Skip to content
2000
Volume 22, Issue 9
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Purpose

Reproducibility and scale-up production of microspheres through spray drying present significant challenges. In this study, biodegradable microspheres of Triamcinolone Acetonide Acetate (TAA) were prepared using a novel static mixing method by employing poly(lactic-co-glycolic acid) (PLGA) as the sustained-release carrier.

Methods

TAA-loaded microspheres (TAA-MSs) were prepared using a static mixing technique. The PLGA concentration, polyvinyl alcohol concentration (PVA), phase ratio of oil/water, and phase ratio of water/solidification were optimized in terms of the particle size, drug loading (DL), and encapsulation efficiency (EE) of TAA-MSs. The morphology of TAA-MSs was examined using Scanning Electron Microscopy (SEM), while the physicochemical properties were evaluated through X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared Spectroscopy (FT-IR). The release of TAA-MSs was compared to that of the pure drug (TAA) using a water-bath vibration method in the medium of pH 7.4 at 37°C.

Results

The formulation composition and preparation condition for the preparation of TAA-MSs were optimized as follows: the PLGA concentration was 1%, the phase ratio of oil(dichloromethane) /water (PVA solution) was 1:3, the phase ratio of water (PVA solution)/solidification was 1:2. The optimized TAA-MSs displayed spherical particles with a size range of 30-70 μm, and DL and EE values of 27.09% and 98.67%, respectively. Moreover, the drug-loaded microspheres exhibited a significant, sustained release, with 20% of the drug released over a period of 28 days. The XRD result indicated that the crystalline form of TAA in microspheres had been partly converted into the amorphous form. DSC and FT-IR results revealed that some interactions between TAA and PLGA occurred, indicating that the drug was effectively encapsulated into PLGA microspheres.

Conclusion

TAA-loaded PLGA microspheres have been successfully prepared the static mixing technique with enhanced EE and sustained-release manner.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018302129240603052316
2024-06-05
2026-02-21
Loading full text...

Full text loading...

References

  1. FungS. SyedY.Y. Correction to: Suprachoroidal space triamcinolone acetonide: A review in uveitic macular edema.Drugs20228213141110.1007/s40265‑022‑01777‑136018461
    [Google Scholar]
  2. AnnuryantiF. Domínguez-RoblesJ. AnjaniQ.K. AdriantoM.F. LarrañetaE. ThakurR.R.S. Fabrication and characterisation of 3D-printed triamcinolone acetonide-loaded polycaprolactone-based ocular implants.Pharmaceutics202315124310.3390/pharmaceutics1501024336678872
    [Google Scholar]
  3. LiL. GaoL. ZhaoY. Effect of vitiligo treatment by compound Glycyrrhizin combined with fractional laser and Triamcinolone Acetonide injection on T Lymphocyte subpopulation.Pak. J. Med. Sci.202138120120610.12669/pjms.38.1.441235035426
    [Google Scholar]
  4. BajoriaA.A. ChinnannavarS.N. MishraS. SinghD.K. PathiJ. JhaV.K. Comparative evaluation of pimecrolimus cream 1% and triamcinolone aceonide paste in treatment of atrophic-erosive oral lichen planus.J. Pharm. Bioallied Sci.202315Suppl. 2S1274S127610.4103/jpbs.jpbs_127_2337694075
    [Google Scholar]
  5. NirbhavaneP. SharmaG. SinghB. BegumG. JonesM.C. RauzS. VincentR. DennistonA.K. HillL.J. KatareO.P. Triamcinolone acetonide loaded-cationic nano-lipoidal formulation for uveitis: Evidences of improved biopharmaceutical performance and anti-inflammatory activity.Colloids Surf. B Biointerfaces202019011090210.1016/j.colsurfb.2020.11090232143010
    [Google Scholar]
  6. LiY. TuQ. XieD. ChenS. GaoK. XuX. ZhangZ. MeiX. Triamcinolone acetonide-loaded nanoparticles encapsulated by CD90+ MCSs-derived microvesicles drive anti-inflammatory properties and promote cartilage regeneration after osteoarthritis.J. Nanobiotechnology202220115010.1186/s12951‑022‑01367‑z35305656
    [Google Scholar]
  7. HamishehkarH. NokhodchiA. GhanbarzadehS. KouhsoltaniM. Triamcinolone acetonide oromucoadhesive paste for treatment of aphthous stomatitis.Adv. Pharm. Bull.20155227728210.15171/apb.2015.03826236668
    [Google Scholar]
  8. ChenQ. ChuH. TaoY. PengL. ZhouL. LiuL. WuX. A comparison of triamcinolone acetonide econazole cream and nystatin suspension in treatment of otomycosis.Laryngoscope20211315E1640E164610.1002/lary.2919033141477
    [Google Scholar]
  9. HuscherD. ThieleK. Gromnica-IhleE. HeinG. DemaryW. DreherR. ZinkA. ButtgereitF. Dose-related patterns of glucocorticoid-induced side effects.Ann. Rheum. Dis.20096871119112410.1136/ard.2008.09216318684744
    [Google Scholar]
  10. XingD. YangY. MaX. MaJ. MaB. ChenY. Dose intraarticular steroid injection increase the rate of infection in subsequent arthroplasty: Grading the evidence through a meta-analysis.J. Orthop. Surg. Res.20149110710.1186/s13018‑014‑0107‑225391629
    [Google Scholar]
  11. El-RahmanG.I.A. BehairyA. ElseddawyN.M. BatihaG.E. HozzeinW.N. KhodeerD.M. Abd-ElhakimY.M. Saussurea lappa ethanolic extract attenuates triamcinolone acetonide-induced pulmonary and splenic tissue damage in rats via modulation of oxidative stress, inflammation, and apoptosis.Antioxidants20209539610.3390/antiox905039632397156
    [Google Scholar]
  12. DisphanuratW. SivapornpanN. SrisantithumB. LeelawattanachaiJ. Efficacy of a triamcinolone acetonide-loaded dissolving microneedle patch for the treatment of hypertrophic scars and keloids: A randomized, double-blinded, placebo-controlled split-scar study.Arch. Dermatol. Res.2022315498999710.1007/s00403‑022‑02473‑636383222
    [Google Scholar]
  13. Rudnik-JansenI. ColenS. BerardJ. PlompS. QueI. van RijenM. WoikeN. EgasA. van OschG. van MaarseveenE. MessierK. ChanA. ThiesJ. CreemersL. Prolonged inhibition of inflammation in osteoarthritis by triamcinolone acetonide released from a polyester amide microsphere platform.J. Control. Release2017253647210.1016/j.jconrel.2017.03.01428284832
    [Google Scholar]
  14. FormicaM.L. Ullio GamboaG.V. TártaraL.I. LunaJ.D. BenoitJ.P. PalmaS.D. Triamcinolone acetonide-loaded lipid nanocapsules for ophthalmic applications.Int. J. Pharm.202057311879510.1016/j.ijpharm.2019.11879531682964
    [Google Scholar]
  15. MagdyM. ElmowafyE. El-AssalM.I.A. IshakR.A.H. Engineered triamcinolone acetonide loaded glycerosomes as a novel ear delivery system for the treatment of otitis media.Int. J. Pharm.202262812227610.1016/j.ijpharm.2022.12227636270555
    [Google Scholar]
  16. Altamirano-VallejoJ.C. Navarro-PartidaJ. Gonzalez-De la RosaA. HsiaoJ.H. Olguín-GutierrezJ.S. Gonzalez-VillegasA.C. KellerB.C. Bouzo-LopezL. SantosA. Characterization and pharmacokinetics of triamcinolone acetonide-loaded liposomes topical formulations for vitreoretinal drug delivery.J. Ocul. Pharmacol. Ther.201834541642510.1089/jop.2017.009929584529
    [Google Scholar]
  17. ChenL. AhmedA.M.Q. DengY. CaoD. DuH. CuiJ. LeeB-J. CaoQ. Novel triptorelin acetate-loaded microspheres prepared by a liquid/oil/oil method with high encapsulation efficiency and low initial burst release.J. Drug Deliv. Sci. Technol.20195410139010.1016/j.jddst.2019.101390
    [Google Scholar]
  18. HuaY. SuY. ZhangH. LiuN. WangZ. GaoX. GaoJ. ZhengA. Poly(lactic-co-glycolic acid) microsphere production based on quality by design: A review.Drug Deliv.20212811342135510.1080/10717544.2021.194305634180769
    [Google Scholar]
  19. BaiX. TangS. ButterworthS. TirellaA. Design of PLGA nanoparticles for sustained release of hydroxyl-FK866 by microfluidics.Biomaterials Advances202315421364910.1016/j.bioadv.2023.21364937820459
    [Google Scholar]
  20. ZongL. WangQ. SunH. WuQ. XuY. YangH. LvS. ZhangL. GengD. Intra-articular injection of PLGA/Polydopamine core-shell nanoparticle attenuates osteoarthritis progression.ACS Appl. Mater. Interfaces20241617214502146210.1021/acsami.3c1846438649157
    [Google Scholar]
  21. AllenC. EvansJ.C. ‘Hip to be square’: Designing PLGA formulations for the future.J. Control. Release202031948748810.1016/j.jconrel.2020.01.05032004589
    [Google Scholar]
  22. XiaY.N.L. Optimization and characterization of novel sustained release supermicropellet based dry suspensions that load dexibuprofen.J Drug Deliv Sci Technol20205510142010.1016/j.jddst.2019.101420
    [Google Scholar]
  23. CaoQ-R. AhmedA.M.Q. ChenL-Q. DuH-H. SunW. Formulation optimization and in vitro characterization of granisetronloaded polylactic-co-glycolic acid microspheres prepared by a dropping-in-liquid emulsification technique.Curr. Drug Deliv.202219672172910.2174/156720181866621072911164634325634
    [Google Scholar]
  24. SosnikA. SeremetaK.P. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers.Adv. Colloid Interface Sci.2015223405410.1016/j.cis.2015.05.00326043877
    [Google Scholar]
  25. EijkelboomN.M. van BovenA.P. SiemonsI. WilmsP.F.C. BoomR.M. KohlusR. SchutyserM.A.I. Particle structure development during spray drying from a single droplet to pilot-scale perspective.J. Food Eng.202333711122210.1016/j.jfoodeng.2022.111222
    [Google Scholar]
  26. KissN. BrennG. PucherH. WieserJ. SchelerS. JenneweinH. SuzziD. KhinastJ. Formation of O/W emulsions by static mixers for pharmaceutical applications.Chem. Eng. Sci.201166215084509410.1016/j.ces.2011.06.065
    [Google Scholar]
  27. ValdésJ.P. KahouadjiL. MatarO.K. Current advances in liquid–liquid mixing in static mixers: A review.Chem. Eng. Res. Des.202217769473110.1016/j.cherd.2021.11.016
    [Google Scholar]
  28. OtaA. MochizukiA. SouK. TakeokaS. Evaluation of a static mixer as a new microfluidic method for liposome formulation.Front. Bioeng. Biotechnol.202311122982910.3389/fbioe.2023.122982937675402
    [Google Scholar]
  29. DíezA.M. MoreiraF.C. MarinhoB.A. EspíndolaJ.C.A. PaulistaL.O. SanrománM.A. PazosM. BoaventuraR.A.R. VilarV.J.P. A step forward in heterogeneous photocatalysis: Process intensification by using a static mixer as catalyst support.Chem. Eng. J.201834359760610.1016/j.cej.2018.03.041
    [Google Scholar]
  30. LebazN. Sheibat-OthmanN. A population balance model for the prediction of breakage of emulsion droplets in SMX+ static mixers.Chem. Eng. J.201936162563410.1016/j.cej.2018.12.090
    [Google Scholar]
  31. FuJ.X. Preparation process and in vitro release of Exenatide-loaded long-acting microspheres.Chung Kuo Yao Hsueh Tsa Chih20165121822310.11669/cpj.2016.03.014
    [Google Scholar]
  32. ZhouQ. FengD. YangH. LuoF. ZhouY. YinZ. SunY. HanB. Preparation, physicochemical properties, and structural characterization of resistant starch-aspirin-loaded microspheres.Med. Sci. Monit.202329e93971110.12659/MSM.93971137231639
    [Google Scholar]
  33. MajeedS. QaiserM. ShahwarD. MahmoodK. AhmedN. HanifM. AbbasG. ShoaibM.H. AmeerN. KhalidM. Chitosan-coated halloysite nanotube magnetic microspheres for carcinogenic colorectal hemorrhage and liver laceration in albino rats.RSC Advances20231331215212153610.1039/D3RA01581E37469962
    [Google Scholar]
  34. HooperP. LasherJ. AlexanderK.S. BakiG. A new modified wetting test and an alternative disintegration test for orally disintegrating tablets.J. Pharm. Biomed. Anal.201612039139610.1016/j.jpba.2015.12.04626774944
    [Google Scholar]
  35. ParkC.W. LeeH.J. OhD.W. KangJ.H. HanC.S. KimD.W. Preparation and in vitro/in vivo evaluation of PLGA microspheres containing norquetiapine for long-acting injection.Drug Des. Devel. Ther.20181271171910.2147/DDDT.S15143729670329
    [Google Scholar]
  36. SinghS. SinghJ. Phase-sensitive polymer-based controlled delivery systems of leuprolide acetate: In vitro release, biocompatibility, and in vivo absorption in rabbits.Int. J. Pharm.20073281424810.1016/j.ijpharm.2006.07.05116959451
    [Google Scholar]
  37. LiM. RouaudO. PonceletD. Microencapsulation by solvent evaporation: State of the art for process engineering approaches.Int. J. Pharm.20083631-2263910.1016/j.ijpharm.2008.07.01818706988
    [Google Scholar]
  38. LagrecaE. OnestoV. Di NataleC. La MannaS. NettiP.A. VecchioneR. Recent advances in the formulation of PLGA microparticles for controlled drug delivery.Prog. Biomater.20209415317410.1007/s40204‑020‑00139‑y33058072
    [Google Scholar]
  39. ButreddyA. GaddamR.P. KommineniN. DudhipalaN. VoshavarC. PLGA/PLA-based long-acting injectable depot microspheres in clinical use: Production and characterization overview for protein/peptide delivery.Int. J. Mol. Sci.20212216888410.3390/ijms2216888434445587
    [Google Scholar]
  40. ZhouJ. WalkerJ. AckermannR. OlsenK. HongJ.K.Y. WangY. SchwendemanS.P. Effect of manufacturing variables and raw materials on the composition-equivalent PLGA microspheres for 1-month controlled release of leuprolide.Mol. Pharm.20201751502151510.1021/acs.molpharmaceut.9b0118832074448
    [Google Scholar]
  41. ZiaeeA. AlbadarinA.B. PadrelaL. FemmerT. O’ReillyE. WalkerG. Spray drying of pharmaceuticals and biopharmaceuticals: Critical parameters and experimental process optimization approaches.Eur. J. Pharm. Sci.201912730031810.1016/j.ejps.2018.10.02630428336
    [Google Scholar]
  42. OrdoubadiM. WangH. VehringR. Mechanistic formulation design of spray-dried powders.Kona Powder Particle J.202340014917110.14356/kona.2023012
    [Google Scholar]
  43. NyandeB.W. ThomasK.M. TakariantoA.A. LakerveldR. Control of crystal size distribution in batch protein crystallization by integrating a gapped Kenics static mixer to flexibly produce seed crystals.Chem. Eng. Sci.202226311808510.1016/j.ces.2022.118085
    [Google Scholar]
  44. SuY. ZhangB. SunR. LiuW. ZhuQ. ZhangX. WangR. ChenC. PLGA-based biodegradable microspheres in drug delivery: Recent advances in research and application.Drug Deliv.20212811397141810.1080/10717544.2021.193875634184949
    [Google Scholar]
  45. LiX. WeiY. WenK. HanQ. OginoK. MaG. Novel insights on the encapsulation mechanism of PLGA terminal groups on ropivacaine.Eur. J. Pharm. Biopharm.202116014315110.1016/j.ejpb.2021.01.01533524537
    [Google Scholar]
  46. EssaD. KondiahP.P.D. ChoonaraY.E. PillayV. The design of poly(lactide-co-glycolide) nanocarriers for medical applications.Front. Bioeng. Biotechnol.202084810.3389/fbioe.2020.0004832117928
    [Google Scholar]
  47. StewartS. Domínguez-RoblesJ. DonnellyR. LarrañetaE. Implantable polymeric drug delivery devices: Classification, manufacture, materials, and clinical applications.Polymers (Basel)20181012137910.3390/polym1012137930961303
    [Google Scholar]
  48. HoM.J. JeongH.T. Design and in vivo pharmacokinetic evaluation of triamcinolone acetonide microcrystals-loaded plga microsphere for increased drug retention in knees after intra-articular injection.Pharmaceutic201911841910.3390/pharmaceutics11080419
    [Google Scholar]
  49. OtteA. SharifiF. ParkK. Interfacial tension effects on the properties of PLGA microparticles.Colloids Surf. B Biointerfaces202019611130010.1016/j.colsurfb.2020.11130032919245
    [Google Scholar]
  50. SagoeP.N.K. VelázquezE.J.M. EspiritusantoY.M. GilbertA. OradoT. WangQ. JainE. Fabrication of PEG-PLGA microparticles with tunable sizes for controlled drug release application.Molecules20232818667910.3390/molecules2818667937764454
    [Google Scholar]
  51. GarmsB.C. PoliH. BaggleyD. HanF.Y. WhittakerA.K. AA. GrøndahlL. Evaluating the effect of synthesis, isolation, and characterisation variables on reported particle size and dispersity of drug loaded PLGA nanoparticles.Materials Advances20212175657567110.1039/D1MA00410G
    [Google Scholar]
  52. SongX. ZhaoY. WuW. BiY. CaiZ. ChenQ. LiY. HouS. PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: Systematic study of particle size and drug entrapment efficiency.Int. J. Pharm.20083501-232032910.1016/j.ijpharm.2007.08.03417913411
    [Google Scholar]
  53. Galindo-RodriguezS. AllémannE. FessiH. DoelkerE. Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods.Pharm. Res.20042181428143910.1023/B:PHAM.0000036917.75634.be15359578
    [Google Scholar]
  54. SesenM. FakhfouriA. NeildA. Coalescence of surfactant-stabilized adjacent droplets using surface acoustic waves.Anal. Chem.201991127538754510.1021/acs.analchem.8b0545631099234
    [Google Scholar]
  55. SahinA. SpirouxF. GuedonI. ArslanF.B. SarcanE.T. OzkanT. ColakN. YukselS. OzdemirS. OzdemirB. AkbasS. UltavG. AktasY. CapanY. Using PVA and TPGS as combined emulsifier in nanoprecipitation method improves characteristics and anticancer activity of ibuprofen loaded PLGA nanoparticles.Pharmazie201772952552829441979
    [Google Scholar]
  56. MakadiaH.K. SiegelS.J. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier.Polymers377-1397201133137719710.3390/polym3031377
    [Google Scholar]
  57. WittC. KisselT. Morphological characterization of microspheres, films and implants prepared from poly(lactide-co-glycolide) and ABA triblock copolymers: Is the erosion controlled by degradation, swelling or diffusion?Eur. J. Pharm. Biopharm.200151317118110.1016/S0939‑6411(01)00130‑811343880
    [Google Scholar]
  58. YangT. CuiF.D. ChoiM.K. ChoJ.W. ChungS.J. ShimC.K. KimD.D. Enhanced solubility and stability of PEGylated liposomal paclitaxel: In vitro and in vivo evaluation.Int. J. Pharm.20073381-231732610.1016/j.ijpharm.2007.02.01117368984
    [Google Scholar]
  59. DouroumisD. FahrA. Enhanced dissolution of Oxcarbazepine microcrystals using a static mixer process.Colloids Surf. B Biointerfaces200759220821410.1016/j.colsurfb.2007.05.00917588726
    [Google Scholar]
  60. AmranM. KhafagyE.S. MokhtarH.I. ZaitoneS.A. MoustafaY.M. GadS. Formulation and evaluation of novel additive-free spray-dried triamcinolone acetonide microspheres for pulmonary delivery: A pharmacokinetic study.Pharmaceutics20221411235410.3390/pharmaceutics1411235436365172
    [Google Scholar]
  61. SabzevariA. AdibkiaK. HashemiH. De GeestB.G. MohsenzadehN. AtyabiF. GhahremaniM.H. KhoshayandM.R. DinarvandR. Improved anti-inflammatory effects in rabbit eye model using biodegradable poly beta-amino ester nanoparticles of triamcinolone acetonide.Invest. Ophthalmol. Vis. Sci.20135485520552610.1167/iovs.13‑1229623833065
    [Google Scholar]
  62. AlshetailiA.S. Gefitinib loaded PLGA and chitosan coated PLGA nanoparticles with magnified cytotoxicity against A549 lung cancer cell lines.Saudi J. Biol. Sci.20212895065507310.1016/j.sjbs.2021.05.02534466084
    [Google Scholar]
  63. BoljeA. GobecS. Analytical techniques for structural characterization of Proteins in solid pharmaceutical forms: An overview.Pharmaceutics202113453410.3390/pharmaceutics1304053433920461
    [Google Scholar]
  64. AraújoJ. Gonzalez-MiraE. EgeaM.A. GarciaM.L. SoutoE.B. Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications.Int. J. Pharm.20103931-216817610.1016/j.ijpharm.2010.03.03420362042
    [Google Scholar]
  65. RizviS.S.B. AkhtarN. MinhasM.U. MahmoodA. KhanK.U. Synthesis and characterization of carboxymethyl chitosan nanosponges with cyclodextrin blends for drug solubility improvement.Gels2022815510.3390/gels801005535049590
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018302129240603052316
Loading
/content/journals/cdd/10.2174/0115672018302129240603052316
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test