM.G.E.L.D. HassanH. KhallafR.A. Rosuvastatin calcium-based novel nanocubic vesicles capped with silver nanoparticles-loaded hydrogel for wound healing management: Optimization employing Box-Behnken design: In vitro and in vivo assessment.J. Liposome Res.2022321456110.1080/08982104.2020.186716633353435
    [Google Scholar]
  122. LiuQ. ZhangY. HuangJ. XuZ. LiX. YangJ. HuangH. TangS. ChaiY. LinJ. YangC. LiuJ. LinS. Mesoporous silica-coated silver nanoparticles as ciprofloxacin/siRNA carriers for accelerated infected wound healing.J. Nanobiotechnol.202220138610.1186/s12951‑022‑01600‑935999547
    [Google Scholar]
  123. ChoudhuryH. PandeyM. LimY.Q. LowC.Y. LeeC.T. MarilynT.C.L. LohH.S. LimY.P. LeeC.F. BhattamishraS.K. KesharwaniP. GorainB. Silver nanoparticles: Advanced and promising technology in diabetic wound therapy.Mater. Sci. Eng. C202011211092510.1016/j.msec.2020.11092532409075
    [Google Scholar]
  124. SalunkheJ.D. MohiteB.V. PatilS.V. Naringenin biosynthesis and fabrication of naringenin mediated nano silver conjugate for antimicrobial potential.Nat. Prod. Res.202337183184319010.1080/14786419.2022.214793136412534
    [Google Scholar]
  125. University of Guadalajara. Efficacy of the combination of isosorbide dinitrate spray and chitosan in diabetic foot ulcers.2021Available From: https://classic.clinicaltrials.gov/ct2/show/NCT02789033
  126. Xequel Bio, Inc.. Safety study to examine the Systemic Exposure of Granexin® Gel after topical application to diabetic foot ulcers.2018Available From: https://classic.clinicaltrials.gov/ct2/show/NCT02652754
  127. Biotec Pharmacon ASA. Evaluation of Woulgan in Diabetic Foot Ulcer.2019Available From: https://classic.clinicaltrials.gov/ct2/show/NCT02631512
  128. Xequel Bio, Inc.. A study of granexin gel in the treatment of diabetic foot ulcer.2020Available From: https://classic.clinicaltrials.gov/ct2/show/NCT02667327
  129. Smith & Nephew, Inc.. Use of Santyl in Diabetic Foot Ulcers.2018Available From: https://classic.clinicaltrials.gov/ct2/show/NCT02581488
  130. Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran. Effect of Topic Pirfenidone in Diabetic Ulcers (PirDFI).2016Available From: https://classic.clinicaltrials.gov/ct2/show/NCT02222376
  131. Karyopharm Therapeutics Inc. Study of Safety, Tolerability, and Pharmacokinetics of Topical Selinexor (KPT-330) Diabetic Foot Ulcer (DFU) Patients.2023Available From: https://classic.clinicaltrials.gov/ct2/show/NCT02367690
  132. Royer Biomedical, Inc.. Safety and Efficacy of Gentamicin Topical Gel (AppliGel-G) for Treatment of Mild to Moderately Infected Diabetic Foot Ulcers.2015Available From: https://classic.clinicaltrials.gov/ct2/show/NCT02036528
  133. Integra LifeSciences Corporation. Phase III Study to Evaluate Efficacy and Safety of DSC127 in Diabetic Foot Ulcers (STRIDE 1).2017Available From: https://classic.clinicaltrials.gov/ct2/show/NCT01830348
  134. OcuNexus Therapeutics, Inc.. A study to investigate the safety and clinical effect of Nexagon® as a topical treatment for subjects with a Diabetic Foot Ulcer (DUNE) (DUNE).2014Available From: https://classic.clinicaltrials.gov/ct2/show/NCT01490879
  135. Oneness Biotech Co. Ltd. A Randomized,Double-blind,Placebo-controlled Clinical Study to Explore the Mechanism of Action of ON101 Cream in Patients With DFUs.2023Available From: https://classic.clinicaltrials.gov/ct2/show/NCT04945161
  136. Integra LifeSciences Corporation. Phase 3 Study Evaluating Efficacy and Safety of DSC127 Compared With Vehicle and With Standard-of-care in Diabetic Foot Ulcers (STRIDE 2).2017Available From: https://classic.clinicaltrials.gov/ct2/show/NCT01849965
  137. CoMentis. Safety and preliminary efficacy study of nicotine gel to treat diabetic foot ulcers.2007Available From: https://classic.clinicaltrials.gov/ct2/show/NCT00316537
  138. Abeona Therapeutics, Inc.. MSI-78 Topical Cream vs. Oral Ofloxacin in the Treatment of Infected Diabetic Ulcers.2020Available From: https://classic.clinicaltrials.gov/ct2/show/NCT00563433
  139. Bridge BioResearch Ltd.. Oral BBR-012 in the Treatment of Diabetic Foot Ulcers, Proof of Concept Study (BBR-012).2011Available From: https://classic.clinicaltrials.gov/ct2/show/NCT01342497
  140. Mashhad University of Medical Sciences. The effect of combination therapy of oral MB and PRP-FG in patients with non-healing diabetic foot ulcer.2023Available From: https://classic.clinicaltrials.gov/ct2/show/NCT05850611
  141. Edixomed Ltd.. Nitric Oxide Generating Gel Dressing in Patients With Diabetic Foot Ulcers (ProNOx1).2016Available From: https://classic.clinicaltrials.gov/ct2/show/NCT01982565
  142. European Egyptian Pharmaceutical Industries.. Study of the Efficacy of PedyPhar® Ointment on the Diabetic Foot Ulcers (PED111).2015Available From: https://classic.clinicaltrials.gov/ct2/show/NCT01531517
  143. Karolinska University Hospital.. Effect of Deferoxamine on Wound Healing Rate in Patients With Diabetes Foot Ulcers (DEFEHU).2022Available From: https://clinicaltrials.gov/study/NCT03137966
  144. Novalead Pharma Private Limited. Phase 3 study to evaluate the safety and efficacy of Galnobax® in treating diabetic foot ulcers.2023Available From: https://classic.clinicaltrials.gov/ct2/show/NCT03998436
  145. HamedS. UllmannY. BelokopytovM. ShoufaniA. KabhaH. MasriS. FeldbrinZ. KoganL. KruchevskyD. NajjarR. LiuP.Y. KerihuelJ.C. AkitaS. TeotL. Topical erythropoietin accelerates wound closure in patients with diabetic foot ulcers: A prospective, multicenter, single-blind, randomized, controlled trial.Rejuvenation Res.202124425126110.1089/rej.2020.239733504262
    [Google Scholar]
  146. Remedor Biomed Ltd. Topical erythropoietin hydrogel formulation for diabetic foot ulcers (Remede d'Or).2019Available From: https://classic.clinicaltrials.gov/ct2/show/NCT02361931
  147. European Egyptian Pharmaceutical Industries. Efficacy & Safety of pedyphar ointment in diabetic foot ulcer treatment (PEDFUT).2015Available From: https://classic.clinicaltrials.gov/ct2/show/NCT02379468
/content/journals/cdd/10.2174/0115672018322140241023054041
Loading
/content/journals/cdd/10.2174/0115672018322140241023054041
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test