Skip to content
2000
Volume 22, Issue 10
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Pharmaceutical giants (., Ashland, Bausch & Lomb, Johnson & Johnson, Medtronic, Neurelis, .) promote the growth of hydrogels globally. Hydrogel-based drug delivery system (DDS) market size accounted for USD 6415 million in 2021 and is estimated to reach USD 12,357 million by 2030, with a compound annual growth rate (CAGR) of 7.6% from 2022 to 2030. Hydrogels, characterized by their unique three-dimensional networks of hydrophilic polymers, have emerged as a keystone in the advancement of biomaterial science. Existing trends in the advancement of hydrogel drug delivery systems (DDS) involve the release of drugs in response to specific triggers such as pH, temperature, or enzymes for targeted drug delivery and to reduce the potential for systemic toxicity. They excel in their ability to achieve high drug loading capacities, their ease of manufacturing, and their inherent biocompatibility and biodegradability. These attributes not only promise crucial mechanistic features but also offer robust protection for labile drugs and enable the encapsulation of multiple therapeutic agents. Thus, hydrogels stand as promising candidates in various biomedical and pharmaceutical applications, ensuring controlled release and compatibility essential for therapeutic efficacy. Additionally, hydrogels have massive applications in tissue engineering, wound healing, cosmetics, and biomaterials (., contact lenses and implantable devices). Furthermore, hydrogels possess the capability to release active drug(s) under sustained conditions as recommended. Their exceptional qualities position hydrogels as a preferred choice on a global scale. Moreover, they enhance bioavailability, optimize dosage regimens, promote patient compliance, and minimize adverse effects. Furthermore, hydrogels are recommended for use in clinical trials to enhance therapeutic drug delivery outcomes. Despite their remarkable properties, hydrogels do have certain disadvantages, including expensive manufacturing costs and incompatibility with certain drugs. The author has highlighted the fundamental ideas about hydrogels, their classification, global scenario, current developments in the field, and their potential applications. Overall, hydrogel application is progressing rapidly, toward more proficient and effective DDS in the future.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018320746241101052039
2025-12-01
2025-11-30
Loading full text...

Full text loading...

References

  1. GuptaA.K. SiddiquiA.W. Environmental responsive hydrogels: A novel approach in drug delivery system.J. Drug Deliv. Ther.20122110.22270/jddt.v2i1.87
    [Google Scholar]
  2. LavanyaP. RajeswariK.R. RameshB. Formulation and evaluation of modified release oral hydrogels beads of antidiabatic drug.World J. Pharm. Pharm. Sci.2014321342142
    [Google Scholar]
  3. AkhtarM.F. HanifM. RanjhaN.M. Methods of synthesis of hydrogels. A review.Saudi Pharm. J.201624555455910.1016/j.jsps.2015.03.02227752227
    [Google Scholar]
  4. RafieianS. MirzadehH. MahdaviH. MasoumiM.E. A review on nanocomposite hydrogels and their biomedical applications.Sci. Eng. Compos. Mater.201926115417410.1515/secm‑2017‑0161
    [Google Scholar]
  5. AhmadS. AhmadM. ManzoorK. PurwarR. IkramS. A review on latest innovations in natural gums based hydrogels: Preparations & applications.Int. J. Biol. Macromol.201913687089010.1016/j.ijbiomac.2019.06.11331226381
    [Google Scholar]
  6. DolbowJ. FriedE. JiH. Chemically induced swelling of hydrogels.J. Mech. Phys. Solids2004521518410.1016/S0022‑5096(03)00091‑7
    [Google Scholar]
  7. BurkertS. SchmidtT. GohsU. DorschnerH. ArndtK.F. Cross-linking of poly(N-vinyl pyrrolidone) films by electron beam irradiation.Radiat. Phys. Chem.2007768-91324132810.1016/j.radphyschem.2007.02.024
    [Google Scholar]
  8. HarounA. OsmanA. AhmedS. ElghandourA. Beta-cyclodextrin grafted with poly (ε-caprolactone) for ibuprofen delivery system.Egypt. J. Chem.201862582783510.21608/ejchem.2018.5125.1455
    [Google Scholar]
  9. HarounA. OsmanA. AhmedS. ElghandourA.H. Synthesis and characterization of ibuprofen delivery system based on β-cyclodextrin/itaconic acid copolymer.Trends Sci.20221919582510.48048/tis.2022.5825
    [Google Scholar]
  10. CaoH. DuanL. ZhangY. CaoJ. ZhangK. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity.Signal Transduct. Target. Ther.20216142610.1038/s41392‑021‑00830‑x34916490
    [Google Scholar]
  11. LinC.C. MettersA.T. Hydrogels in controlled release formulations: Network design and mathematical modeling.Adv. Drug Deliv. Rev.20065812-131379140810.1016/j.addr.2006.09.00417081649
    [Google Scholar]
  12. BhattaraiN. GunnJ. ZhangM. Chitosan-based hydrogels for controlled, localized drug delivery.Adv. Drug Deliv. Rev.2010621839910.1016/j.addr.2009.07.01919799949
    [Google Scholar]
  13. VasquezT.P.T.J.M.G. Synthesis and characterization of a self-assembling hydrogel from water-soluble cellulose derivatives and sodium hydroxide/thiourea solution.Am. J. Chem.201556065
    [Google Scholar]
  14. SringamJ. PankongadisakP. TrongsatitkulT. SuppakarnN. Improving mechanical properties of starch-based hydrogels using double network strategy.Polymers (Basel)20221417355210.3390/polym1417355236080626
    [Google Scholar]
  15. Szulc-MusiołB. SiemiradzkaW. DolińskaB. Formulation and evaluation of hydrogels based on sodium alginate and cellulose derivatives with quercetin for topical application.Appl. Sci. (Basel)20231313782610.3390/app13137826
    [Google Scholar]
  16. HarounA.A. El-HalawanyN.R. Encapsulation of bovine serum albumin within β-cyclodextrin/gelatin-based polymeric hydrogel for controlled protein drug release.IRBM201031423424110.1016/j.irbm.2010.02.001
    [Google Scholar]
  17. HarounA.A. El-HalawanyN.R. Loira-PastorizaC. MaincentP. Synthesis and in vitro release study of ibuprofen-loaded gelatin graft copolymer nanoparticles.Drug Dev. Ind. Pharm.2014401616510.3109/03639045.2012.74635923244199
    [Google Scholar]
  18. ThungmungmeeS. WisidsriN. Characterization, biocompatibility and biological properties of Cissampelos pareira pectin-based hydrogel patch containing Heliotropium indicum extract.Indian J. Pharm. Sci.202285210.36468/pharmaceutical‑sciences.1112
    [Google Scholar]
  19. DasS. SubuddhiU. pH-Responsive guar gum hydrogels for controlled delivery of dexamethasone to the intestine.Int. J. Biol. Macromol.20157985686310.1016/j.ijbiomac.2015.06.00826056988
    [Google Scholar]
  20. LiZ. ZhangM. Progress in the preparation of stimulus-responsive cellulose hydrogels and their application in slow-release fertilizers.Polymers (Basel)20231517364310.3390/polym1517364337688270
    [Google Scholar]
  21. RajeswariK.R. AbbuluK. SudhakarM. KarkiR. RajkumarB. Development and characterization of valsartan loaded hydrogel beads.Pharm. Lett.20124410441053
    [Google Scholar]
  22. PrajapatiV.D. MaheriyaP.M. RoyS.D. Chapter 7 - Locust bean gum-derived hydrogels.Plant and Algal Hydrogels for Drug Delivery and Regenerative Medicine.Elsevier202121726010.1016/B978‑0‑12‑821649‑1.00016‑7
    [Google Scholar]
  23. FazliS. HezariS. OladA. Preparation of hydrogels based on okra pods/chia seeds mucilage for drug delivery application.Polym. Bull.20248113115391156210.1007/s00289‑024‑05221‑0
    [Google Scholar]
  24. RanaD. DesaiN. SalaveS. KarunakaranB. GiriJ. BenivalD. GorantlaS. KommineniN. Collagen-based hydrogels for the eye: A comprehensive review.Gels20239864310.3390/gels908064337623098
    [Google Scholar]
  25. PatilJ.S. MarapurS.C. KamalapurM.V. ShiralshettiS.S. Ionotropically gelled novel hydrogel beads: Preparation, characterization and in vitro evaluation.Indian J. Pharm. Sci.201173550450910.4103/0250‑474X.9898822923862
    [Google Scholar]
  26. MuşatV. AnghelE. ZahariaA. AtkinsonI. MocioiuO. BuşilăM. AlexandruP. A chitosan–agarose polysaccharide-based hydrogel for biomimetic remineralization of dental enamel.Biomolecules2021118113710.3390/biom1108113734439803
    [Google Scholar]
  27. GehalotN. ChourasiyaA. KushwaahP. AoleS. JainV. Formulation and evaluation of Hydrogel for wound healing. Int. J. Res. trends.Innov.2023817582
    [Google Scholar]
  28. HarounA.A. El ToumyS.A. Effect of natural polyphenols on physicochemical properties of crosslinked gelatin‐based polymeric biocomposite.J. Appl. Polym. Sci.201011652825283210.1002/app.31736
    [Google Scholar]
  29. WangM. BaiJ. ShaoK. TangW. ZhaoX. LinD. HuangS. ChenC. DingZ. YeJ. Poly(vinyl alcohol) hydrogels: The old and new functional materials.Int. J. Polym. Sci.2021202111610.1155/2021/2225426
    [Google Scholar]
  30. Díaz-BelloB. Monroy-RomeroA.X. Pérez-CalixtoD. Zamarrón-HernándezD. Serna-MarquezN. Vázquez-VictorioG. HautefeuilleM. Method for the direct fabrication of polyacrylamide hydrogels with controlled stiffness in polystyrene multiwell plates for mechanobiology assays.ACS Biomater. Sci. Eng.2019594219422710.1021/acsbiomaterials.9b0098833417779
    [Google Scholar]
  31. ZhuJ. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering.Biomaterials201031174639465610.1016/j.biomaterials.2010.02.04420303169
    [Google Scholar]
  32. ElliottJ.E. MacdonaldM. NieJ. BowmanC.N. Structure and swelling of poly(acrylic acid) hydrogels: Effect of pH, ionic strength, and dilution on the crosslinked polymer structure.Polymer (Guildf.)20044551503151010.1016/j.polymer.2003.12.040
    [Google Scholar]
  33. DreissC.A. Hydrogel design strategies for drug delivery.Curr. Opin. Colloid Interface Sci.20204811710.1016/j.cocis.2020.02.001
    [Google Scholar]
  34. ChaiQ. JiaoY. YuX. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them.Gels201731610.3390/gels301000630920503
    [Google Scholar]
  35. MohiteP.B. AdhavS.S. A hydrogels: Methods of preparation and applications.Int. J. Adv. Pharm.201763798510.7439/ijap.v6i3.3972
    [Google Scholar]
  36. BashariA. Rouhani ShirvanA. ShakeriM. Cellulose‐based hydrogels for personal care products.Polym. Adv. Technol.201829122853286710.1002/pat.4290
    [Google Scholar]
  37. KleinM. PoverenovE. Natural biopolymer‐based hydrogels for use in food and agriculture.J. Sci. Food Agric.202010062337234710.1002/jsfa.1027431960453
    [Google Scholar]
  38. GuptaP. VermaniK. GargS. Hydrogels: From controlled release to pH-responsive drug delivery.Drug Discov. Today200271056957910.1016/S1359‑6446(02)02255‑912047857
    [Google Scholar]
  39. HarounA.A. El NahrawyA.M. MaincentP. Enoxaparin-immobilized poly(ε-caprolactone)-based nanogels for sustained drug delivery systems.Pure Appl. Chem.201486569170010.1515/pac‑2013‑1110
    [Google Scholar]
  40. BernieJ.E. NgJ. BargmanV. GardnerT. ChengL. SundaramC.P. Evaluation of hydrogel tissue sealant in porcine laparoscopic partial-nephrectomy model.J. Endourol.20051991122112610.1089/end.2005.19.112216283851
    [Google Scholar]
  41. KabiriK. Zohuriaan-MehrM.J. Porous superabsorbent hydrogel composites: Synthesis, morphology and swelling rate.Macromol. Mater. Eng.2004289653661
    [Google Scholar]
  42. LiJ. JiaX. YinL. Hydrogel: Diversity of structures and applications in food science.Food Rev. Int.202137331337210.1080/87559129.2020.1858313
    [Google Scholar]
  43. parhi, R. Cross-Linked Hydrogel for Pharmaceutical Applications: A Review.Adv. Pharm. Bull.20177451553010.15171/apb.2017.06429399542
    [Google Scholar]
  44. HoffmanA.S. Hydrogels for biomedical applications.Ann. N. Y. Acad. Sci.20019441627310.1111/j.1749‑6632.2001.tb03823.x11797696
    [Google Scholar]
  45. ManthaS. PillaiS. KhayambashiP. UpadhyayA. ZhangY. TaoO. PhamH.M. TranS.D. Smart hydrogels in tissue engineering and regenerative medicine.Materials (Basel)20191220332310.3390/ma1220332331614735
    [Google Scholar]
  46. TavakoliS. KlarA.S. Advanced hydrogels as wound dressings.Biomolecules2020108116910.3390/biom1008116932796593
    [Google Scholar]
  47. ChopraH. KumarS. SinghI. Bioadhesive hydrogels and their applications. Bioadhesives in Drug Delivery1st ed ChopraH. KumarS. SinghI/ Wiley202014717010.1002/9781119640240.ch6
    [Google Scholar]
  48. GayetJ.C. FortierG. High water content BSA-PEG hydrogel for controlled release device: Evaluation of the drug release properties.J. Control. Release1996382-317718410.1016/0168‑3659(95)00118‑2
    [Google Scholar]
  49. PeppasN.A. WoodK.M. BlanchetteJ.O. Hydrogels for oral delivery of therapeutic proteins.Expert Opin. Biol. Ther.20044688188710.1517/14712598.4.6.88115174970
    [Google Scholar]
  50. XuJ. TamM. SamaeiS. LerougeS. BarraletJ. StevensonM.M. CerrutiM. Mucoadhesive chitosan hydrogels as rectal drug delivery vessels to treat ulcerative colitis.Acta Biomater.20174824725710.1016/j.actbio.2016.10.02627769943
    [Google Scholar]
  51. KushwahaS. RaiA.K. SaxenaP. Stimuli sensitive hydrogels for ophthalmic drug delivery: A review.Int. J. Pharm. Investig.201222546010.4103/2230‑973X.10003623119233
    [Google Scholar]
  52. GohM. HwangY. TaeG. Epidermal growth factor loaded heparin-based hydrogel sheet for skin wound healing.Carbohydr. Polym.201614725126010.1016/j.carbpol.2016.03.07227178931
    [Google Scholar]
  53. MiF.L. KuanC.Y. ShyuS.S. LeeS.T. ChangS.F. The study of gelation kinetics and chain-relaxation properties of glutaraldehyde-cross-linked chitosan gel and their effects on microspheres preparation and drug release.Carbohydr. Polym.200041438939610.1016/S0144‑8617(99)00104‑6
    [Google Scholar]
  54. LiY. ZhuC. DongY. LiuD. Supramolecular hydrogels: Mechanical strengthening with dynamics.Polymer (Guildf.)202021012299310.1016/j.polymer.2020.122993
    [Google Scholar]
  55. MoraruA. DimaS-O. TriteanN. OprițaE-I. PrelipceanA-M. TricăB. OanceaA. MoraruI. Constantinescu-AruxandeiD. OanceaF. DBioactive-loaded hydrogels based on bacterial nanocellulose, chitosan, and poloxamer for rebalancing vaginal microbiota.Pharmaceuticals20231612167110.3390/ph16121671
    [Google Scholar]
  56. SimõesS. Modular hydrogels for drug delivery.J. Biomater. Nanobiotechnol.20123218519910.4236/jbnb.2012.32025
    [Google Scholar]
  57. NokhodchiA. RajaS. PatelP. Asare-AddoK. The role of oral controlled release matrix tablets in drug delivery systems.Bioimpacts20122417518710.5681/BI.2012.02723678458
    [Google Scholar]
  58. GhartiK.P. BudhathokiU. ThapaP. BhargavaA. Formulation in vitro evaluation of floating tablets of hydroxypropyl methylcellulose and polyethylene oxide using ranitidine hydrochloride as a model drug.J. Young Pharm.20124420120810.4103/0975‑1483.10436323493037
    [Google Scholar]
  59. LiuX. SteigerC. LinS. ParadaG.A. LiuJ. ChanH.F. YukH. PhanN.V. CollinsJ. TamangS. TraversoG. ZhaoX. Ingestible hydrogel device.Nat. Commun.201910149310.1038/s41467‑019‑08355‑230700712
    [Google Scholar]
  60. FaragM.M. LouisM.M. BadawyA.A. NessemD.I. ElmalakN.S.A. Drotaverine hydrochloride superporous hydrogel hybrid system: A gastroretentive approach for sustained drug delivery and enhanced viscoelasticity.AAPS PharmSciTech202223512410.1208/s12249‑022‑02280‑235471680
    [Google Scholar]
  61. IssarachotO. BunlungS. KaewkroekK. WiwattanapatapeeR. Superporous hydrogels based on blends of chitosan and polyvinyl alcohol as a carrier for enhanced gastric delivery of resveratrol.Saudi Pharm. J.202331333534710.1016/j.jsps.2023.01.00137026050
    [Google Scholar]
  62. JuthiA.Z. LiF. WangB. AlamM.M. TalukderM.E. QiuB. pH-responsive super-porous hybrid hydrogels for gastroretentive controlled-release drug delivery.Pharmaceutics202315381610.3390/pharmaceutics1503081636986676
    [Google Scholar]
  63. KwangG.D. SampathkumarK. LooS.C.J. Ultralong floating hydrogel raft for prolonged gastric retention.MRS Bull.202348434235010.1557/s43577‑022‑00406‑2
    [Google Scholar]
  64. MahmoodA. MahmoodA. SarfrazR.M. IjazH. ZafarN. AshrafM.U. Hydrogel-based intelligent delivery system for controlled release of diloxanide furoate.Polym. Bull.20238088283831910.1007/s00289‑022‑04401‑0
    [Google Scholar]
  65. PandayA. YadavH. PatelJ. PaliwalR. MaitiS. Calcium silicate‐reinforced pH‐sensitive alginate‐gellan gum composite hydrogels for prolonged drug delivery.J. Appl. Polym. Sci.202314037e5439210.1002/app.54392
    [Google Scholar]
  66. YangJ. WangY. WeiA. PengK. HuangR. WangZ. MaX. TianQ. ChenY. Polyelectrolyte composite hydrogels based on a derivative of functional dietary fiber for long-term gastric retention and drug delivery.Compos., Part B Eng.202427211119410.1016/j.compositesb.2024.111194
    [Google Scholar]
  67. DarM.J. AliH. KhanA. KhanG.M. Polymer-based drug delivery: The quest for local targeting of inflamed intestinal mucosa.J. Drug Target.201725758259610.1080/1061186X.2017.129860128277824
    [Google Scholar]
  68. GuoZ. BaiY. ZhangZ. MeiH. LiJ. PuY. ZhaoN. GaoW. WuF. HeB. XieJ. Thermosensitive polymer hydrogel as a physical shield on colonic mucosa for colitis treatment.J. Mater. Chem. B Mater. Biol. Med.20219183874388410.1039/D1TB00499A33928321
    [Google Scholar]
  69. SuhailM. ShaoY.F. VuQ.L. WuP.C. Designing of pH-sensitive hydrogels for colon targeted drug delivery; Characterization and in vitro evaluation.Gels20228315510.3390/gels803015535323268
    [Google Scholar]
  70. WuY. LiS. JinM. LiD. ZhouZ. HouH. HanY. Preparation of MSZ hydrogel and its treatment of colitis.Front. Pharmacol.20211270640110.3389/fphar.2021.70640134690753
    [Google Scholar]
  71. MoreV.S. ChumbhaleD.S. RangarN.T. MishraP.A. Design, development and evaluation of colon targeted hydrogel of an anti-inflammatory drug sulfasalazine.Bull. Env. Pharmacol. Life Sci.2022116021610
    [Google Scholar]
  72. YuS. ZhangX. TanG. TianL. LiuD. LiuY. YangX. PanW. A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery.Carbohydr. Polym.201715520821710.1016/j.carbpol.2016.08.07327702506
    [Google Scholar]
  73. CocartaA.I. HobzovaR. SircJ. CernaT. HrabetaJ. SvojgrK. PochopP. KodetovaM. JedelskaJ. BakowskyU. UhlikJ. Hydrogel implants for transscleral drug delivery for retinoblastoma treatment.Mater. Sci. Eng. C201910310979910.1016/j.msec.2019.10979931349439
    [Google Scholar]
  74. PatelP. PatelG. Formulation, ex-vivo and preclinical in-vivo studies of combined pH and ion-sensitive ocular sustained in situ hydrogel of timolol maleate for the treatment of glaucoma.Biointerface Res. Appl. Chem.20201118242826510.33263/BRIAC111.82428265
    [Google Scholar]
  75. KimD.I. LeeH. KwonS.H. SungY.J. SongW.K. ParkS. Bilayer hydrogel sheet‐type intraocular microrobot for drug delivery and magnetic nanoparticles retrieval.Adv. Healthc. Mater.2020913200011810.1002/adhm.20200011832431072
    [Google Scholar]
  76. HsuX.L. WuL.C. HsiehJ.Y. HuangY.Y. Nanoparticle-hydrogel composite drug delivery system for potential ocular applications.Polymers (Basel)202113464210.3390/polym1304064233670014
    [Google Scholar]
  77. WangF. SongY. HuangJ. WuB. WangY. PangY. ZhangW. ZhuZ. MaF. WangX. ZhangX. Lollipop‐inspired multilayered drug delivery hydrogel for dual effective, long‐term, and NIR‐defined glaucoma treatment.Macromol. Biosci.20212111210020210.1002/mabi.20210020234405963
    [Google Scholar]
  78. BaoZ. YuA. ShiH. HuY. JinB. LinD. DaiM. LeiL. LiX. WangY. Glycol chitosan/oxidized hyaluronic acid hydrogel film for topical ocular delivery of dexamethasone and levofloxacin.Int. J. Biol. Macromol.202116765966610.1016/j.ijbiomac.2020.11.21433278439
    [Google Scholar]
  79. IlochonwuB.C. van der LugtS.A. AnnalaA. Di MarcoG. SamponT. SiepmannJ. SiepmannF. HenninkW.E. VermondenT. Thermo-responsive Diels-Alder stabilized hydrogels for ocular drug delivery of a corticosteroid and an anti-VEGF fab fragment.J. Control. Release202336133434910.1016/j.jconrel.2023.07.05237532147
    [Google Scholar]
  80. VlaiaL. ConeacG. OlariuI. VlaiaV. LupuleasaD. Cellulose-derivatives-based hydrogels as vehicles for dermal and transdermal drug delivery.Emerging Concepts in Analysis and Applications of Hydrogels. MajeeS.B. Rijeka, CroatiaIntechOpen201610.5772/63953
    [Google Scholar]
  81. RibeiroA.M. MagalhãesM. VeigaF. FigueirasA. Cellulose-based hydrogels in topical drug delivery: A challenge in medical devices.Cellulose-Based Superabsorbent Hydrogels. Mondal MdI.H. ChamSpringer International Publishing201812910.1007/978‑3‑319‑76573‑0_41‑1
    [Google Scholar]
  82. SoodN. BhardwajA. MehtaS. MehtaA. Stimuli-responsive hydrogels in drug delivery and tissue engineering.Drug Deliv.201623374877010.3109/10717544.2014.94009125045782
    [Google Scholar]
  83. ZhangZ.J. OsmałekT. Michniak-KohnB. Deformable liposomal hydrogel for dermal and transdermal delivery of meloxicam.Int. J. Nanomedicine2020159319933510.2147/IJN.S27495433262590
    [Google Scholar]
  84. KhanM.F.A. Ur RehmanA. HowariH. AlhodaibA. UllahF. MustafaZ.U. ElaissariA. AhmedN. Hydrogel containing solid lipid nanoparticles loaded with argan oil and simvastatin: Preparation, in vitro and ex vivo assessment.Gels20228527710.3390/gels805027735621575
    [Google Scholar]
  85. ZhaoL. VoraL.K. KellyS.A. LiL. LarrañetaE. McCarthyH.O. DonnellyR.F. Hydrogel-forming microarray patch mediated transdermal delivery of tetracycline hydrochloride.J. Control. Release202335619620410.1016/j.jconrel.2023.02.03136868520
    [Google Scholar]
  86. HaJ.H. LimJ.H. LeeJ.M. ChungB.G. Electro-responsive conductive blended hydrogel patch.Polymers (Basel)20231512260810.3390/polym1512260837376253
    [Google Scholar]
  87. ArshadJ. BarkatK. AshrafM.U. BadshahS.F. AhmadZ. AnjumI. ShabbirM. MehmoodY. KhalidI. MalikN.S. Preparation and characterization of polymeric cross-linked hydrogel patch for topical delivery of gentamicin.e-Polym202323137438210.1515/epoly‑2023‑0045
    [Google Scholar]
  88. KimD.K. HanD. BaeJ. KimH. LeeS. KimJ.S. JeongY.G. ShinJ. ParkH.W. Verapamil-loaded supramolecular hydrogel patch attenuates metabolic dysfunction-associated fatty liver disease via restoration of autophagic clearance of aggregated proteins and inhibition of NLRP3.Biomater. Res.2023271410.1186/s40824‑023‑00342‑536670488
    [Google Scholar]
  89. UttayaratP. ChiangnoonR. ThongnopkoonT. NoiruksaK. TrakanrungsieJ. PhattanaphakdeeW. ChittasuphoC. AthikomkulchaiS. Electron beam irradiation cross-linked hydrogel patches loaded with red onion peel extract for transdermal drug delivery: Formulation, characterization, cytocompatibility, and skin permeation.Gels2023915210.3390/gels901005236661818
    [Google Scholar]
  90. KapoorD. PatelM. VyasR.B. LadC. LalB. Site specific drug delivery through nasal route using bioadhesive polymers.J. Drug Deliv. Ther.2015511910.22270/jddt.v5i1.873
    [Google Scholar]
  91. Al HarthiS. AlaviS.E. RadwanM.A. El KhatibM.M. AlSarraI.A. Nasal delivery of donepezil HCl-loaded hydrogels for the treatment of Alzheimer’s disease.Sci. Rep.201991956310.1038/s41598‑019‑46032‑y31266990
    [Google Scholar]
  92. Von ZubenE.S. EloyJ.O. InácioM.D. AraujoV.H.S. BavieraA.M. GremiãoM.P.D. ChorilliM. Hydroxyethylcellulose-based hydrogels containing liposomes functionalized with cell-penetrating peptides for nasal delivery of insulin in the treatment of diabetes.Pharmaceutics20221411249210.3390/pharmaceutics1411249236432681
    [Google Scholar]
  93. Vörös-HorváthB. ŽivkovićP. BánfaiK. Bóvári-BiriJ. PongráczJ. BálintG. PálS. SzéchenyiA. Preparation and characterization of ACE2 receptor inhibitor-loaded chitosan hydrogels for nasal formulation to reduce the risk of COVID-19 viral infection.ACS Omega2022743240325310.1021/acsomega.1c0514935097308
    [Google Scholar]
  94. Pina CostaC. Nižić NodiloL. SilvaR. MartinsE. ZadravecD. KalogjeraL. Nuno MoreiraJ. Manuel Sousa LoboJ. HafnerA. Catarina SilvaA. In situ hydrogel containing diazepam-loaded nanostructured lipid carriers (DZP-NLC) for nose-to-brain delivery: Development, characterization and deposition studies in a 3D-printed human nasal cavity model.Int. J. Pharm.202364412334510.1016/j.ijpharm.2023.12334537619806
    [Google Scholar]
  95. PrajapatiN.B. GoyalA. Thermoreversible mucoadhesive insitu gel: A review.Int J Innov Drug Discov201336784
    [Google Scholar]
  96. SharifzadehG. HezavehH. MuhamadI.I. HashimS. KhairuddinN. Montmorillonite-based polyacrylamide hydrogel rings for controlled vaginal drug delivery.Mater. Sci. Eng. C202011011060910.1016/j.msec.2019.11060932204060
    [Google Scholar]
  97. WuM. DingH. TangX. ChenJ. ZhangM. YangZ. DuQ. WangJ. Efficiency of a novel thermosensitive enema in situ hydrogel carrying Periplaneta americana extracts for the treatment of ulcerative colitis.Front. Pharmacol.202314111126710.3389/fphar.2023.111126736843930
    [Google Scholar]
  98. LiX. XuX. XuM. GengZ. JiP. LiuY. Hydrogel systems for targeted cancer therapy.Front. Bioeng. Biotechnol.202311114043610.3389/fbioe.2023.114043636873346
    [Google Scholar]
  99. ChengW. GuL. RenW. LiuY. Stimuli-responsive polymers for anti-cancer drug delivery.Mater. Sci. Eng. C20144560060810.1016/j.msec.2014.05.05025491870
    [Google Scholar]
  100. Vicario-de-la-TorreM. ForcadaJ. The potential of stimuli-responsive nanogels in drug and active molecule delivery for targeted therapy.Gels2017321610.3390/gels302001630920515
    [Google Scholar]
  101. HuangH. QiX. ChenY. WuZ. Thermo-sensitive hydrogels for delivering biotherapeutic molecules: A review.Saudi Pharm. J.201927799099910.1016/j.jsps.2019.08.00131997906
    [Google Scholar]
  102. BawaP. PillayV. ChoonaraY.E. du ToitL.C. Stimuli-responsive polymers and their applications in drug delivery.Biomed. Mater.20094202200110.1088/1748‑6041/4/2/02200119261988
    [Google Scholar]
  103. QiY. QianZ. YuanW. LiZ. Injectable and self-healing nanocomposite hydrogel loading needle-like nano-hydroxyapatite and graphene oxide for synergistic tumour proliferation inhibition and photothermal therapy.J. Mater. Chem. B Mater. Biol. Med.20219479734974310.1039/D1TB01753E34787633
    [Google Scholar]
  104. TanB. HuangL. WuY. LiaoJ. Advances and trends of hydrogel therapy platform in localized tumor treatment: A review.J. Biomed. Mater. Res. A2021109440442510.1002/jbm.a.3706232681742
    [Google Scholar]
  105. KassL.E. NguyenJ. Nanocarrier‐hydrogel composite delivery systems for precision drug release.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2022142e175610.1002/wnan.175634532989
    [Google Scholar]
  106. a JiangY. WangY. LiQ. YuC. ChuW. Natural polymer-based stimuli-responsive hydrogels.Curr. Med. Chem.202027162631265710.2174/092986732666619112214491631755377
    [Google Scholar]
  107. b ChengL. WangC. FengL. YangK. LiuZ. Functional nanomaterials for phototherapies of cancer.Chem. Rev.201411421108691093910.1021/cr400532z25260098
    [Google Scholar]
  108. a ZhangJ. YangL. HuangF. ZhaoC. LiuJ. ZhangY. LiuJ. Multifunctional hybrid hydrogel enhanced antitumor therapy through multiple destroying DNA functions by a triple-combination synergistic therapy.Adv. Healthc. Mater.20211021210119010.1002/adhm.20210119034382378
    [Google Scholar]
  109. b MinchintonA.I. TannockI.F. Drug penetration in solid tumours.Nat. Rev. Cancer20066858359210.1038/nrc189316862189
    [Google Scholar]
  110. a LiS. QingY. LouY. LiR. WangH. WangX. YingB. TangX. QinY. Injectable thermosensitive black phosphorus nanosheet- and doxorubicin-loaded hydrogel for synergistic bone tumor photothermal-chemotherapy and osteogenesis enhancement.Int. J. Biol. Macromol.202323912420910.1016/j.ijbiomac.2023.12420936972826
    [Google Scholar]
  111. b RazaF. ZhuY. ChenL. YouX. ZhangJ. KhanA. KhanM.W. HasnatM. ZafarH. WuJ. GeL. Paclitaxel-loaded pH responsive hydrogel based on self-assembled peptides for tumor targeting.Biomater. Sci.2019752023203610.1039/C9BM00139E30839983
    [Google Scholar]
  112. LeeJ.H. TachibanaT. YamanaK. KawasakiR. YabukiA. Simple formation of cancer drug-containing self-assembled hydrogels with temperature and pH-responsive release.Langmuir20213738112691127510.1021/acs.langmuir.1c0170034403246
    [Google Scholar]
  113. WangN. GaoQ. TangJ. JiangY. YangL. ShiX. ChenY. ZhangY. FuS. LinS. Anti-tumor effect of local injectable hydrogel-loaded endostatin alone and in combination with radiotherapy for lung cancer.Drug Deliv.202128118319410.1080/10717544.2020.186986433427520
    [Google Scholar]
  114. LiuY. RanY. GeY. RazaF. LiS. ZafarH. WuY. Paiva-SantosA.C. YuC. SunM. ZhuY. LiF. pH-sensitive peptide hydrogels as a combination drug delivery system for cancer treatment.Pharmaceutics202214365210.3390/pharmaceutics1403065235336026
    [Google Scholar]
  115. BrevéT.G. FiliusM. WeerdenburgS. van der GriendS.J. GroeneveldT.P. DenkovaA.G. EelkemaR. Light‐sensitive phenacyl crosslinked dextran hydrogels for controlled delivery.Chemistry20222810e20210352310.1002/chem.20210352334939694
    [Google Scholar]
  116. RehmanU. SarfrazR.M. MahmoodA. AkbarS. E AltyarA. KhinkarR.M. GadH.A. pH responsive hydrogels for the delivery of capecitabine: Development, optimization and pharmacokinetic studies.Gels202281277510.3390/gels812077536547299
    [Google Scholar]
  117. ZhaoZ. LiQ. QinX. ZhangM. DuQ. LuanY. An injectable hydrogel reshaping adenosinergic axis for cancer therapy.Adv. Funct. Mater.20223224220080110.1002/adfm.202200801
    [Google Scholar]
  118. ZhouY. ZhaiZ. YaoY. StantJ.C. LandrumS.L. BortnerM.J. FrazierC.E. EdgarK.J. Oxidized hydroxypropyl cellulose/carboxymethyl chitosan hydrogels permit pH-responsive, targeted drug release.Carbohydr. Polym.202330012021310.1016/j.carbpol.2022.12021336372518
    [Google Scholar]
  119. Farasati FarB. OmraniM. Naimi JamalM.R. JavanshirS. Multi-responsive chitosan-based hydrogels for controlled release of vincristine.Commun. Chem.2023612810.1038/s42004‑023‑00829‑136765265
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018320746241101052039
Loading
/content/journals/cdd/10.2174/0115672018320746241101052039
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): dentistry; Drug delivery system; drug release; hydrogels; implants; polymers
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test