Skip to content
2000
Volume 22, Issue 10
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Background

Combining Doxorubicin (DOX) with sorafenib (SF) is a promising strategy for treating Hepatocellular Carcinoma (HCC). However, strict dosage control is required for both drugs, and there is a lack of target selectivity.

Objective

This study aims to develop a novel nano-drug delivery system for the combined use of DOX and SF, aiming to reduce their respective dosages, enhance therapeutic efficacy, and improve target selectivity.

Methods

DOX/SF co-loaded liposomes (LPs) were prepared using the thin-film hydration method. The liposomes were modified with 1,2-distearoyl-sn-glycero-3-phospho-ethanolamine (DSPE)-polyethylene glycol (PEG2000), DSPE-PEG1000-cell penetrating peptide TAT, and Glycyrrhetinic Acid (GA). The basic properties of the liposomes were characterized. CCK-8 cell viability assays were conducted using HepG2, MHCC97-H, and PLC cell models, and apoptosis experiments were performed using HepG2 cells to determine if this delivery system could reduce the respective dosages of DOX and SF and enhance HCC cytotoxicity. Liposome uptake experiments were performed using HepG2 cells to validate the target selectivity of this delivery system.

Results

A GA/TAT-DOX/SF-LP liposomal nano drug delivery system was successfully constructed, with a particle size of 150 nm, a zeta potential of -7.9 mV, a DOX encapsulation efficiency of 92%, and an SF encapsulation efficiency of 88.7%. Cellular experiments demonstrated that this delivery system reduced the required dosages of DOX and SF, exhibited stronger cytotoxicity against liver cancer cells, and showed better target selectivity.

Conclusion

A simple and referenceable liposomal nano drug delivery system has been developed for the combined application of DOX and SF in hepatocellular carcinoma treatment.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018320991240903060726
2025-12-01
2025-11-30
Loading full text...

Full text loading...

References

  1. ChaudhariV.A. KhobragadeK. BhandareM. ShrikhandeS.V. Management of fibrolamellar hepatocellular carcinoma.Chin. Clin. Oncol.201875515110.21037/cco.2018.08.0830395718
    [Google Scholar]
  2. FornerA. ReigM. BruixJ. Hepatocellular carcinoma.Lancet2018391101271301131410.1016/S0140‑6736(18)30010‑229307467
    [Google Scholar]
  3. OrcuttS.T. AnayaD.A. Liver resection and surgical strategies for management of primary liver cancer.Cancer Contr.201825110.1177/107327481774462129327594
    [Google Scholar]
  4. MazzaferroV. SpositoC. ZhouJ. PinnaA.D. De CarlisL. FanJ. CesconM. Di SandroS. Yi-fengH. LauterioA. BonginiM. CucchettiA. Metroticket 2.0 model for analysis of competing risks of death after liver transplantation for hepatocellular carcinoma.Gastroenterology2018154112813910.1053/j.gastro.2017.09.02528989060
    [Google Scholar]
  5. DaherS. MassarwaM. BensonA.A. KhouryT. Current and future treatment of hepatocellular carcinoma: an updated comprehensive review.J. Clin. Transl. Hepatol.20186111010.14218/JCTH.2017.0003129607307
    [Google Scholar]
  6. LuoX.Y. WuK.M. HeX.X. Advances in drug development for hepatocellular carcinoma: clinical trials and potential therapeutic targets.J. Exp. Clin. Cancer Res.202140117210.1186/s13046‑021‑01968‑w34006331
    [Google Scholar]
  7. GalleP.R. DufourJ.F. Peck-RadosavljevicM. TrojanJ. VogelA. Systemic therapy of advanced hepatocellular carcinoma.Future Oncol.202117101237125110.2217/fon‑2020‑075833307782
    [Google Scholar]
  8. BensonA.B.III D’AngelicaM.I. AbbottD.E. AbramsT.A. AlbertsS.R. AnayaD.A. AreC. BrownD.B. ChangD.T. CoveyA.M. HawkinsW. IyerR. JacobR. KarachristosA. KelleyR.K. KimR. PaltaM. ParkJ.O. SahaiV. SchefterT. SchmidtC. SicklickJ.K. SinghG. SohalD. SteinS. TianG.G. VautheyJ.N. VenookA.P. ZhuA.X. HoffmannK.G. DarlowS. NCCN Guidelines Insights: Hepatobiliary Cancers, Version 1.2017.J. Natl. Compr. Canc. Netw.201715556357310.6004/jnccn.2017.005928476736
    [Google Scholar]
  9. SongS. BaiM. LiX. GongS. YangW. LeiC. TianH. SiM. HaoX. GuoT. Early predictive value of circulating biomarkers for sorafenib in advanced hepatocellular carcinoma.Expert Rev. Mol. Diagn.202222336137810.1080/14737159.2022.204924835234564
    [Google Scholar]
  10. KimD.W. TalatiC. KimR. Hepatocellular carcinoma (HCC): beyond sorafenib—chemotherapy.J. Gastrointest. Oncol.20178225626510.21037/jgo.2016.09.0728480065
    [Google Scholar]
  11. LuY. ChanY.T. TanH.Y. ZhangC. GuoW. XuY. SharmaR. ChenZ.S. ZhengY.C. WangN. FengY. Epigenetic regulation of ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sorafenib resistance in human hepatocellular carcinoma.J. Exp. Clin. Cancer Res.2022411310.1186/s13046‑021‑02208‑x34980204
    [Google Scholar]
  12. ZhuA.X. SahaniD.V. DudaD.G. di TomasoE. AncukiewiczM. CatalanoO.A. SindhwaniV. BlaszkowskyL.S. YoonS.S. LahdenrantaJ. BhargavaP. MeyerhardtJ. ClarkJ.W. KwakE.L. HezelA.F. MiksadR. AbramsT.A. EnzingerP.C. FuchsC.S. RyanD.P. JainR.K. Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase II study.J. Clin. Oncol.200927183027303510.1200/JCO.2008.20.990819470923
    [Google Scholar]
  13. AnwanwanD. SinghS.K. SinghS. SaikamV. SinghR. Challenges in liver cancer and possible treatment approaches.Biochim. Biophys. Acta Rev. Cancer20201873118831410.1016/j.bbcan.2019.18831431682895
    [Google Scholar]
  14. ZhouY. ChenE. TangY. MaoJ. ShenJ. ZhengX. XieS. ZhangS. WuY. LiuH. ZhiX. MaT. NiH. ChenJ. ChaiK. ChenW. miR-223 overexpression inhibits doxorubicin-induced autophagy by targeting FOXO3a and reverses chemoresistance in hepatocellular carcinoma cells.Cell Death Dis.2019101184310.1038/s41419‑019‑2053‑831695022
    [Google Scholar]
  15. YuZ. GuoJ. HuM. GaoY. HuangL. Icaritin Exacerbates Mitophagy and Synergizes with Doxorubicin to Induce Immunogenic Cell Death in Hepatocellular Carcinoma.ACS Nano20201444816482810.1021/acsnano.0c0070832188241
    [Google Scholar]
  16. CasakS.J. DonoghueM. Fashoyin-AjeL. JiangX. RodriguezL. ShenY.L. XuY. JiangX. LiuJ. ZhaoH. PierceW.F. MehtaS. GoldbergK.B. TheoretM.R. KluetzP.G. PazdurR. LemeryS.J. FDA Approval Summary: Atezolizumab Plus Bevacizumab for the Treatment of Patients with Advanced Unresectable or Metastatic Hepatocellular Carcinoma.Clin. Cancer Res.20212771836184110.1158/1078‑0432.CCR‑20‑340733139264
    [Google Scholar]
  17. VacchelliE. ArandaF. EggermontA. GalonJ. Sautès-FridmanC. ZitvogelL. KroemerG. GalluzziL. Trial Watch.OncoImmunology201431e2704810.4161/onci.2704824605265
    [Google Scholar]
  18. JinH. ShiY. LvY. YuanS. RamirezC.F.A. LieftinkC. WangL. WangS. WangC. DiasM.H. JochemsF. YangY. BosmaA. HijmansE.M. de GrootM.H.P. VegnaS. CuiD. ZhouY. LingJ. WangH. GuoY. ZhengX. IsimaN. WuH. SunC. BeijersbergenR.L. AkkariL. ZhouW. ZhaiB. QinW. BernardsR. EGFR activation limits the response of liver cancer to lenvatinib.Nature2021595786973073410.1038/s41586‑021‑03741‑734290403
    [Google Scholar]
  19. MinottiG. MennaP. SalvatorelliE. CairoG. GianniL. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity.Pharmacol. Rev.200456218522910.1124/pr.56.2.615169927
    [Google Scholar]
  20. BarenholzY.C. Doxil® — The first FDA-approved nano-drug: Lessons learned.J. Control. Release2012160211713410.1016/j.jconrel.2012.03.02022484195
    [Google Scholar]
  21. AgudeloD. BourassaP. BérubéG. Tajmir-RiahiH.A. Review on the binding of anticancer drug doxorubicin with DNA and tRNA: Structural models and antitumor activity.J. Photochem. Photobiol. B201615827427910.1016/j.jphotobiol.2016.02.03226971631
    [Google Scholar]
  22. ChengR. FengF. MengF. DengC. FeijenJ. ZhongZ. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery.J. Control. Release2011152121210.1016/j.jconrel.2011.01.03021295087
    [Google Scholar]
  23. HossenS. HossainM.K. BasherM.K. MiaM.N.H. RahmanM.T. UddinM.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review.J. Adv. Res.20191511810.1016/j.jare.2018.06.00530581608
    [Google Scholar]
  24. ZhaoZ. UkidveA. KimJ. MitragotriS. Targeting Strategies for Tissue-Specific Drug Delivery.Cell2020181115116710.1016/j.cell.2020.02.00132243788
    [Google Scholar]
  25. WangS. ChenY. GuoJ. HuangQ. Liposomes for Tumor Targeted Therapy: A Review.Int. J. Mol. Sci.2023243264310.3390/ijms2403264336768966
    [Google Scholar]
  26. HuangA. YangX.R. ChungW.Y. DennisonA.R. ZhouJ. Targeted therapy for hepatocellular carcinoma.Signal Transduct. Target. Ther.20205114610.1038/s41392‑020‑00264‑x32782275
    [Google Scholar]
  27. Moradi KashkooliF. SoltaniM. SouriM. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies.J. Control. Release202032731634910.1016/j.jconrel.2020.08.01232800878
    [Google Scholar]
  28. MishraV. BansalK.K. VermaA. YadavN. ThakurS. SudhakarK. RosenholmJ.M. Solid Lipid Nanoparticles: Emerging Colloidal Nano Drug Delivery Systems.Pharmaceutics201810419110.3390/pharmaceutics1004019130340327
    [Google Scholar]
  29. TacarO. SriamornsakP. DassC.R. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems.J. Pharm. Pharmacol.201265215717010.1111/j.2042‑7158.2012.01567.x23278683
    [Google Scholar]
  30. BlairH.A. PloskerG.L. Sorafenib: a review of its use in patients with radioactive iodine-refractory, metastatic differentiated thyroid carcinoma.Target. Oncol.201510117117810.1007/s11523‑015‑0363‑z25742918
    [Google Scholar]
  31. ChenJ. HeK. HanY. GuoL. SuK. WuZ. Clinical efficacy and safety of external radiotherapy combined with sorafenib in the treatment of hepatocellular carcinoma: a systematic review and meta-analysis.Ann. Hepatol.202227410071010.1016/j.aohep.2022.10071035430357
    [Google Scholar]
  32. GauthierA. HoM. Role of sorafenib in the treatment of advanced hepatocellular carcinoma: An update.Hepatol. Res.201343214715410.1111/j.1872‑034X.2012.01113.x23145926
    [Google Scholar]
  33. Abdel-RahmanO. FouadM. Risk of cardiovascular toxicities in patients with solid tumors treated with sorafenib: an updated systematic review and meta-analysis.Future Oncol.201410121981199210.2217/fon.14.4225386814
    [Google Scholar]
  34. ChengZ. Wei-QiJ. JinD. New insights on sorafenib resistance in liver cancer with correlation of individualized therapy.Biochim. Biophys. Acta Rev. Cancer20201874118838210.1016/j.bbcan.2020.18838232522600
    [Google Scholar]
  35. TangW. ChenZ. ZhangW. ChengY. ZhangB. WuF. WangQ. WangS. RongD. ReiterF.P. De ToniE.N. WangX. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects.Signal Transduct. Target. Ther.2020518710.1038/s41392‑020‑0187‑x32532960
    [Google Scholar]
  36. ZhuY. ZhengB. WangH. ChenL. New knowledge of the mechanisms of sorafenib resistance in liver cancer.Acta Pharmacol. Sin.201738561462210.1038/aps.2017.528344323
    [Google Scholar]
  37. HutchinsonL. Doxorubicin and sorafenib improves survival in patients with advanced hepatocellular carcinoma.Nat. Rev. Clin. Oncol.201182616110.1038/nrclinonc.2010.20821360839
    [Google Scholar]
  38. LargeD.E. AbdelmessihR.G. FinkE.A. AugusteD.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application.Adv. Drug Deliv. Rev.202117611385110.1016/j.addr.2021.11385134224787
    [Google Scholar]
  39. GuimarãesD. Cavaco-PauloA. NogueiraE. Design of liposomes as drug delivery system for therapeutic applications.Int. J. Pharm.202160112057110.1016/j.ijpharm.2021.12057133812967
    [Google Scholar]
  40. JiG. LiY. ZhangZ. LiH. SunP. Recent advances of novel targeted drug delivery systems based on natural medicine monomers against hepatocellular carcinoma.Heliyon2024102e2466710.1016/j.heliyon.2024.e2466738312669
    [Google Scholar]
  41. JadhavV. RoyA. KaurK. RaiA.K. RustagiS. Recent advances in nanomaterial-based drug delivery systems.Nano-Structures & Nano-Objects20243710110310.1016/j.nanoso.2024.101103
    [Google Scholar]
  42. JadhavV. RoyA. KaurK. RoyA. SharmaK. VermaR. RustagiS. MalikS. Current advancements in functional nanomaterials for drug delivery systems.Nano-Structures & Nano-Objects20243810117710.1016/j.nanoso.2024.101177
    [Google Scholar]
  43. Al-JamalW.T. KostarelosK. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine.Acc. Chem. Res.201144101094110410.1021/ar200105p21812415
    [Google Scholar]
  44. AntimisiarisS.G. MaraziotiA. KannavouM. NatsaridisE. GkartziouF. KogkosG. MourtasS. Overcoming barriers by local drug delivery with liposomes.Adv. Drug Deliv. Rev.2021174538610.1016/j.addr.2021.01.01933539852
    [Google Scholar]
  45. WangQ. LiangQ. DouJ. ZhouH. ZengC. PanH. ShenY. LiQ. LiuY. LeongD.T. JiangW. WangY. Breaking through the basement membrane barrier to improve nanotherapeutic delivery to tumours.Nat. Nanotechnol.20241919510510.1038/s41565‑023‑01498‑w37709950
    [Google Scholar]
  46. DesaiN. Challenges in development of nanoparticle-based therapeutics.AAPS J.201214228229510.1208/s12248‑012‑9339‑422407288
    [Google Scholar]
  47. SadauskasE. WallinH. StoltenbergM. VogelU. DoeringP. LarsenA. DanscherG. Kupffer cells are central in the removal of nanoparticles from the organism.Part. Fibre Toxicol.200741101010.1186/1743‑8977‑4‑1017949501
    [Google Scholar]
  48. WilhelmS. TavaresA.J. DaiQ. OhtaS. AudetJ. DvorakH.F. ChanW.C.W. Analysis of nanoparticle delivery to tumours.Nat. Rev. Mater.2016151601410.1038/natrevmats.2016.14
    [Google Scholar]
  49. BabosG. BiróE. MeiczingerM. FeczkóT. Dual Drug Delivery of Sorafenib and Doxorubicin from PLGA and PEG-PLGA Polymeric Nanoparticles.Polymers (Basel)201810889510.3390/polym1008089530960820
    [Google Scholar]
  50. BabosG. RydzJ. KawalecM. KlimM. Fodor-KardosA. TrifL. FeczkóT. Poly(3-Hydroxybutyrate)-Based Nanoparticles for Sorafenib and Doxorubicin Anticancer Drug Delivery.Int. J. Mol. Sci.20202119731210.3390/ijms2119731233022990
    [Google Scholar]
  51. MalarvizhiG.L. RetnakumariA.P. NairS. KoyakuttyM. Transferrin targeted core-shell nanomedicine for combinatorial delivery of doxorubicin and sorafenib against hepatocellular carcinoma.Nanomedicine20141081649165910.1016/j.nano.2014.05.01124905399
    [Google Scholar]
  52. YangT. MingX. JieL. WeiW. GuangliangH. ManxiaL. HuanlingG. XiangziS. ChunyangZ. BaiL. DanW. ZhongC. XiaoyanX. Ultrasound-Triggered Nanodroplets for Targeted Co-Delivery of Sorafenib/Doxorubicin for Hepatocellular Carcinoma Therapy.J. Biomed. Nanotechnol.20191591881189610.1166/jbn.2019.282331387676
    [Google Scholar]
  53. GhosalK. PaniA. ChowdhuryT. KunduA. ThomasS. Multi-vesicular Liposome and its Applications: A Novel Chemically Modified Approach for Drug Delivery Application.Mini Rev. Med. Chem.2024241263810.2174/138955752366623061316251237312447
    [Google Scholar]
  54. LiZ.P. WangF.Q. LiY.Y. WangX.X. LuQ. WangD. Combined anti-hepatocellular carcinoma therapy inhibit drug-resistance and metastasis via targeting “substance P-hepatic stellate cells-hepatocellular carcinoma” axis.Biomaterials2021276121003
    [Google Scholar]
  55. KuangP. ZhaoW. SuW. ZhangZ. ZhangL. LiuJ. RenG. YinZ. WangX. 18β‐glycyrrhetinic acid inhibits hepatocellular carcinoma development by reversing hepatic stellate cell‐mediated immunosuppression in mice.Int. J. Cancer201313281831184110.1002/ijc.2785222991231
    [Google Scholar]
  56. ZhangY.Q. CaiY. LiuY. ZhaoB.X. LiG.F. Glycyrrhetinic acid selectively inhibits proliferation of hepatocellular carcinoma cells in vitro.J. South. Med. Uni.2018384477482
    [Google Scholar]
  57. WalrantA. MatheronL. CribierS. ChaignepainS. JobinM.L. SaganS. AlvesI.D. Direct translocation of cell-penetrating peptides in liposomes: A combined mass spectrometry quantification and fluorescence detection study.Anal. Biochem.2013438111010.1016/j.ab.2013.03.00923524021
    [Google Scholar]
  58. YangF. LiY. HuangW. ChenW. JinM. GaoZ. Cell-penetrating peptide TAT modified chitosan for siRNA delivery.J. Control. Release20131721e100e10110.1016/j.jconrel.2013.08.249
    [Google Scholar]
  59. SongJ. ZhangY. ZhangW. ChenJ. YangX. MaP. ZhangB. LiuB. NiJ. WangR. Cell penetrating peptide TAT can kill cancer cells via membrane disruption after attachment of camptothecin.Peptides20156314314910.1016/j.peptides.2014.12.00125496911
    [Google Scholar]
  60. KesharwaniP. KumariK. GururaniR. JainS. SharmaS. Approaches to Address PK-PD Challenges of Conventional Liposome Formulation with Special Reference to Cancer, Alzheimer’s, Diabetes, and Glaucoma: An Update on Modified Liposomal Drug Delivery System.Curr. Drug Metab.202223967869210.2174/138920022366622060914145935692131
    [Google Scholar]
  61. BerksB.C. SargentF. PalmerT. The Tat protein export pathway.Mol. Microbiol.200035226027410.1046/j.1365‑2958.2000.01719.x10652088
    [Google Scholar]
  62. ZhangD. WangJ. XuD. Cell-penetrating peptides as noninvasive transmembrane vectors for the development of novel multifunctional drug-delivery systems.J. Control. Release201622913013910.1016/j.jconrel.2016.03.02026993425
    [Google Scholar]
  63. DaeihamedM. DadashzadehS. HaeriA. AkhlaghiM.F. Potential of Liposomes for Enhancement of Oral Drug Absorption.Curr. Drug Deliv.2017142289303[PMID: 26768542
    [Google Scholar]
  64. D’souzaA.A. ShegokarR. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications.Expert Opin. Drug Deliv.20161391257127510.1080/17425247.2016.118248527116988
    [Google Scholar]
  65. MaritimS. BoulasP. LinY. Comprehensive analysis of liposome formulation parameters and their influence on encapsulation, stability and drug release in glibenclamide liposomes.Int. J. Pharm.202159212005110.1016/j.ijpharm.2020.12005133161039
    [Google Scholar]
  66. AhmedK.S. HusseinS.A. AliA.H. KormaS.A. LipengQ. JinghuaC. Liposome: composition, characterisation, preparation, and recent innovation in clinical applications.J. Drug Target.201927774276110.1080/1061186X.2018.152733730239255
    [Google Scholar]
  67. GhoshS. CarterK.A. LovellJ.F. Liposomal formulations of photosensitizers.Biomaterials201921811934110.1016/j.biomaterials.2019.11934131336279
    [Google Scholar]
  68. YeP. ZhangW. YangT. LuY. LuM. GaiY. Folate receptor-targeted liposomes enhanced the antitumor potency of imatinib through the combination of active targeting and molecular targeting.Int. J. Nanomed.2014921672178
    [Google Scholar]
  69. SangR. StrattonB. EngelA. DengW. Liposome technologies towards colorectal cancer therapeutics.Acta Biomater.2021127244010.1016/j.actbio.2021.03.05533812076
    [Google Scholar]
  70. IshidaT. HarashimaH. KiwadaH. Liposome Clearance.Biosci. Rep.200222219722410.1023/A:102013452177812428901
    [Google Scholar]
  71. HasC. PanS. Vesicle formation mechanisms: an overview.J. Liposome Res.20213119011110.1080/08982104.2020.173040132066297
    [Google Scholar]
  72. LiuQ. BoydB.J. Liposomes in biosensors.Analyst (Lond.)2013138239140910.1039/C2AN36140J23072757
    [Google Scholar]
  73. JayachandranP. IlangoS. SuseelaV. NirmaladeviR. ShaikM.R. KhanM. KhanM. ShaikB. Green Synthesized Silver Nanoparticle-Loaded Liposome-Based Nanoarchitectonics for Cancer Management: In vitro Drug Release Analysis.Biomedicines202311121710.3390/biomedicines1101021736672725
    [Google Scholar]
  74. KazakovS. Liposome-Nanogel Structures for Future Pharmaceutical Applications: An Updated Review.Curr. Pharm. Des.201622101391141310.2174/138161282266616012511473326806343
    [Google Scholar]
  75. LiuY. LiuD. ZhuL. GanQ. LeX. Temperature-dependent structure stability and in vitro release of chitosan-coated curcumin liposome.Food Res. Int.2015749710510.1016/j.foodres.2015.04.02428412008
    [Google Scholar]
  76. MoosavianS.A. SahebkarA. Aptamer-functionalized liposomes for targeted cancer therapy.Cancer Lett.201944814415410.1016/j.canlet.2019.01.04530763718
    [Google Scholar]
  77. RahimpourY. HamishehkarH. Liposomes in cosmeceutics.Expert Opin. Drug Deliv.20129444345510.1517/17425247.2012.66696822413847
    [Google Scholar]
  78. LiuP. ChenG. ZhangJ. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives.Molecules2022274137210.3390/molecules2704137235209162
    [Google Scholar]
  79. SapkotaR. DashA.K. Liposomes and transferosomes: a breakthrough in topical and transdermal delivery.Ther. Deliv.202112214515810.4155/tde‑2020‑012233583219
    [Google Scholar]
  80. CaiL. QinX. XuZ. SongY. JiangH. WuY. RuanH. ChenJ. Comparison of Cytotoxicity Evaluation of Anticancer Drugs between Real-Time Cell Analysis and CCK-8 Method.ACS Omega201947120361204210.1021/acsomega.9b0114231460316
    [Google Scholar]
  81. WeiH. ChenJ. WangS. FuF. ZhuX. WuC. LiuZ. ZhongG. LinJ. A Nanodrug Consisting Of Doxorubicin And Exosome Derived From Mesenchymal Stem Cells For Osteosarcoma Treatment In vitro.Int. J. Nanomedicine2019148603861010.2147/IJN.S21898831802872
    [Google Scholar]
  82. YangF. ShiL. LiangT. JiL. ZhangG. ShenY. ZhuF. XuL. Anti-tumor effect of evodiamine by inducing Akt-mediated apoptosis in hepatocellular carcinoma.Biochem. Biophys. Res. Commun.20174851546110.1016/j.bbrc.2017.02.01728189683
    [Google Scholar]
  83. DattaR. HeasterT.M. SharickJ.T. GilletteA.A. SkalaM.C. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications.J. Biomed. Opt.202025714310.1117/1.JBO.25.7.07120332406215
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018320991240903060726
Loading
/content/journals/cdd/10.2174/0115672018320991240903060726
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test