Skip to content
2000
Volume 22, Issue 9
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Introduction

Hepatocellular carcinoma (HCC) poses a major healthcare burden globally. Traditional Chinese medicine formula Bushen Jianpi (BSJP) recipe shows inhibitory effects on HCC but suffers from low bioavailability. This study aims to develop a BSJP-loaded liposome (BSJP@Lip) for targeted HCC treatment.

Methods

BSJP@Lip was prepared using a microfluidic device. Particle characterization included size, morphology, drug loading, encapsulation efficiency, and release kinetics analysis. cytotoxicity, cellular uptake, apoptosis, and protein expression were evaluated in hepG2, Smmc-7721, and hepa 1-6 hepatic cancer cell lines treated with BSJP@Lip.

Results

BSJP@Lip nanoparticles showed a uniform spherical shape with an average size of 50 nm and zeta potential at around -2.24 mV. They significantly inhibited cell viability and induced apoptosis in a dose-dependent manner compared with traditional decoction formulations. Enhanced cellular uptake of BSJP@Lip increased the expression of proinflammatory factors IL-18 and NLRP3.

Conclusion

BSJP@Lip nanoparticles were found to be efficiently internalized by hepatic cancer cell lines, resulting in a dose-dependent inhibition of cell viability and induction of apoptosis. This effect was accompanied by the upregulation of IL-18 and NLRP3.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018318595240902095514
2024-09-16
2025-12-11
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. McGlynnK.A. PetrickJ.L. El-Serag, HB Epidemiology of Hepatocellular Carcinoma.Hepatology202173Suppl. 141310.1002/hep.31288
    [Google Scholar]
  3. FornerA. ReigM. BruixJ. Hepatocellular carcinoma.Lancet2018391101271301131410.1016/S0140‑6736(18)30010‑229307467
    [Google Scholar]
  4. Hepatocellular carcinoma.Nat. Rev. Dis. Primers202171710.1038/s41572‑021‑00245‑633479233
    [Google Scholar]
  5. NagarajuG.P. DariyaB. KasaP. PeelaS. El-RayesB.F. Epigenetics in hepatocellular carcinoma.Semin. Cancer Biol.202286Pt 362263210.1016/j.semcancer.2021.07.01734324953
    [Google Scholar]
  6. YuX.N. ChenH. LiuT.T. WuJ. ZhuJ.M. ShenX.Z. Targeting the mTOR regulatory network in hepatocellular carcinoma: Are we making headway?Biochim. Biophys. Acta Rev. Cancer20191871237939110.1016/j.bbcan.2019.03.00130951815
    [Google Scholar]
  7. JeongS. ZhengB. WangH. XiaQ. ChenL. Nervous system and primary liver cancer.Biochim. Biophys. Acta Rev. Cancer20181869228629210.1016/j.bbcan.2018.04.00229660379
    [Google Scholar]
  8. RaghunathA. SundarrajK. ArfusoF. SethiG. PerumalE. Dysregulation of Nrf2 in Hepatocellular Carcinoma: Role in cancer progression and chemoresistance.Cancers2018101248110.3390/cancers1012048130513925
    [Google Scholar]
  9. MastronJ.K. SiveenK.S. SethiG. BishayeeA. Silymarin and hepatocellular carcinoma.Anticancer Drugs201526547548610.1097/CAD.000000000000021125603021
    [Google Scholar]
  10. SinS.Q. MohanC.D. GohR.M.W.J. YouM. NayakS.C. ChenL. SethiG. RangappaK.S. WangL. Hypoxia signaling in hepatocellular carcinoma: Challenges and therapeutic opportunities.Cancer Metastasis Rev.202342374176410.1007/s10555‑022‑10071‑136547748
    [Google Scholar]
  11. YangX. LiQ. LiuW. ZongC. WeiL. ShiY. HanZ. Mesenchymal stromal cells in hepatic fibrosis/cirrhosis: From pathogenesis to treatment.Cell. Mol. Immunol.202320658359910.1038/s41423‑023‑00983‑536823236
    [Google Scholar]
  12. TengP.C. HuangD.Q. LinT.Y. NoureddinM. YangJ.D. Diabetes and risk of hepatocellular carcinoma in cirrhosis patients with nonalcoholic fatty liver disease.Gut Liver2023171243310.5009/gnl22035736530125
    [Google Scholar]
  13. LevreroM. Zucman-RossiJ. Mechanisms of HBV-induced hepatocellular carcinoma.J. Hepatol.2016641Suppl.S84S10110.1016/j.jhep.2016.02.02127084040
    [Google Scholar]
  14. MarreroC.R. MarreroJ.A. Viral hepatitis and hepatocellular carcinoma.Arch. Med. Res.200738661262010.1016/j.arcmed.2006.09.00417613352
    [Google Scholar]
  15. AlqahtaniS.A. ColomboM. Treatment for viral hepatitis as secondary prevention for Hepatocellular Carcinoma.Cells20211011309110.3390/cells1011309134831314
    [Google Scholar]
  16. LiJ. LiangQ. SunG. Traditional Chinese medicine for prevention and treatment of hepatocellular carcinoma: A focus on epithelial-mesenchymal transition.J. Integr. Med.202119646947710.1016/j.joim.2021.08.00434538644
    [Google Scholar]
  17. TangK. DuS. WangQ. ZhangY. SongH. Traditional Chinese medicine targeting cancer stem cells as an alternative treatment for hepatocellular carcinoma.J. Integr. Med.202018319620210.1016/j.joim.2020.02.00232067923
    [Google Scholar]
  18. WangM. YeQ. MaoD. LiH. Research progress in liver-regenerating microenvironment and DNA methylation in hepatocellular carcinoma: The role of traditional chinese medicine.Med. Sci. Monit.202026e92031010.12659/MSM.92031032144233
    [Google Scholar]
  19. TingC.T. LiW.C. ChenC.Y. TsaiT.H. Preventive and therapeutic role of traditional Chinese herbal medicine in hepatocellular carcinoma.J. Chin. Med. Assoc.201578313914410.1016/j.jcma.2014.09.00325447209
    [Google Scholar]
  20. LiuX. LiM. WangX. DangZ. YuL. WangX. JiangY. YangZ. Effects of adjuvant traditional Chinese medicine therapy on long-term survival in patients with hepatocellular carcinoma.Phytomedicine20196215293010.1016/j.phymed.2019.15293031128485
    [Google Scholar]
  21. LiuY. WuJ. HaoH. Antitumor immunostimulatory activity of the traditional Chinese medicine polysaccharide on hepatocellular carcinoma.Front. Immunol.202415136911010.3389/fimmu.2024.136911038455058
    [Google Scholar]
  22. HeK. ChenH. CaoT. LinJ. Elucidation of the mechanisms and molecular targets of shuanglian decoction for the treatment of hepatocellular carcinoma based on network pharmacology.ACS Omega20216191792410.1021/acsomega.0c0555033458543
    [Google Scholar]
  23. YangX. FengY. LiuY. YeX. JiX. SunL. GaoF. ZhangQ. LiY. ZhuB. WangX. Fuzheng Jiedu Xiaoji formulation inhibits hepatocellular carcinoma progression in patients by targeting the AKT/CyclinD1/p21/p27 pathway.Phytomedicine20218715357510.1016/j.phymed.2021.15357533984593
    [Google Scholar]
  24. XuL. WanY. HuangJ. XuF. Clinical analysis of electroacupuncture and multiple acupoint stimulation in relieving cancer pain in patients with advanced hepatocellular carcinoma.J. Cancer Res. Ther.20181419910210.4103/jcrt.JCRT_736_1729516968
    [Google Scholar]
  25. ZhongD. LiY. HuangY. HongX. LiJ. JinR. Molecular mechanisms of exercise on cancer: A bibliometrics study and visualization analysis via citespace.Front. Mol. Biosci.2022879790210.3389/fmolb.2021.79790235096970
    [Google Scholar]
  26. ZhouZ. LiuX. WuT. QueZ. WuZ. WuW. FuS. ZhangS. YangY. JiangH. XiaX. LvJ. DuB. LiY. LuT. ZhangZ. ZhongY. Herbal formula of Bushen Jianpi combined with sorafenib inhibits hepatocellular carcinoma growth by promoting cell apoptosis and blocking the cell cycle.J. Tradit. Chin. Med.2021412194202[PMID: 33825398
    [Google Scholar]
  27. WangL. LiX. ZhouR. ShanY. Effect of Bushen Jianpi formula on survival of patients with moderate and advanced hepatocellular carcinoma: A retrospective study.J. Tradit. Chin. Med.202040468368910.19852/j.cnki.jtcm.2020.04.01832744036
    [Google Scholar]
  28. KumarV. RahmanM. GahtoriP. Al-AbbasiF. AnwarF. KimH.S. Current status and future directions of hepatocellular carcinoma-targeted nanoparticles and nanomedicine.Expert Opin. Drug Deliv.202118667369410.1080/17425247.2021.186093933295218
    [Google Scholar]
  29. LiY. MiaoY. ChenM. ChenX. LiF. ZhangX. GanY. Stepwise targeting and responsive lipid-coated nanoparticles for enhanced tumor cell sensitivity and hepatocellular carcinoma therapy.Theranostics20201083722373610.7150/thno.4200832206118
    [Google Scholar]
  30. HuX. ZhuH. HeX. ChenJ. XiongL. ShenY. LiJ. XuY. ChenW. LiuX. CaoD. XuX. The application of nanoparticles in immunotherapy for hepatocellular carcinoma.J. Control. Release20233558510810.1016/j.jconrel.2023.01.05136708880
    [Google Scholar]
  31. HuangJ. ZhuY. XiaoH. LiuJ. LiS. ZhengQ. TangJ. MengX. Formation of a traditional Chinese medicine self-assembly nanostrategy and its application in cancer: A promising treatment.Chin. Med.20231816610.1186/s13020‑023‑00764‑237280646
    [Google Scholar]
  32. LiuX. WuZ. GuoC. GuoH. SuY. ChenQ. SunC. LiuQ. ChenD. MuH. Hypoxia responsive nano-drug delivery system based on angelica polysaccharide for liver cancer therapy.Drug Deliv.202229113814810.1080/10717544.2021.202132434967268
    [Google Scholar]
  33. ZhaoH. HanB. LiX. SunC. ZhaiY. LiM. JiangM. ZhangW. LiangY. KaiG. Salvia miltiorrhiza in breast cancer treatment: A review of its phytochemistry, derivatives, nanoparticles, and potential mechanisms.Front. Pharmacol.20221387208510.3389/fphar.2022.87208535600860
    [Google Scholar]
  34. DogheimG. ChinnamS. AmrallaM.T. Lipid nanoparticles as a platform for miRNA and siRNA delivery in hepatocellular carcinoma.Curr. Drug Deliv.202421Online ahead of print10.2174/011567201829233124040407023638698743
    [Google Scholar]
  35. LiY. MaL. XiongY. ShiJ. ZhangF. ChaiQ. HuG. LiuY. Delivering relaxin plasmid by polymeric metformin lipid nanoparticles for liver fibrosis treatment.Curr. Drug Deliv.202421343143710.2174/156720182066623040713502637032506
    [Google Scholar]
  36. LiJ. ZhangL. LuY. LinY. YangK. ZhouX. ShenG. Sulfonium lipids: Synthesis and evaluation as DNA delivery vectors.Curr. Drug Deliv.202320795196010.2174/156720181966622051912262235598247
    [Google Scholar]
  37. ZhouJ. ChenY. LiuY. HuangT. XingJ. GeR. YuD.G. Electrospun medicated gelatin/polycaprolactone Janus fibers for photothermal-chem combined therapy of liver cancer.Int. J. Biol. Macromol.2024269Pt 113211310.1016/j.ijbiomac.2024.13211338719010
    [Google Scholar]
  38. ZhuQ. LinM. ZhuoW. LiY. Chemical constituents from the wild Atractylodes macrocephala koidz and acetylcholinesterase inhibitory activity evaluation as well as molecular docking study.Molecules20212623729910.3390/molecules2623729934885880
    [Google Scholar]
  39. DingX. LiS. HuangH. ShenJ. DingY. ChenT. MaL. LiuJ. LaiY. ChenB. WangY. TanQ. Bioactive triterpenoid compounds of Poria cocos (Schw.) Wolf in the treatment of diabetic ulcers via regulating the PI3K-AKT signaling pathway.J. Ethnopharmacol.202432511781210.1016/j.jep.2024.11781238301984
    [Google Scholar]
  40. ZhangJ. WuC. GaoL. DuG. QinX. Astragaloside IV derived from Astragalus membranaceus: A research review on the pharmacological effects.Adv. Pharmacol.2020878911210.1016/bs.apha.2019.08.00232089240
    [Google Scholar]
  41. ZhangR.X. LiM.X. JiaZ.P. Rehmannia glutinosa: Review of botany, chemistry and pharmacology.J. Ethnopharmacol.2008117219921410.1016/j.jep.2008.02.01818407446
    [Google Scholar]
  42. ZhaoX. WangY. XiaH. LiuS. HuangZ. HeR. YuL. MengN. WangH. YouJ. LiJ. YamJ.W.P. XuY. CuiY. Roles and molecular mechanisms of biomarkers in hepatocellular carcinoma with microvascular invasionA review. J. Clin. Transl. Hepatol.202310.14218/JCTH.2022.00013S37577231
    [Google Scholar]
  43. NiuZ.S. WangW.H. NiuX.J. Recent progress in molecular mechanisms of postoperative recurrence and metastasis of hepatocellular carcinoma.World J. Gastroenterol.202228466433647710.3748/wjg.v28.i46.643336569275
    [Google Scholar]
  44. WangH. LuZ. ZhaoX. Tumorigenesis, diagnosis, and therapeutic potential of exosomes in liver cancer.J. Hematol. Oncol.201912113310.1186/s13045‑019‑0806‑631815633
    [Google Scholar]
  45. KennelK.B. BozlarM. De ValkA.F. GretenF.R. Cancer-associated fibroblasts in inflammation and antitumor immunity.Clin. Cancer Res.20232961009101610.1158/1078‑0432.CCR‑22‑103136399325
    [Google Scholar]
  46. MantovaniA. AllavenaP. SicaA. BalkwillF. Cancer-related inflammation.Nature2008454720343644410.1038/nature0720518650914
    [Google Scholar]
  47. SinghN. BabyD. RajguruJ. PatilP. ThakkannavarS. PujariV. Inflammation and cancer.Ann. Afr. Med.201918312112610.4103/aam.aam_56_1831417011
    [Google Scholar]
  48. VucurM. GhallabA. SchneiderA.T. AdiliA. ChengM. CastoldiM. SingerM.T. ButtnerV. KeysbergL.S. KusgensL. Sublethal necroptosis signaling promotes inflammation and liver cancer.Immunity20235671578159510.1016/j.immuni.2023.05.017
    [Google Scholar]
  49. YangY. KimS. SekiE. Inflammation and liver cancer: Molecular mechanisms and therapeutic targets.Semin. Liver Dis.201939102604210.1055/s‑0038‑167680630809789
    [Google Scholar]
  50. HuB. YangX.R. XuY. SunY.F. SunC. GuoW. ZhangX. WangW.M. QiuS.J. ZhouJ. FanJ. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma.Clin. Cancer Res.201420236212622210.1158/1078‑0432.CCR‑14‑044225271081
    [Google Scholar]
  51. RingelhanM. PfisterD. O’ConnorT. PikarskyE. HeikenwalderM. The immunology of hepatocellular carcinoma.Nat. Immunol.201819322223210.1038/s41590‑018‑0044‑z29379119
    [Google Scholar]
  52. WuY. MinJ. GeC. ShuJ. TianD. YuanY. ZhouD. Interleukin 22 in liver injury, inflammation and cancer.Int. J. Biol. Sci.202016132405241310.7150/ijbs.3892532760208
    [Google Scholar]
  53. NakagawaH. MaedaS. Inflammation- and stress-related signaling pathways in hepatocarcinogenesis.World J. Gastroenterol.201218314071408110.3748/wjg.v18.i31.407122919237
    [Google Scholar]
  54. BishayeeA. The role of inflammation and liver cancer.Adv. Exp. Med. Biol.201481640143510.1007/978‑3‑0348‑0837‑8_1624818732
    [Google Scholar]
  55. HeG. KarinM. NF-κB and STAT3 – key players in liver inflammation and cancer.Cell Res.201121115916810.1038/cr.2010.18321187858
    [Google Scholar]
  56. RodríguezM.J. SabajM. TolosaG. Herrera VielmaF. ZúñigaM.J. GonzálezD.R. Zúñiga-HernándezJ. Maresin-1 prevents liver fibrosis by targeting Nrf2 and NF-κB, reducing oxidative stress and inflammation.Cells20211012340610.3390/cells1012340634943914
    [Google Scholar]
  57. LiuY. XuQ. DengF. ZhengZ. LuoJ. WangP. ZhouJ. LuX. ZhangL. ChenZ. ZhangQ. ChenQ. ZuoD. HERC2 promotes inflammation-driven cancer stemness and immune evasion in hepatocellular carcinoma by activating STAT3 pathway.J. Exp. Clin. Cancer Res.20234213810.1186/s13046‑023‑02609‑036721234
    [Google Scholar]
  58. Ramos-TovarE. MurielP. NLRP3 inflammasome in hepatic diseases: A pharmacological target.Biochem. Pharmacol.202321711586110.1016/j.bcp.2023.11586137863329
    [Google Scholar]
  59. ZhaoH. ZhangY. ZhangY. ChenC. LiuH. YangY. WangH. The role of NLRP3 inflammasome in hepatocellular carcinoma.Front. Pharmacol.202314115032510.3389/fphar.2023.115032537153780
    [Google Scholar]
  60. HuangY. XuW. ZhouR. NLRP3 inflammasome activation and cell death.Cell. Mol. Immunol.20211892114212710.1038/s41423‑021‑00740‑634321623
    [Google Scholar]
  61. AtebaS.B. MvondoM.A. DjiogueS. ZinguéS. KrennL. NjamenD. A pharmacological overview of alpinumisoflavone, a natural prenylated isoflavonoid.Front. Pharmacol.20191095210.3389/fphar.2019.0095231551770
    [Google Scholar]
  62. YangM.D. ZhouW.J. ChenX.L. ChenJ. JiQ. LiQ. WangW.H. SuS.B. Therapeutic effect and mechanism of bushen-jianpi-jiedu decoction combined with chemotherapeutic drugs on postoperative colorectal cancer.Front. Pharmacol.20211252466310.3389/fphar.2021.52466333828479
    [Google Scholar]
  63. HuangX.H. LiangR.H. SuL. GuoW. WangC.J. Mechanism of Bushen Jianpi decoction in preventing and treating osteoporosis caused by aromatase inhibitors in breast cancer treatment.Cancer Biomark.201718218319010.3233/CBM‑16028127983533
    [Google Scholar]
  64. YuanW. LinJ. WangJ. WangC. ShanY. JingW. FeiZ. PanW. Network pharmacology analysis and clinical efficacy of the traditional Chinese medicine Bu-Shen-Jian-Pi. Part 2: Modulation of hypoxia, redox status, and mitochondrial protection in a neuroblastoma cell line, SH-SY5Y.Int. J. Clin. Pharmacol. Ther.202462416216810.5414/CP20450538431829
    [Google Scholar]
  65. ZhouZ. FuS. LiY. QueZ. LiuX. YuG. GaoD. ZhangZ. WuT. ZhongY. Molecular mechanism of bushen jianpi inhibition of postoperative recurrence and metastasis of hepatocellular carcinoma.J. Biomed. Nanotechnol.2021171536310.1166/jbn.2021.301833653496
    [Google Scholar]
  66. PonzianiF.R. BhooriS. CastelliC. PutignaniL. RivoltiniL. Del ChiericoF. SanguinettiM. MorelliD. Paroni SterbiniF. PetitoV. ReddelS. CalvaniR. CamisaschiC. PiccaA. TuccittoA. GasbarriniA. PompiliM. MazzaferroV. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease.Hepatology201969110712010.1002/hep.3003629665135
    [Google Scholar]
  67. ZhongY. LuoC.L. An-JunZ. [Effect of bushen jianpi decoction and its disassemble recipes on tumor growth in mice with transplanted primary hepatic carcinoma]Chung Kuo Chung Hsi I Chieh Ho Tsa Chih201131221321721425577
    [Google Scholar]
  68. SaungM.T. PelosofL. CasakS. DonoghueM. LemeryS. YuanM. RodriguezL. SchotlandP. ChukM. DavisG. GoldbergK.B. TheoretM.R. PazdurR. Fashoyin-AjeL. FDA approval summary: Nivolumab plus ipilimumab for the treatment of patients with hepatocellular carcinoma previously treated with sorafenib.Oncologist202126979780610.1002/onco.1381933973307
    [Google Scholar]
  69. GaoL. WangX. TangY. HuangS. HuC.A.A. TengY. FGF19/FGFR4 signaling contributes to the resistance of hepatocellular carcinoma to sorafenib.J. Exp. Clin. Cancer Res.2017361810.1186/s13046‑016‑0478‑928069043
    [Google Scholar]
  70. LeeC.H. ShahA.Y. RascoD. RaoA. TaylorM.H. Di SimoneC. HsiehJ.J. PintoA. ShafferD.R. Girones SarrioR. CohnA.L. VogelzangN.J. BilenM.A. Gunnestad RibeS. GokselM. TennøeØ.K. RichardsD. SweisR.F. CourtrightJ. HeinrichD. JainS. WuJ. SchmidtE.V. PeriniR.F. KubiakP. OkparaC.E. SmithA.D. MotzerR.J. Lenvatinib plus pembrolizumab in patients with either treatment-naive or previously treated metastatic renal cell carcinoma (Study 111/KEYNOTE-146): A phase 1b/2 study.Lancet Oncol.202122794695810.1016/S1470‑2045(21)00241‑234143969
    [Google Scholar]
  71. BruixJ. QinS. MerleP. GranitoA. HuangY.H. BodokyG. PrachtM. YokosukaO. RosmorducO. BrederV. GerolamiR. MasiG. RossP.J. SongT. BronowickiJ.P. Ollivier-HourmandI. KudoM. ChengA.L. LlovetJ.M. FinnR.S. LeBerreM.A. BaumhauerA. MeinhardtG. HanG. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial.Lancet201738910064566610.1016/S0140‑6736(16)32453‑927932229
    [Google Scholar]
  72. WilhelmS.M. DumasJ. AdnaneL. LynchM. CarterC.A. SchützG. ThierauchK.H. ZopfD. Regorafenib (BAY 73‐4506): A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity.Int. J. Cancer2011129124525510.1002/ijc.2586421170960
    [Google Scholar]
  73. BruixJ. TakW.Y. GasbarriniA. SantoroA. ColomboM. LimH.Y. MazzaferroV. WiestR. ReigM. WagnerA. BolondiL. Regorafenib as second-line therapy for intermediate or advanced hepatocellular carcinoma: Multicentre, open-label, phase II safety study.Eur. J. Cancer201349163412341910.1016/j.ejca.2013.05.02823809766
    [Google Scholar]
  74. Abou-AlfaG.K. MeyerT. ChengA.L. El-KhoueiryA.B. RimassaL. RyooB.Y. CicinI. MerleP. ChenY. ParkJ.W. BlancJ.F. BolondiL. KlümpenH.J. ChanS.L. ZagonelV. PressianiT. RyuM.H. VenookA.P. HesselC. Borgman-HageyA.E. SchwabG. KelleyR.K. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma.N. Engl. J. Med.20183791546310.1056/NEJMoa171700229972759
    [Google Scholar]
  75. YakesF.M. ChenJ. TanJ. YamaguchiK. ShiY. YuP. QianF. ChuF. BentzienF. CancillaB. OrfJ. YouA. LairdA.D. EngstS. LeeL. LeschJ. ChouY.C. JolyA.H. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth.Mol. Cancer Ther.201110122298230810.1158/1535‑7163.MCT‑11‑026421926191
    [Google Scholar]
  76. KelleyR.K. VerslypeC. CohnA.L. YangT.S. SuW.C. BurrisH. BraitehF. VogelzangN. SpiraA. FosterP. LeeY. Van CutsemE. Cabozantinib in hepatocellular carcinoma: Results of a phase 2 placebo-controlled randomized discontinuation study.Ann. Oncol.201728352853410.1093/annonc/mdw65128426123
    [Google Scholar]
  77. ZhuA.X. ParkJ.O. RyooB.Y. YenC.J. PoonR. PastorelliD. BlancJ.F. ChungH.C. BaronA.D. PfifferT.E.F. OkusakaT. KubackovaK. TrojanJ. SastreJ. ChauI. ChangS.C. AbadaP.B. YangL. SchwartzJ.D. KudoM. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): A randomised, double-blind, multicentre, phase 3 trial.Lancet Oncol.201516785987010.1016/S1470‑2045(15)00050‑926095784
    [Google Scholar]
  78. ZhuA.X. FinnR.S. MulcahyM. GurtlerJ. SunW. SchwartzJ.D. DalalR.P. JoshiA. HozakR.R. XuY. AncukiewiczM. JainR.K. NugentF.W. DudaD.G. StuartK. A phase II and biomarker study of ramucirumab, a human monoclonal antibody targeting the VEGF receptor-2, as first-line monotherapy in patients with advanced hepatocellular cancer.Clin. Cancer Res.201319236614662310.1158/1078‑0432.CCR‑13‑144224088738
    [Google Scholar]
  79. El-KhoueiryA.B. SangroB. YauT. CrocenziT.S. KudoM. HsuC. KimT.Y. ChooS.P. TrojanJ. WellingT.H.III MeyerT. KangY.K. YeoW. ChopraA. AndersonJ. dela CruzC. LangL. NeelyJ. TangH. DastaniH.B. MeleroI. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial.Lancet2017389100882492250210.1016/S0140‑6736(17)31046‑228434648
    [Google Scholar]
  80. SangroB. Gomez-MartinC. de la MataM. IñarrairaeguiM. GarraldaE. BarreraP. Riezu-BojJ.I. LarreaE. AlfaroC. SarobeP. LasarteJ.J. Pérez-GraciaJ.L. MeleroI. PrietoJ. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C.J. Hepatol.2013591818810.1016/j.jhep.2013.02.02223466307
    [Google Scholar]
  81. ShengX. HuangT. QinJ. LiQ. WangW. DengL. DongA. Preparation, pharmacokinetics, tissue distribution and antitumor effect of sorafenib incorporating nanoparticles in vivo.Oncol. Lett.20171456163616910.3892/ol.2017.693429113262
    [Google Scholar]
  82. KhanM.A. AliS. VenkatramanS.S. SohailM.F. OvaisM. RazaA. Fabrication of poly (butadiene-block-ethylene oxide) based amphiphilic polymersomes: An approach for improved oral pharmacokinetics of Sorafenib.Int. J. Pharm.20185421-219620410.1016/j.ijpharm.2018.03.02329551745
    [Google Scholar]
  83. ElsayedM.M.A. MostafaM.E. AlaaeldinE. SarhanH.A.A. ShaykoonM.S.A. AllamS. AhmedA.R.H. ElsadekB.E.M. Design and characterisation of novel sorafenib-loaded carbon nanotubes with distinct tumour-suppressive activity in hepatocellular carcinoma.Int. J. Nanomedicine2019148445846710.2147/IJN.S22392031754301
    [Google Scholar]
  84. TunkiL. KulhariH. VaditheL.N. KunchaM. BhargavaS. PoojaD. SistlaR. Modulating the site-specific oral delivery of sorafenib using sugar-grafted nanoparticles for hepatocellular carcinoma treatment.Eur. J. Pharm. Sci.201913710497810.1016/j.ejps.2019.10497831254645
    [Google Scholar]
  85. Zununi VahedS. SalehiR. DavaranS. SharifiS. Liposome-based drug co-delivery systems in cancer cells.Mater. Sci. Eng. C2017711327134110.1016/j.msec.2016.11.07327987688
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018318595240902095514
Loading
/content/journals/cdd/10.2174/0115672018318595240902095514
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test