Skip to content
2000
Volume 22, Issue 8
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Introduction

Polymer prodrug nanoparticles have become an emerging drug delivery system in cancer therapy due to their high drug loading. However, their poor drug release and lack of tumor cell targeting limit their clinical application.

Objective

This study aimed to prepare targeted and reduction-reactive polyprodrug nanocarriers based on curcumin (CUR) for co-delivery of doxorubicin (DOX), labeled as DOX/HAPCS NPs, and to investigate their anticancer activity.

Methods

The polymer was synthesized and characterized by chemical method. The drug loading and drug release behavior of DOX and CUR in polymer nanoparticles were determined. Moreover, the antitumor effects of polymer nanoparticles were evaluated using an MTT experiment and tumor inhibition experiment, and the synergistic effect of co-delivered DOX and CUR was explored.

Results

The particle size of DOX/HAPCS NPs was 152.5nm, and the potential was about -26.74 mV. The drug loading capacity of DOX and CUR was about 7.56% and 34.75%, respectively, indicating high drug loading capacity and good stability. DOX and CUR released over 90% within 24 hours in the tumor environment. Compared with free DOX, DOX/HAPCS NPs demonstrated significantly enhanced cell and tumor inhibitory effects (0.05) and and changed drug distribution to avoid toxic side effects on normal tissues. The combined index showed that DOX and CUR showed synergistic anticancer effects at a set ratio.

Conclusion

The prepared reduction-responsive targeted polymer nanomedical DOX/HAPCS NPs exhibited a synergistic anti-cancer effect, with high drug loading capacity and the ability to release drugs in proportion, making it a promising polymer nanoparticle drug delivery system.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018314506240723080113
2024-07-24
2026-01-30
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer Statistics, 2021.CA Cancer J. Clin.202171173310.3322/caac.2165433433946
    [Google Scholar]
  2. HeS. XiaC. LiH. CaoM. YangF. YanX. ZhangS. TengY. LiQ. ChenW. Cancer profiles in China and comparisons with the USA: A comprehensive analysis in the incidence, mortality, survival, staging, and attribution to risk factors.Sci. China Life Sci.202467112213110.1007/s11427‑023‑2423‑137755589
    [Google Scholar]
  3. WangY. YanQ. FanC. MoY. WangY. LiX. LiaoQ. GuoC. LiG. ZengZ. XiongW. HuangH. Overview and countermeasures of cancer burden in China.Sci. China Life Sci.202366112515252610.1007/s11427‑022‑2240‑637071289
    [Google Scholar]
  4. HeR. ZhuB. LiuJ. ZhangN. ZhangW.H. MaoY. Women’s cancers in China: A spatio-temporal epidemiology analysis.BMC Womens Health202121111610.1186/s12905‑021‑01260‑133743648
    [Google Scholar]
  5. FengR.M. ZongY.N. CaoS.M. XuR.H. Current cancer situation in China: Good or bad news from the 2018 Global Cancer Statistics?Cancer Commun.201939111210.1186/s40880‑019‑0368‑631030667
    [Google Scholar]
  6. ZhengR. QuC. ZhangS. ZengH. SunK. GuX. XiaC. YangZ. LiH. WeiW. ChenW. HeJ. Liver cancer incidence and mortality in China: Temporal trends and projections to 2030.Chin. J. Cancer Res.201830657157910.21147/j.issn.1000‑9604.2018.06.0130700925
    [Google Scholar]
  7. DoanL. NguyenL.T. NguyenN.T.N. Modifying superparamagnetic iron oxides nanoparticles for doxorubicin delivery carriers: A review.J. Nanopart. Res.20232547310.1007/s11051‑023‑05716‑3
    [Google Scholar]
  8. CaiZ. ZhangF. ChenW. ZhangJ. LiH. miRNAs: A promising target in the chemoresistance of bladder cancer.OncoTargets Ther.202012118051181610.2147/OTT.S23148932099386
    [Google Scholar]
  9. MiddletonJ. StoverD. HaiT. Chemotherapy-exacerbated breast cancer metastasis: A paradox explainable by dysregulated adaptive-response.Int. J. Mol. Sci.20181911333310.3390/ijms1911333330373101
    [Google Scholar]
  10. FatfatZ. FatfatM. Gali-MuhtasibH. Micelles as potential drug delivery systems for colorectal cancer treatment.World J. Gastroenterol.202228252867288010.3748/wjg.v28.i25.286735978871
    [Google Scholar]
  11. HellmannM.D. LiB.T. ChaftJ.E. KrisM.G. Chemotherapy remains an essential element of personalized care for persons with lung cancers.Ann. Oncol.201627101829183510.1093/annonc/mdw27127456296
    [Google Scholar]
  12. SinghS. SharmaK. SharmaH. Green extracts with metal-based nanoparticles for treating inflammatory diseases: A review.Curr. Drug Deliv.202421454457010.2174/156720182066623060216432537278036
    [Google Scholar]
  13. MengY. NiuX. LiG. Liposome nanoparticles as a novel drug delivery system for therapeutic and diagnostic applications.Curr. Drug Deliv.2022201415635331112
    [Google Scholar]
  14. MartinsL.G. khalilN.M. MainardesR.M. PLGA nanoparticles and polysorbate-80-coated PLGA nanoparticles increase the in vitro antioxidant activity of melatonin.Curr. Drug Deliv.201815455456310.2174/156720181466617071911253528721816
    [Google Scholar]
  15. AliM. BenfanteV. Di RaimondoD. SalvaggioG. TuttolomondoA. ComelliA. Recent developments in nanoparticle formulations for resveratrol encapsulation as an anticancer agent.Pharmaceuticals202417112610.3390/ph1701012638256959
    [Google Scholar]
  16. TarighatniaA. Foroughi-NiaB. NaderN.D. AghanejadA. Recent trends and advances in nanosystems with tyrosine kinase inhibitors for image-guided cancer treatments.J. Drug Deliv. Sci. Technol.20238810493810.1016/j.jddst.2023.104938
    [Google Scholar]
  17. KalyaneD. RavalN. MaheshwariR. TambeV. KaliaK. TekadeR.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer.Mater. Sci. Eng. C2019981252127610.1016/j.msec.2019.01.06630813007
    [Google Scholar]
  18. BortG. LuxF. DufortS. CrémillieuxY. VerryC. TillementO. EPR-mediated tumor targeting using ultrasmall-hybrid nanoparticles: From animal to human with theranostic AGuIX nanoparticles.Theranostics20201031319133110.7150/thno.3754331938067
    [Google Scholar]
  19. AramiH. PatelC.B. MadsenS.J. DickinsonP.J. DavisR.M. ZengY. SturgesB.K. WoolardK.D. HabteF.G. AkinD. SinclairR. GambhirS.S. Nanomedicine for spontaneous brain tumors: A companion clinical trial.ACS Nano20191332858286910.1021/acsnano.8b0440630714717
    [Google Scholar]
  20. SantosS.C. RodriguesO.Jr CamposL.L. Towards a new promising dosimetric material from formation of thulium-yttria nanoparticles with EPR response.Mater. Chem. Phys.202125912400510.1016/j.matchemphys.2020.124005
    [Google Scholar]
  21. ShindeV.R. ReviN. MurugappanS. SinghS.P. RenganA.K. Enhanced permeability and retention effect: A key facilitator for solid tumor targeting by nanoparticles.Photodiagn. Photodyn. Ther.20223910291510.1016/j.pdpdt.2022.10291535597441
    [Google Scholar]
  22. PillaiA.S. ManikantanV. AlexanderA. VaralakshmiG.S. AkashB.A. EnochI.V.M.V. Designed dual-functional surface-modified copper-iron sulfide nanocarrier for anticancer drug delivery.Mater. Today Commun.20223310486210.1016/j.mtcomm.2022.104862
    [Google Scholar]
  23. ParkD. LeeS.J. ParkJ.W. Aptamer-based smart targeting and spatial trigger–response drug-delivery systems for anticancer therapy.Biomedicines202412118710.3390/biomedicines1201018738255292
    [Google Scholar]
  24. VeselovV.V. NosyrevA.E. JicsinszkyL. AlyautdinR.N. CravottoG. Targeted delivery methods for anticancer drugs.Cancers202214362210.3390/cancers1403062235158888
    [Google Scholar]
  25. AroraS. SinghD. KaurP. AttriS. SinghS. SharmaP. MohanaP. KaurK. KaurH. SinghG. RashidF. SinghD. KumarA. RajputA. BediN. SinghB. ButtarH.S. Recent advances in the local drug delivery systems for improvement of anticancer therapy.Curr. Drug Deliv.202219556058610.2174/156720181866621121411271034906056
    [Google Scholar]
  26. TuX. XuH. LiC. LiuX. FanG. SunW. Adsorption performance of boron nitride nanomaterials as effective drug delivery carriers for anticancer drugs based on density functional theory.Comput. Theor. Chem.2021120311336010.1016/j.comptc.2021.113360
    [Google Scholar]
  27. BehlA. ParmarV.S. MalhotraS. ChhillarA.K. Biodegradable diblock copolymeric PEG-PCL nanoparticles: Synthesis, characterization and applications as anticancer drug delivery agents.Polymer202020712290110.1016/j.polymer.2020.122901
    [Google Scholar]
  28. HarandiH. Falahati-pourS.K. MahmoodiM. FaramarzS. MalekiH. NasabF.B. ShiriH. FooladiS. NematollahiM.H. Nanoliposomal formulation of pistachio hull extract: Preparation, characterization and anti-cancer evaluation through Bax/Bcl2 modulation.Mol. Biol. Rep.20224942735274310.1007/s11033‑021‑07083‑535037194
    [Google Scholar]
  29. PoustforooshA. NematollahiM.H. HashemipourH. PardakhtyA. Recent advances in Bio-conjugated nanocarriers for crossing the Blood-Brain Barrier in (pre-)clinical studies with an emphasis on vesicles.J. Control. Release202234377779710.1016/j.jconrel.2022.02.01535183653
    [Google Scholar]
  30. GattoM.S. Najahi-MissaouiW. Lyophilization of nanoparticles, does it really work? Overview of the current status and challenges.Int. J. Mol. Sci.202324181404110.3390/ijms24181404137762348
    [Google Scholar]
  31. ArmsL. SmithD.W. FlynnJ. PalmerW. MartinA. WolduA. HuaS. Advantages and limitations of current techniques for analyzing the biodistribution of nanoparticles.Front. Pharmacol.2018980210.3389/fphar.2018.0080230154715
    [Google Scholar]
  32. PillaiA.R. PrajapatiB. DharamsiA. Protein nanoparticles laden in situ gel for topical ocular drug delivery.Curr. Drug Deliv.2024211385110.2174/156720182066623012314024936694323
    [Google Scholar]
  33. EsimO. HascicekC. Lipid-coated nanosized drug delivery systems for an effective cancer therapy.Curr. Drug Deliv.202118214716110.2174/156720181766620051210444132394833
    [Google Scholar]
  34. ZhangX. DaiY. Amphiphilic graft polymer with reduction breakable main chain prepared via click polymerization and grafting onto.J. Nanopart. Res.201820614710.1007/s11051‑018‑4256‑9
    [Google Scholar]
  35. ShirinichiF. IbrahimT. RodriguezM. SunH. Assembling the best of two worlds: Biomolecule‐polymer nanoparticles via polymerization‐induced self‐assembly.J. Polym. Sci.202361863164510.1002/pol.20220614
    [Google Scholar]
  36. WangT. LuoY. Fabrication strategies and supramolecular interactions of polymer-lipid complex nanoparticles as oral delivery systems.Nano Res.202114124487450110.1007/s12274‑021‑3450‑8
    [Google Scholar]
  37. WangL. MaJ. HongW. ZhangH. LinJ. Nanoscale diffusion of polymer-grafted nanoparticles in entangled polymer melts.Macromolecules202053198393839910.1021/acs.macromol.0c00721
    [Google Scholar]
  38. ShaoN. YuanL. MaP. ZhouM. XiaoX. CongZ. WuY. XiaoG. FeiJ. LiuR. Heterochiral β-peptide polymers combating multidrug-resistant cancers effectively without inducing drug resistance.J. Am. Chem. Soc.2022144167283729410.1021/jacs.2c0045235420800
    [Google Scholar]
  39. WangL. SuW. LiuZ. ZhouM. ChenS. ChenY. LuD. LiuY. FanY. ZhengY. HanZ. KongD. WuJ.C. XiangR. LiZ. CD44 antibody-targeted liposomal nanoparticles for molecular imaging and therapy of hepatocellular carcinoma.Biomaterials201233205107511410.1016/j.biomaterials.2012.03.06722494888
    [Google Scholar]
  40. HuangD. TangQ. ZouM. WangY. LuoF. MuJ. WuY. WengZ. LinZ. Anti-inflammatory unimolecular micelles of redox-responsive hyperbranched polycurcumin amphiphiles with enhanced anti-inflammatory efficacy in vitro and in vivo.Polym. Chem.202314475208521710.1039/D3PY01071F
    [Google Scholar]
  41. LiuP. Polyprodrugs for tumor chemotherapy: From molecular structure to drug release performance.J. Mater. Chem. B Mater. Biol. Med.202311409565957110.1039/D3TB01700A37791422
    [Google Scholar]
  42. SargaziM.L. JuybariK.B. TarziM.E. AmirkhosraviA. NematollahiM.H. MirzamohammdiS. MehrbaniM. MehrabaniM. MehrabaniM. Naringenin attenuates cell viability and migration of C6 glioblastoma cell line: A possible role of hedgehog signaling pathway.Mol. Biol. Rep.20214896413642110.1007/s11033‑021‑06641‑134427888
    [Google Scholar]
  43. PouramiriB. SeyedhosseiniS.R. NematollahiM.H. FaramarzS. SeyediF. AyatiA. Green synthesis and anticancer evaluation of novel chrysin hydrazone derivatives.Polycycl. Aromat. Compd.202343117618910.1080/10406638.2021.2011753
    [Google Scholar]
  44. CastorinaP. MartoranaE. ForteS. Dynamical synergy of drug combinations during cancer chemotherapy.J. Pers. Med.20221211187310.3390/jpm1211187336579581
    [Google Scholar]
  45. López-CamachoE. Trilla-FuertesL. Gámez-PozoA. DapíaI. López-VacasR. Zapater-MorosA. Lumbreras-HerreraM.I. AriasP. ZamoraP. VaraJ.Á.F. EspinosaE. Synergistic effect of antimetabolic and chemotherapy drugs in triple-negative breast cancer.Biomed. Pharmacother.202214911284410.1016/j.biopha.2022.11284435339109
    [Google Scholar]
  46. KaurN. PuppalaE.R. SrivastavaR. NaiduV.G.M. ShanavasA. Gold-capsuled polymeric nanomedicine for synergistic breast cancer photo-chemotherapy.J. Nanopart. Res.2022241226110.1007/s11051‑022‑05640‑y
    [Google Scholar]
  47. LiuP. YangH. ChenW. ZhaoJ. LiD. Silver nanotriangles and chemotherapy drugs synergistically induce apoptosis in breast cancer cells via production of reactive oxygen species.J. Nanopart. Res.2019211125010.1007/s11051‑019‑4703‑2
    [Google Scholar]
  48. FatfatM. FakhouryI. HabliZ. MismarR. Gali-MuhtasibH. Thymoquinone enhances the anticancer activity of doxorubicin against adult T-cell leukemia in vitro and in vivo through ROS-dependent mechanisms.Life Sci.201923211662810.1016/j.lfs.2019.11662831278946
    [Google Scholar]
  49. DawreS. DevarajanP.V. SamadA. Enhanced Antibacterial Activity of Doxycycline and Rifampicin Combination Loaded in Nanoparticles against Intracellular Brucella abortus. Curr. Drug Deliv.202219110411610.2174/156720181866621060916470434151761
    [Google Scholar]
  50. OrugantiL. MerigaB. Plant polyphenolic compounds potentiates therapeutic efficiency of anticancer chemotherapeutic drugs: A review.Endocr Metab Immune202121224625232767950
    [Google Scholar]
  51. XiaoQ. ZhuW. FengW. LeeS.S. LeungA.W. ShenJ. GaoL. XuC. A review of resveratrol as a potent chemoprotective and synergistic agent in cancer chemotherapy.Front. Pharmacol.20199153410.3389/fphar.2018.0153430687096
    [Google Scholar]
  52. Al MonlaR. DassoukiZ. Sari-ChmayssemN. MawlawiH. Gali-MuhtasibH. Fucoidan and alginate from the brown algae colpomenia sinuosa and their combination with vitamin C trigger apoptosis in colon cancer.Molecules202227235810.3390/molecules2702035835056673
    [Google Scholar]
  53. HousseinM. FatfatM. HabliZ. GhazalN. MoodadS. KhalifeH. KhalilM. Gali-MuhtasibH. Thymoquinone synergizes with arsenic and interferon alpha to target human T-cell leukemia/lymphoma.Life Sci.202025111763910.1016/j.lfs.2020.11763932272181
    [Google Scholar]
  54. TinoushB. ShirdelI. WinkM. Phytochemicals: Potential lead molecules for MDR reversal.Front. Pharmacol.20201183210.3389/fphar.2020.0083232636741
    [Google Scholar]
  55. YoganathanS. AlagaratnamA. AcharekarN. KongJ. Ellagic Acid and Schisandrins: Natural Biaryl Polyphenols with Therapeutic Potential to Overcome Multidrug Resistance in Cancer.Cells202110245810.3390/cells1002045833669953
    [Google Scholar]
  56. LinH. LiuX. SunP. Effects of aerosol inhalation combined with intravenous drip of polymyxin B on bacterial clearance, symptoms improvement, and serum infection indexes in patients with pneumonia induced by multidrug-resistant gram-negative bacteria.Emerg. Med. Int.202220221610.1155/2022/524453836072613
    [Google Scholar]
  57. ZhengX. YangX. LinJ. SongF. ShaoY. Low curcumin concentration enhances the anticancer effect of 5-fluorouracil against colorectal cancer.Phytomedicine20218515354710.1016/j.phymed.2021.15354733812170
    [Google Scholar]
  58. ShengS. WeiC. MaT. ZhangY. ZhuD. DongX. LvF. Multiplex fluorescence imaging‐guided programmed delivery of doxorubicin and curcumin from a nanoparticles/hydrogel system for synergistic chemotherapy.J. Polym. Sci.202260101557157010.1002/pol.20210600
    [Google Scholar]
  59. LiJ. LiB. SunL. DuanB. HuangS. YuanY. DingY. HuA. Self-delivery nanoparticles of an amphiphilic irinotecan–enediyne conjugate for cancer combination chemotherapy.J. Mater. Chem. B Mater. Biol. Med.20197110311110.1039/C8TB02367K32254954
    [Google Scholar]
  60. LiJ. LiuP. Self‐assembly of drug–drug conjugates as drug self‐delivery system for tumor‐specific pH‐triggered release.Part. Part. Syst. Charact.2019367190011310.1002/ppsc.201900113
    [Google Scholar]
  61. GautamM. ThapaR.K. GuptaB. SoeZ.C. OuW. PoudelK. JinS.G. ChoiH.G. YongC.S. KimJ.O. Phytosterol-loaded CD44 receptor-targeted PEGylated nano-hybrid phyto-liposomes for synergistic chemotherapy.Expert Opin. Drug Deliv.202017342343410.1080/17425247.2020.172744232028805
    [Google Scholar]
  62. YueD. ChengG. HeY. NieY. JiangQ. CaiX. GuZ. Influence of reduction-sensitive diselenide bonds and disulfide bonds on oligoethylenimine conjugates for gene delivery.J. Mater. Chem. B Mater. Biol. Med.20142417210722110.1039/C4TB00757C32261800
    [Google Scholar]
  63. BahriM. FleurenceJ. FarajS. Ben Mostefa DahoM. FougerayS. BirkléS. Potentiation of anticancer antibody efficacy by antineoplastic drugs: Detection of antibody-drug synergism using the combination index equation.J. Vis. Exp.20191431230735151
    [Google Scholar]
  64. HuangL. JiangY. ChenY. Predicting drug combination index and simulating the network-regulation dynamics by mathematical modeling of drug-targeted egfr-erk signaling pathway.Sci. Rep.2017714075210.1038/srep4075228102344
    [Google Scholar]
  65. HuongN.T. HoiN.T.N. HungM.D. TriL.M. HungN.V. AnhL.D. DongV.T. VuongL.Q. ThanhV.M. A redox-responsive delivery system for paclitaxel based on heparin—pluronic F127 nanogel.J. Nanopart. Res.202325919110.1007/s11051‑023‑05841‑z
    [Google Scholar]
  66. SiminzarP. TohidkiaM.R. EppardE. VahidfarN. TarighatniaA. AghanejadA. Recent trends in diagnostic biomarkers of tumor microenvironment.Mol. Imaging Biol.202325346448210.1007/s11307‑022‑01795‑136517729
    [Google Scholar]
  67. SonG. KimH. RyuJ. ChuC. KangD. ParkS. JeongY.I.L. Self-assembled polymeric micelles based on hyaluronic acid-g-poly(D,L-lactide-co-glycolide) copolymer for tumor targeting.Int. J. Mol. Sci.2014159160571606810.3390/ijms15091605725216338
    [Google Scholar]
  68. WangX. XiongT. CuiM. GuanX. YuanJ. WangZ. LiR. ZhangH. DuanS. WeiF. Targeted self-activating Au-Fe3O4 composite nanocatalyst for enhanced precise hepatocellular carcinoma therapy via dual nanozyme-catalyzed cascade reactions.Appl. Mater. Today20202110082710.1016/j.apmt.2020.100827
    [Google Scholar]
  69. LiY. ZhouX. WangD. YangB. YangP. Nanodiamond mediated delivery of chemotherapeutic drugs.J. Mater. Chem.20112141164061641210.1039/c1jm10926j
    [Google Scholar]
  70. PengY. LiX. GuP. ChengW. ZhangR. HuK. Curcumin-loaded zein/pectin nanoparticles: Caco-2 cellular uptake and the effects on cell cycle arrest and apoptosis of human hepatoma cells (HepG2).J. Drug Deliv. Sci. Technol.20227410349710.1016/j.jddst.2022.103497
    [Google Scholar]
  71. LiuP. SunY. WangQ. SunY. LiH. DuanY. Intracellular trafficking and cellular uptake mechanism of mPEG-PLGA-PLL and mPEG-PLGA-PLL-Gal nanoparticles for targeted delivery to hepatomas.Biomaterials201435276077010.1016/j.biomaterials.2013.10.02024148242
    [Google Scholar]
  72. CongV.T. HoungJ.L. KavallarisM. ChenX. TilleyR.D. GoodingJ.J. How can we use the endocytosis pathways to design nanoparticle drug-delivery vehicles to target cancer cells over healthy cells?Chem. Soc. Rev.202251177531755910.1039/D1CS00707F35938511
    [Google Scholar]
  73. ZhangS. FuQ. ZhangY. PanJ. ZhangL. ZhangZ. LiuZ. Surface loading of nanoparticles on engineered or natural erythrocytes for prolonged circulation time: Strategies and applications.Acta Pharmacol. Sin.20214271040105410.1038/s41401‑020‑00606‑z33772141
    [Google Scholar]
  74. YooJ.W. ChambersE. MitragotriS. Factors that control the circulation time of nanoparticles in blood: Challenges, solutions and future prospects.Curr. Pharm. Des.201016212298230710.2174/13816121079192049620618151
    [Google Scholar]
  75. GrantM.K.O. SeeligD.M. SharkeyL.C. ChoiW.S.V. AbdelgawadI.Y. ZordokyB.N. Sexual dimorphism of acute doxorubicin-induced nephrotoxicity in C57Bl/6 mice.PLoS One2019142e021248610.1371/journal.pone.0212486
    [Google Scholar]
  76. JonesI.C. DassC.R. Doxorubicin-induced cardiotoxicity: Causative factors and possible interventions.J. Pharm. Pharmacol.202274121677168810.1093/jpp/rgac06335994421
    [Google Scholar]
  77. SumneangN. TanajakP. OoT.T. Toll-like receptor 4 inflammatory perspective on doxorubicin-induced cardiotoxicity.Molecules20232811429410.3390/molecules2811429437298770
    [Google Scholar]
  78. PanD. GuoC. LuoK. GuZ. Preparation and biosafety evaluation of the peptide dendron functionalized mesoporous silica nanohybrid.Chin. J. Chem.2014321273610.1002/cjoc.201300739
    [Google Scholar]
  79. LeddaM. FiorettiD. LolliM.G. PapiM. Di GioiaC. CarlettiR. CiascaG. FogliaS. PalmieriV. MarcheseR. GrimaldiS. RinaldiM. LisiA. Biocompatibility assessment of sub-5 nm silica-coated superparamagnetic iron oxide nanoparticles in human stem cells and in mice for potential application in nanomedicine.Nanoscale20201231759177810.1039/C9NR09683C31895375
    [Google Scholar]
  80. GuoW. SongY. SongW. LiuY. LiuZ. ZhangD. TangZ. BaiO. Co-delivery of doxorubicin and curcumin with polypeptide nanocarrier for synergistic lymphoma therapy.Sci. Rep.2020101783210.1038/s41598‑020‑64828‑132398729
    [Google Scholar]
  81. MaW. GuoQ. LiY. WangX. WangJ. TuP. Co-assembly of doxorubicin and curcumin targeted micelles for synergistic delivery and improving anti-tumor efficacy.Eur. J. Pharm. Biopharm.201711220922310.1016/j.ejpb.2016.11.03327913127
    [Google Scholar]
  82. LiuL.L. LiuQ. LiP. LiuE.H. Discovery of synergistic anti-inflammatory compound combination from herbal formula GuGe FengTong Tablet.Chin. J. Nat. Med.201816968369210.1016/S1875‑5364(18)30108‑030269845
    [Google Scholar]
  83. WangJ. LiuW. ChenZ. ChenH. Physicochemical characterization of the oolong tea polysaccharides with high molecular weight and their synergistic effects in combination with polyphenols on hepatocellular carcinoma.Biomed. Pharmacother.20179016017010.1016/j.biopha.2017.03.05928355590
    [Google Scholar]
  84. Abd El-HackM.E. El-SaadonyM.T. SwelumA.A. ArifM. Abo GhanimaM.M. ShukryM. NoreldinA. TahaA.E. El-TarabilyK.A. Curcumin, the active substance of turmeric: Its effects on health and ways to improve its bioavailability.J. Sci. Food Agric.2021101145747576210.1002/jsfa.1137234143894
    [Google Scholar]
  85. TianS. LiaoL. ZhouQ. HuangX. ZhengP. GuoY. DengT. TianX. Curcumin inhibits the growth of liver cancer by impairing myeloid‑derived suppressor cells in murine tumor tissues.Oncol. Lett.202121428610.3892/ol.2021.1254733732362
    [Google Scholar]
  86. SoniV.K. ShuklaD. KumarA. VishvakarmaN.K. Curcumin circumvent lactate-induced chemoresistance in hepatic cancer cells through modulation of hydroxycarboxylic acid receptor-1.Int. J. Biochem. Cell Biol.202012310575210.1016/j.biocel.2020.10575232325281
    [Google Scholar]
  87. PeulenT.O. WilkinsonK.J. Diffusion of nanoparticles in a biofilm.Environ. Sci. Technol.20114583367337310.1021/es103450g21434601
    [Google Scholar]
  88. LiuX. GeW. The emerging role of ultrasonic nanotechnology for diagnosing and treatment of diseases.Front. Med.2022981498610.3389/fmed.2022.81498635273976
    [Google Scholar]
  89. YuF. TuY. LuoS. XiaoX. YaoW. JiangM. JiangX. YangR. YuanY. Dual-drug backboned polyprodrug with a predefined drug combination for synergistic chemotherapy.Nano Lett.20212152216222310.1021/acs.nanolett.0c0502833635657
    [Google Scholar]
  90. SunW. LiS. HäuplerB. LiuJ. JinS. SteffenW. SchubertU.S. ButtH.J. LiangX.J. WuS. An amphiphilic ruthenium polymetallodrug for combined photodynamic therapy and photochemotherapy in vivo.Adv. Mater.2017296160370210.1002/adma.20160370227918115
    [Google Scholar]
  91. XiaoY. YuD.H. Tumor microenvironment as a therapeutic target in cancer.Pharmacol Therapeut202122110.1016/j.pharmthera.2020.107753 33259885
    [Google Scholar]
  92. LiuP. HaoL. LiuM. HuS. Glutathione-responsive and -exhausting metal nanomedicines for robust synergistic cancer therapy.Front. Bioeng. Biotechnol.202311116147210.3389/fbioe.2023.116147236970628
    [Google Scholar]
  93. MaJ. HuangL. HuD. ZengS. HanY. ShenH. The role of the tumor microbe microenvironment in the tumor immune microenvironment: Bystander, activator, or inhibitor?J. Exp. Clin. Cancer Res.202140132710.1186/s13046‑021‑02128‑w34656142
    [Google Scholar]
  94. BawaP. PillayV. ChoonaraY.E. du ToitL.C. Stimuli-responsive polymers and their applications in drug delivery.Biomed. Mater.20094202200110.1088/1748‑6041/4/2/02200119261988
    [Google Scholar]
  95. ZhaoX. ChenQ. LiuW. LiY. TangH. LiuX. YangX. Codelivery of doxorubicin and curcumin with lipid nanoparticles results in improved efficacy of chemotherapy in liver cancer.Int. J. Nanomedicine20141025727025565818
    [Google Scholar]
  96. LuJK ChuEF TonyH LiX SudeepKC ZhangML WangYQ QiXQ Curcumin downregulates phosphate carrier and protects against doxorubicin induced cardiomyocyte apoptosis.Biomed Res Int20162016198076310.1155/2016/1980763 27127780
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018314506240723080113
Loading
/content/journals/cdd/10.2174/0115672018314506240723080113
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test