Skip to content
2000
Volume 22, Issue 10
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Small nucleic acids (sNA) are revolutionizing several therapeutic environments in areas such as oncology as well as rare disease states. However, despite the progress in RNA modification, lipid nanoparticles (LNPs), and GalNAc conjugation methods, issues like toxicity, immunogenicity, and stability limitations affect the application. Compared with viral and non-viral systems, LNPs have become more credible carriers to solve the problems of RNA degradation and realize more innovation, such as the first RNA interference drug, Patisiran. Likewise, methods for GalNAc conjugation have enabled liver-targeting therapies with better pharmacokinetic profiles. Relative to this subject, novel strategies such as exosome-mediated delivery and multifaceted systems involving LNP-GalNAc and exosome all hold more specificity and biostability. Some of the recent advancements in RNA chemical modifications involve the application of 1-methylpseudouridine which enhances the stability of the RNA and also reduces its immunogenic outcomes. Also, the application of AI in therapeutic areas includes establishing the delivery vectors, estimating severe side effects, and designing new nucleic acid therapies. In addition to hepatic targeting, tissue targetability is now being investigated for other purposes. A solution to the existing stability and targeting limitations is critical for the further development and enhanced use of sNA therapies in broad diseases, including chronic and complex diseases. The major focus of this review is on the recent development and potential future trends of sNA as a drug delivery system for precision medicine.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018370847250110094907
2025-12-01
2025-11-30
Loading full text...

Full text loading...

References

  1. WangP. ZhouY. RichardsA.M. Effective tools for RNA-derived therapeutics: siRNA interference or miRNA mimicry.Theranostics202111188771879610.7150/thno.6264234522211
    [Google Scholar]
  2. RinoldiC. ZargarianS.S. NakielskiP. LiX. LiguoriA. PetronellaF. PresuttiD. WangQ. CostantiniM. De SioL. GualandiC. DingB. PieriniF. Nanotechnology-assisted rna delivery: From nucleic acid therapeutics to COVID-19 vaccines.Small Methods202159210040210.1002/smtd.20210040234514087
    [Google Scholar]
  3. WangH. ZhangS. LvJ. ChengY. Design of polymers for siRNA delivery: Recent progress and challenges.VIEW2021232020002610.1002/VIW.20200026
    [Google Scholar]
  4. GaoH. ChengR. Nanoparticle-mediated siRNA delivery systems for cancer therapy.VIEW202122020011110.1002/VIW.20200111
    [Google Scholar]
  5. ZhangM.M. BahalR. RasmussenT.P. ManautouJ.E. ZhongX. The growth of siRNA-based therapeutics: Updated clinical studies.Biochem. Pharmacol.202118911443210.1016/j.bcp.2021.11443233513339
    [Google Scholar]
  6. ChenW. LiY. LiuC. KangY. QinD. ChenS. ZhouJ. LiuH.J. FerdowsB.E. PatelD.N. HuangX. KooS. KongN. JiX. CaoY. TaoW. XieT. In situ engineering of tumor-associated macrophages via a nanodrug-delivering-drug (β-Elemene@Stanene) strategy for enhanced cancer chemo-immunotherapy.Angew. Chem. Int. Ed.20236241e20230841310.1002/anie.20230841337380606
    [Google Scholar]
  7. KhareP. DaveK.M. KamteY.S. ManoharanM.A. O’DonnellL.A. ManickamD.S. Development of lipidoid nanoparticles for siRNA delivery to neural cells.AAPS J.2022241810.1208/s12248‑021‑00653‑234873640
    [Google Scholar]
  8. AdamsD. Gonzalez-DuarteA. O’RiordanW.D. YangC.C. UedaM. KristenA.V. TournevI. SchmidtH.H. CoelhoT. BerkJ.L. LinK.P. VitaG. AttarianS. Planté-BordeneuveV. MezeiM.M. CampistolJ.M. BuadesJ. BrannaganT.H.III KimB.J. OhJ. ParmanY. SekijimaY. HawkinsP.N. SolomonS.D. PolydefkisM. DyckP.J. GandhiP.J. GoyalS. ChenJ. StrahsA.L. NochurS.V. SweetserM.T. GargP.P. VaishnawA.K. GollobJ.A. SuhrO.B. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis.N. Engl. J. Med.20183791112110.1056/NEJMoa171615329972753
    [Google Scholar]
  9. HussainM.S. SharmaP. DhanjalD.S. KhuranaN. VyasM. SharmaN. MehtaM. TambuwalaM.M. SatijaS. SohalS.S. OliverB.G.G. SharmaH.S. Nanotechnology based advanced therapeutic strategies for targeting interleukins in chronic respiratory diseases.Chem. Biol. Interact.202134810963710.1016/j.cbi.2021.10963734506765
    [Google Scholar]
  10. DuanJ.L. WangC.C. YuanY. HuiZ. ZhangH. MaoN.D. ZhangP. SunB. LinJ. ZhangZ. GaoY. XieT. YeX.Y. Design, synthesis, and structure–activity relationship of novel pyridazinone-based PARP7/HDACs dual inhibitors for elucidating the relationship between antitumor immunity and HDACs inhibition.J. Med. Chem.20246764950497610.1021/acs.jmedchem.4c0009038456618
    [Google Scholar]
  11. NairJ.K. AttarwalaH. SehgalA. WangQ. AluriK. ZhangX. GaoM. LiuJ. IndrakantiR. SchofieldS. KretschmerP. BrownC.R. GuptaS. WilloughbyJ.L.S. BosharJ.A. JadhavV. CharisseK. ZimmermannT. FitzgeraldK. ManoharanM. RajeevK.G. AkincA. HutabaratR. MaierM.A. Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc–siRNA conjugates.Nucleic Acids Res.20174519109691097710.1093/nar/gkx81828981809
    [Google Scholar]
  12. DebackerA.J. VoutilaJ. CatleyM. BlakeyD. HabibN. Delivery of oligonucleotides to the liver with GalNAc: From research to registered therapeutic drug.Mol. Ther.202028817591771
    [Google Scholar]
  13. TangJ. LiJ. LiG. ZhangH. WangL. LiD. DingJ. Spermidine-mediated poly(lactic-co-glycolic acid) nanoparticles containing fluorofenidone for the treatment of idiopathic pulmonary fibrosis.Int. J. Nanomedicine2017126687670410.2147/IJN.S14056928932114
    [Google Scholar]
  14. Sadique HussainM. GuptaG. GhabouraN. MogladE. Hassan AlmalkiW. Alzarea, SI Exosomal ncRNAs in liquid biopsies for lung cancer.Clin. Chim. Acta202556511998310.1016/j.cca.2024.119983
    [Google Scholar]
  15. MaininiF. EcclesM.R. Lipid and polymer-based nanoparticle siRNA delivery systems for cancer therapy.Molecules20202511269210.3390/molecules2511269232532030
    [Google Scholar]
  16. LiW. WuJ. ZhangJ. WangJ. XiangD. LuoS. LiJ. LiuX. Puerarin-loaded PEG-PE micelles with enhanced anti-apoptotic effect and better pharmacokinetic profile.Drug Deliv.201825182783710.1080/10717544.2018.145576329587545
    [Google Scholar]
  17. WangY. XuY. SongJ. LiuX. LiuS. YangN. WangL. LiuY. ZhaoY. ZhouW. ZhangY. Tumor cell-targeting and tumor microenvironment–responsive nanoplatforms for the multimodal imaging-guided Photodynamic/Photothermal/Chemodynamic treatment of cervical cancer.Int. J. Nanomedicine2024195837585810.2147/IJN.S46604238887692
    [Google Scholar]
  18. KaushalA. Innate immune regulations and various siRNA modalities.Drug Deliv. Transl. Res.202313112704271810.1007/s13346‑023‑01361‑437219704
    [Google Scholar]
  19. KarikóK. BucksteinM. NiH. WeissmanD. Suppression of RNA recognition by Toll-like receptors: The impact of nucleoside modification and the evolutionary origin of RNA.Immunity200523216517510.1016/j.immuni.2005.06.00816111635
    [Google Scholar]
  20. PardiN. HoganM.J. PorterF.W. WeissmanD. mRNA vaccines - A new era in vaccinology.Nat. Rev. Drug Discov.201817426127910.1038/nrd.2017.24329326426
    [Google Scholar]
  21. WangL. TangY. DengZ. ChenS. DNA phosphorothioate modification systems and associated phage defense systems.Annu. Rev. Microbiol.202478144746210.1146/annurev‑micro‑041222‑01433039565949
    [Google Scholar]
  22. SantiagoD. A closer look at N1-methylpseudouridine in the modified mRNA injectables.Int. J. Vaccine Theory Pract. Res.2024321345136610.56098/5azda593
    [Google Scholar]
  23. LiH. ZhouY. LiaoL. TanH. LiY. LiZ. ZhouB. BaoM. HeB. Pharmacokinetics effects of chuanxiong rhizoma on warfarin in pseudo germ-free rats.Front. Pharmacol.202313102256710.3389/fphar.2022.102256736686675
    [Google Scholar]
  24. HagerS. FittlerF.J. WagnerE. BrosM. Nucleic acid-based approaches for tumor therapy.Cells202099206110.3390/cells909206132917034
    [Google Scholar]
  25. KomorA.C. KimY.B. PackerM.S. ZurisJ.A. LiuD.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.Nature2016533760342042410.1038/nature1794627096365
    [Google Scholar]
  26. XiaoY. ShiK. QuY. ChuB. QianZ. Engineering nanoparticles for targeted delivery of nucleic acid therapeutics in tumor.Mol. Ther. Methods Clin. Dev.20191211810.1016/j.omtm.2018.09.00230364598
    [Google Scholar]
  27. LiL. WangF. ZhuD. HuS. ChengK. LiZ. Engineering exosomes and exosome-like nanovesicles for improving tissue targeting and retention.Fundamental Research202410.1016/j.fmre.2024.03.025
    [Google Scholar]
  28. YiK. KongH. LaoY.H. LiD. MintzR.L. FangT. Engineered nanomaterials to potentiate CRISPR/Cas9 gene editing for cancer therapy.Adv. Mater.20243613e2300665
    [Google Scholar]
  29. EygerisY. GuptaM. KimJ. SahayG. Chemistry of lipid nanoparticles for RNA delivery.Acc. Chem. Res.202255121210.1021/acs.accounts.1c0054434850635
    [Google Scholar]
  30. YuanY. WuY. ChengJ. YangK. XiaY. WuH. PanX. Applications of artificial intelligence to lipid nanoparticle delivery.Particuology202490889710.1016/j.partic.2023.11.014
    [Google Scholar]
  31. ZahednezhadF. AllahyariS. SarfrazM. Zakeri-MilaniP. FeyzizadehM. ValizadehH. Liposomal drug delivery systems for organ-specific cancer targeting: Early promises, subsequent problems, and recent breakthroughs.Expert Opin. Drug Deliv.20242191363138410.1080/17425247.2024.239461139282895
    [Google Scholar]
  32. GierlichP. MataA.I. DonohoeC. BritoR.M.M. SengeM.O. Gomes-da-SilvaL.C. Ligand-targeted delivery of photosensitizers for cancer treatment.Molecules20202522531710.3390/molecules2522531733202648
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018370847250110094907
Loading
/content/journals/cdd/10.2174/0115672018370847250110094907
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test