Skip to content
2000
Volume 22, Issue 8
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Introduction

Obesity has become a pressing global health crisis, reaching alarming proportions and bearing significant consequences for public health on a global scale.

Aim

In this research, chitosan nanoparticles were employed to encapsulate ginger extract, and the impact of this formulation on lipid metabolism and obesity was investigated using a rat model.

Methods

experiments, encompassing assessments of cell viability, microstructure, anti-inflammatory activity, and release dynamics, were conducted to comprehensively evaluate the nanoformulation. The study extended to examining the potential anti-obesity efficacy of the developed nanoformulation in rats induced with obesity through a high-fat diet.

Results

findings affirmed the safety of the carriers and revealed their robust anti-inflammatory properties. The average particle size for ginger-loaded and ginger-free chitosan nanoparticles was measured to be 458.92 ± 139.35 nm and 466.29 ± 142.71 nm, respectively. The investigation demonstrated the dose-dependent effects of ginger extract-loaded chitosan nanoparticles, manifesting in a reduction of obesity and improvement in liver function.

Conclusion

These promising results suggest that the developed nanoformulation could be considered a viable therapeutic option for individuals struggling with obesity.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018315676240715065750
2024-07-18
2026-01-30
Loading full text...

Full text loading...

References

  1. PopkinB.M. DuS. GreenW.D. BeckM.A. AlgaithT. HerbstC.H. AlsukaitR.F. AlluhidanM. AlazemiN. ShekarM. Individuals with obesity and COVID‐19: A global perspective on the epidemiology and biological relationships.Obes. Rev.20202111e1312810.1111/obr.1312832845580
    [Google Scholar]
  2. LinX. LiH. Obesity: epidemiology, pathophysiology, and therapeutics.Front. Endocrinol. (Lausanne)20211270697810.3389/fendo.2021.70697834552557
    [Google Scholar]
  3. De LorenzoA. GratteriS. GualtieriP. CammaranoA. BertucciP. Di RenzoL. Why primary obesity is a disease?J. Transl. Med.201917116910.1186/s12967‑019‑1919‑y31118060
    [Google Scholar]
  4. HiradateR. KhalilI.A. MatsudaA. SasakiM. HidaK. HarashimaH. A novel dual-targeted rosiglitazone-loaded nanoparticle for the prevention of diet-induced obesity via the browning of white adipose tissue.J. Control. Release202132966567510.1016/j.jconrel.2020.10.00233038450
    [Google Scholar]
  5. GoktasZ. ZuY. AbbasiM. GalyeanS. WuD. FanZ. WangS. Recent advances in nanoencapsulation of phytochemicals to combat obesity and its comorbidities.J. Agric. Food Chem.202068318119813110.1021/acs.jafc.0c0013132633507
    [Google Scholar]
  6. SundaramK. MuJ. KumarA. BeheraJ. LeiC. SriwastvaM.K. XuF. DrydenG.W. ZhangL. ChenS. YanJ. ZhangX. ParkJ.W. MerchantM.L. TyagiN. TengY. ZhangH.G. Garlic exosome-like nanoparticles reverse high-fat diet induced obesity via the gut/brain axis.Theranostics20221231220124610.7150/thno.6542735154484
    [Google Scholar]
  7. TramontinN.S. LucianoT.F. MarquesS.O. de SouzaC.T. MullerA.P. Ginger and avocado as nutraceuticals for obesity and its comorbidities.Phytother. Res.20203461282129010.1002/ptr.661931989713
    [Google Scholar]
  8. LeeG.H. PengC. JeongS-Y. ParkS-A. LeeH-Y. HoangT-H. KimJ. ChaeH-J. Ginger extract controls mTOR-SREBP1-ER stress-mitochondria dysfunction through AMPK activation in obesity model.J. Funct. Foods20218710462810.1016/j.jff.2021.104628
    [Google Scholar]
  9. SeoS.H. FangF. KangI. Ginger (Zingiber officinale) attenuates obesity and adipose tissue remodeling in high-fat diet-fed C57BL/6 mice.Int. J. Environ. Res. Public Health202118263110.3390/ijerph1802063133451038
    [Google Scholar]
  10. FarmoudehA. ShokoohiA. EbrahimnejadP. Preparation and evaluation of the antibacterial effect of chitosan nanoparticles containing ginger extract tailored by central composite design.Adv. Pharm. Bull.202011464365010.34172/apb.2021.07334888211
    [Google Scholar]
  11. El-DerbawyM. El KholyW. BaiuomyI. SalemH. A study of the potential therapeutic effect of ginger (Zingiber Officinale) loaded nanoparticles on murine schistosomiasis mansoni.J. Egypt. Soc. Parasitol.201949112312810.21608/jesp.2019.68294
    [Google Scholar]
  12. MikušováV. MikušP. Advances in chitosan-based nanoparticles for drug delivery.Int. J. Mol. Sci.20212217965210.3390/ijms2217965234502560
    [Google Scholar]
  13. JanaS. JanaS. Functional chitosan: Drug delivery and biomedical applications.Springer2020
    [Google Scholar]
  14. GargU. ChauhanS. NagaichU. JainN. Current advances in chitosan nanoparticles based drug delivery and targeting.Adv. Pharm. Bull.20199219520410.15171/apb.2019.02331380245
    [Google Scholar]
  15. ShimS. YooH.S. The application of mucoadhesive chitosan nanoparticles in nasal drug delivery.Mar. Drugs2020181260510.3390/md1812060533260406
    [Google Scholar]
  16. AdegbolaP.I. FadahunsiO.S. AjiloreB.S. AkintolaA.O. OlorunnisolaO.S. Combined ginger and garlic extract improves serum lipid profile, oxidative stress markers and reduced IL-6 in diet induced obese rats.Obes. Med.20212310033610.1016/j.obmed.2021.100336
    [Google Scholar]
  17. SayedS. AhmedM. El-ShehawiA. AlkafafyM. Al-OtaibiS. El-SawyH. FaroukS. El-ShazlyS. Ginger water reduces body weight gain and improves energy expenditure in rats.Foods2020913810.3390/foods901003831906567
    [Google Scholar]
  18. EhteramiA. SalehiM. FarzamfarS. VaezA. SamadianH. SahrapeymaH. MirzaiiM. GhorbaniS. GoodarziA. In vitro and in vivo study of PCL/COLL wound dressing loaded with insulin-chitosan nanoparticles on cutaneous wound healing in rats model.Int. J. Biol. Macromol.201811760160910.1016/j.ijbiomac.2018.05.18429807077
    [Google Scholar]
  19. SalehiM. Naseri-NosarM. Ebrahimi-BaroughS. NouraniM. KhojastehA. HamidiehA.A. AmaniA. FarzamfarS. AiJ. Sciatic nerve regeneration by transplantation of Schwann cells via erythropoietin controlled‐releasing polylactic acid/multiwalled carbon nanotubes/gelatin nanofibrils neural guidance conduit.J. Biomed. Mater. Res. B Appl. Biomater.201810641463147610.1002/jbm.b.3395228675568
    [Google Scholar]
  20. AlsenousyA.H.A. El-TahanR.A. GhazalN.A. PiñolR. MillánA. AliL.M.A. KamelM.A. The Anti-Obesity Potential of Superparamagnetic Iron Oxide Nanoparticles against High-Fat Diet-Induced Obesity in Rats: Possible Involvement of Mitochondrial Biogenesis in the Adipose Tissues.Pharmaceutics20221410213410.3390/pharmaceutics1410213436297569
    [Google Scholar]
  21. LiW. WanH. YanS. YanZ. ChenY. GuoP. RameshT. CuiY. NingL. Gold nanoparticles synthesized with Poria cocos modulates the anti-obesity parameters in high-fat diet and streptozotocin induced obese diabetes rat model.Arab. J. Chem.20201375966597710.1016/j.arabjc.2020.04.031
    [Google Scholar]
  22. YiM.H. SimuS.Y. AhnS. AceitunoV.C. WangC. MathiyalaganR. HurhJ. BatjikhI. AliH. KimY-J. KimS. YangD-C. Anti-obesity effect of gold nanoparticles from Dendropanax morbifera Léveille by suppression of triglyceride synthesis and downregulation of PPARγ and CEBPα signaling pathways in 3T3-L1 mature adipocytes and HepG2 cells.Curr. Nanosci.202016219620310.2174/1573413716666200116124822
    [Google Scholar]
  23. SibuyiN.R.S. MoabeloK.L. MeyerM. OnaniM.O. DubeA. MadieheA.M. Nanotechnology advances towards development of targeted-treatment for obesity.J. Nanobiotechnology201917112210.1186/s12951‑019‑0554‑331842876
    [Google Scholar]
  24. TsouY.H. WangB. HoW. HuB. TangP. SweetS. ZhangX.Q. XuX. Nanotechnology-mediated drug delivery for the treatment of obesity and its related comorbidities.Adv. Healthc. Mater.2019812180118410.1002/adhm.20180118430938934
    [Google Scholar]
  25. de Jesus FelisminoC. Helal-NetoE. PortilhoF.L. Rocha PintoS. SancenónF. Martínez-MáñezR. de Assis FerreiraA. da SilvaS.V. Barja-FidalgoT.C. Santos-OliveiraR. Effect of obesity on biodistribution of nanoparticles.J. Control. Release2018281111810.1016/j.jconrel.2018.05.00329753960
    [Google Scholar]
  26. AshG.I. KimD. ChoudhuryM. Promises of nanotherapeutics in obesity.Trends Endocrinol. Metab.201930636938310.1016/j.tem.2019.04.00431126754
    [Google Scholar]
  27. Abo MansourH.E. El-BatshM.M. BadawyN.S. MehannaE.T. MesbahN.M. Abo-ElmattyD.M. Ginger extract loaded into chitosan nanoparticles enhances cytotoxicity and reduces cardiotoxicity of doxorubicin in hepatocellular carcinoma in mice.Nutr. Cancer20217311-122347236210.1080/01635581.2020.182343632972241
    [Google Scholar]
  28. El-DerbawyM.M. SalemH.S. RabooM. BaiuomyI.R. FadilS.A. FadilH.A. IbrahimS.R.M. El KholyW.A. In vivo evaluation of the anti-schistosomal potential of ginger-loaded chitosan nanoparticles on schistosoma mansoni: histopathological, ultrastructural, and immunological changes.Life (Basel)20221211183410.3390/life1211183436362992
    [Google Scholar]
  29. YücelÇ. KaratoprakG.Ş. AçıkaraÖ.B. AkkolE.K. BarakT.H. Sobarzo-SánchezE. AschnerM. ShirooieS. Immunomodulatory and anti-inflammatory therapeutic potential of gingerols and their nanoformulations.Front. Pharmacol.20221390255110.3389/fphar.2022.90255136133811
    [Google Scholar]
  30. ShareefS. Anti-Inflammatory and Antioxidant Activities of Ginger. Ginger - Cultivation and Use.Intechopen.202210.5772/intechopen.108611
    [Google Scholar]
  31. KarczewskiJ. ŚledzińskaE. BaturoA. JończykI. MaleszkoA. MaleszkoA. SamborskiP. Begier-KrasińskaB. DobrowolskaA. Obesity and inflammation.Eur. Cytokine Netw.2018293839410.1684/ecn.2018.041530547890
    [Google Scholar]
  32. ShoelsonS.E. HerreroL. NaazA. Obesity, inflammation, and insulin resistance.Gastroenterology200713262169218010.1053/j.gastro.2007.03.05917498510
    [Google Scholar]
  33. NgampunwetchakulL. ToonkaewS. SupapholP. SuwantongO. Semi-solid poly(vinyl alcohol) hydrogels containing ginger essential oil encapsulated in chitosan nanoparticles for use in wound management.J. Polym. Res.201926922410.1007/s10965‑019‑1880‑8
    [Google Scholar]
  34. HuJ. WangX. XiaoZ. BiW. Effect of chitosan nanoparticles loaded with cinnamon essential oil on the quality of chilled pork.Lebensm. Wiss. Technol.201563151952610.1016/j.lwt.2015.03.049
    [Google Scholar]
  35. Tajmir-RiahiH.A. NafisiS. SanyakamdhornS. AgudeloD. ChanphaiP. Applications of chitosan nanoparticles in drug delivery.Methods Mol. Biol.2014114116518410.1007/978‑1‑4939‑0363‑4_1124567139
    [Google Scholar]
  36. PaolicelliP. de la FuenteM. SánchezA. SeijoB. AlonsoM.J. Chitosan nanoparticles for drug delivery to the eye.Expert Opin. Drug Deliv.20096323925310.1517/1742524090276281819290841
    [Google Scholar]
  37. ZhangH. OhM. AllenC. KumachevaE. Monodisperse chitosan nanoparticles for mucosal drug delivery.Biomacromolecules2004562461246810.1021/bm049621115530064
    [Google Scholar]
  38. ZhangM. XuC. LiuD. HanM.K. WangL. MerlinD. Oral delivery of nanoparticles loaded with ginger active compound, 6-shogaol, attenuates ulcerative colitis and promotes wound healing in a murine model of ulcerative colitis.J. Crohn’s Colitis201812221722910.1093/ecco‑jcc/jjx11528961808
    [Google Scholar]
  39. OmerA.M. ZioraZ.M. TamerT.M. KhalifaR.E. HassanM.A. Mohy-EldinM.S. BlaskovichM.A.T. Formulation of quaternized aminated chitosan nanoparticles for efficient encapsulation and slow release of curcumin.Molecules202126244910.3390/molecules2602044933467056
    [Google Scholar]
  40. SoaresA.P.C. FariaN.C. GracianoG.F. SilvaJ.A. GonçalvesV.S.S. ValenzuelaV.D.C.T. CorreiaM.I.T.D. AnastácioL.R. Ginger infusion increases diet-induced thermogenesis in healthy individuals: A randomized crossover trial.Food Biosci.20225010200510.1016/j.fbio.2022.102005
    [Google Scholar]
  41. Braga TibaesJ.R. MartinsL.B. RodriguesA.M.S. AmaralM.H.A. TeixeiraA.L. FerreiraA.V.M. Ginger supplementation does not increase energy expenditure in female adults.Nutrition2022103-10411180310.1016/j.nut.2022.11180336058007
    [Google Scholar]
  42. Al AsoomL. AlassafM.A. AlSulaimanN.S. BoumarahD.N. AlmubireekA.M. AlkalthamG.K. AlhawajH.A. AlkhamisT. RafiqueN. AlsunniA. LatifR. AlsaifS. AlmohazeyD. AbdulAzeezS. BorgioJ.F. The Effectiveness of Nigella sativa and Ginger as Appetite Suppressants: An Experimental Study on Healthy Wistar Rats.Vasc. Health Risk Manag.20231911110.2147/VHRM.S39629536647392
    [Google Scholar]
  43. WangJ. ZhangL. DongL. HuX. FengF. ChenF. 6-gingerol, a functional polyphenol of ginger, promotes browning through an AMPK-dependent pathway in 3T3-L1 adipocytes.J. Agric. Food Chem.20196751140561406510.1021/acs.jafc.9b0507231789021
    [Google Scholar]
  44. AbdiT. MahmoudabadyM. MarzouniH.Z. NiazmandS. KhazaeiM. Ginger (Zingiber Officinale Roscoe) extract protects the heart against inflammation and fibrosis in diabetic rats.Can. J. Diabetes202145322022710.1016/j.jcjd.2020.08.10233162372
    [Google Scholar]
  45. KumarA. SundaramK. TengY. MuJ. SriwastvaM.K. ZhangL. HoodJ.L. YanJ. ZhangX. ParkJ.W. MerchantM.L. ZhangH.G. Ginger nanoparticles mediated induction of Foxa2 prevents high-fat diet-induced insulin resistance.Theranostics20221231388140310.7150/thno.6251435154496
    [Google Scholar]
  46. Prakash, A.; Rubin, N.; Staley, C.; Onyeaghala, G.; Wen, Y.-F.; Shaukat, A.; Milne, G.; Straka, R. J.; Church, T. R.; Prizment, A. Effect of ginger supplementation on the fecal microbiome in subjects with prior colorectal adenoma. Sci. Rep., 2024, 14(1), 2988. 10.1038/s41598‑024‑52658‑438316805
/content/journals/cdd/10.2174/0115672018315676240715065750
Loading
/content/journals/cdd/10.2174/0115672018315676240715065750
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test