Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Different nanocarriers-based strategies are now extensively being used as an important strategy for improving drug efficacy and responsiveness, reducing toxicity issues related to drugs and harmful side effects, and overcoming the numerous significant difficulties related to absorption and bioavailability. Amongst different nanocarriers, nanovesicles are excellent and versatile systems for effectively delivering therapeutic agents, targeting ligand distribution and location. Nanovesicles are nanosized self-assembling spherical capsules with an aqueous core and one/more lipid(s) layers. Several synthetic nanovesicles have been developed and investigated for their prospective uses in delivering drugs, proteins, peptides, nutrients, . Important procedures for nanovesicle manufacturing are thin-film hydration, unshaken method, ethanol injection, ether injection, proliposomes, freeze-drying, hot method, cold method, reverse-phase evaporation, and ultrasonication. Liposomes, liposomes, ethosomes, exosomes, and transferosomes (elastic vesicles) are the nonvesicular candidates extensively investigated to deliver antiviral drugs. This review article comprehensively overview different nanovesicles, their compositions, manufacturing, and applications as potential carriers for effectively delivering different antiviral drugs to treat viral diseases.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018313783240603114509
2025-07-01
2025-09-26
Loading full text...

Full text loading...

/deliver/fulltext/cdd/22/6/CDD-22-6-746.html?itemId=/content/journals/cdd/10.2174/0115672018313783240603114509&mimeType=html&fmt=ahah

References

  1. CojocaruF.D. BotezatD. GardikiotisI. UrituC.M. DodiG. TrandafirL. RezusC. RezusE. TambaB.I. MihaiC.T. Nanomaterials designed for antiviral drug delivery transport across biological barriers.Pharmaceutics202012217110.3390/pharmaceutics1202017132085535
    [Google Scholar]
  2. RashidzadehH. DanafarH. RahimiH. MozafariF. SalehiabarM. RahmatiM.A. Rahamooz-HaghighiS. MousazadehN. MohammadiA. ErtasY.N. RamazaniA. HuseynovaI. KhalilovR. DavaranS. WebsterT.J. KavetskyyT. EftekhariA. NosratiH. MirsaeidiM. Nanotechnology against the novel coronavirus (severe acute respiratory syndrome coronavirus 2): Diagnosis, treatment, therapy and future perspectives.Nanomedicine202116649751610.2217/nnm‑2020‑044133683164
    [Google Scholar]
  3. ColpittsC.C. VerrierE.R. BaumertT.F. Targeting viral entry for treatment of hepatitis B and C virus infections.ACS Infect. Dis.20151942042710.1021/acsinfecdis.5b0003927617925
    [Google Scholar]
  4. RiveraA. MessaoudiI. Pathophysiology of ebola virus infection: Current challenges and future hopes.ACS Infect. Dis.20151518619710.1021/id500042627622648
    [Google Scholar]
  5. AditiS.M. ShariffM. Nipah virus infection: A review.Epidemiol. Infect.2019147e9510.1017/S095026881900008630869046
    [Google Scholar]
  6. ChakravartyM. VoraA. Nanotechnology-based antiviral therapeutics.Drug Deliv. Transl. Res.202111374878710.1007/s13346‑020‑00818‑032748035
    [Google Scholar]
  7. ValesanoA.L. FitzsimmonsW.J. McCroneJ.T. PetrieJ.G. MontoA.S. MartinE.T. LauringA.S. Influenza B viruses exhibit lower within-host diversity than Influenza A viruses in human hosts.J. Virol.2020945e01710-1910.1128/JVI.01710‑1931801858
    [Google Scholar]
  8. TrovatoM. SartoriusR. D’ApiceL. MancoR. De BerardinisP. Viral emerging diseases: Challenges in developing vaccination strategies.Front. Immunol.202011213010.3389/fimmu.2020.0213033013898
    [Google Scholar]
  9. XieJ. YeF. DengX. TangY. LiangJ.Y. HuangX. SunY. TangH. LeiJ. ZhengS. ZouY. Circular RNA: A promising new star of vaccine.J. Transl. Int. Med.202311437238110.2478/jtim‑2023‑012238130633
    [Google Scholar]
  10. ChenR. WangT. SongJ. PuD. HeD. LiJ. YangJ. LiK. ZhongC. ZhangJ. Antiviral drug delivery system for enhanced bioactivity, better metabolism and pharmacokinetic characteristics.Int. J. Nanomedicine2021164959498410.2147/IJN.S31570534326637
    [Google Scholar]
  11. ShaferR.W. VuittonD.A. Highly active antiretroviral therapy (Haart) for the treatment of infection with human immunodeficiency virus type 1.Biomed. Pharmacother.1999532738610.1016/S0753‑3322(99)80063‑810337461
    [Google Scholar]
  12. LemboD. DonalisioM. CivraA. ArgenzianoM. CavalliR. Nanomedicine formulations for the delivery of antiviral drugs: A promising solution for the treatment of viral infections.Expert Opin. Drug Deliv.20181519311410.1080/17425247.2017.136086328749739
    [Google Scholar]
  13. DashS.R. KunduC.N. Advances in nanomedicine for the treatment of infectious diseases caused by viruses.Biomater. Sci.202311103431344910.1039/D2BM02066A36974930
    [Google Scholar]
  14. KhalilovR. A comprehensive review of advanced nano-biomaterials in regenerative medicine and drug delivery.Adv. Biol. Earth Sci202381518
    [Google Scholar]
  15. YangW. MaY. XuH. ZhuZ. WuJ. XuC. SunW. ZhaoE. WangM. ReisR.L. KunduS.C. ShiX. XiaoB. Mulberry biomass-derived nanomedicines mitigate colitis through improved inflamed mucosa accumulation and intestinal microenvironment modulation.Research202360188
    [Google Scholar]
  16. AslF.D. MousazadehM. TajiS. BahmaniA. KhashayarP. AzimzadehM. MostafaviE. Nano drug-delivery systems for management of AIDS: Liposomes, dendrimers, gold and silver nanoparticles.Nanomedicine202318327930210.2217/nnm‑2022‑024837125616
    [Google Scholar]
  17. PeerD. KarpJ.M. HongS. FarokhzadO.C. MargalitR. LangerR. Nanocarriers as an emerging platform for cancer therapy.Nat. Nanotechnol.200721275176010.1038/nnano.2007.38718654426
    [Google Scholar]
  18. WandeD.P. TrevaskisN. FarooqM.A. JabeenA. NayakA.K. Theranostic nanostructures as nanomedicines: Benefits, costs, and future challenges.Design and Applications of Theranostic Nanomedicines, Woodhead Publishing Series in Biomaterials. RayS. NayakA.K. United StatesElsevier Inc.202332410.1016/B978‑0‑323‑89953‑6.00008‑8
    [Google Scholar]
  19. BanghamA.D. HorneR.W. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope.J. Mol. Biol.196485660IN1010.1016/S0022‑2836(64)80115‑714187392
    [Google Scholar]
  20. BabuS.S. PraveenV.K. AjayaghoshA. Functional π-gelators and their applications.Chem. Rev.201411441973212910.1021/cr400195e24400783
    [Google Scholar]
  21. NayakA.K. HasnainM.S. AminabhaviT.M. TorchilinV.P. Nanovesicular systems in drug delivery. Systems of Nanovesicular Drug Delivery. NayakA.K. HasnainM.S. AminabhaviT.M. TorchilinV.P. United StatesAcademic Press, Elsevier Inc.202211510.1016/B978‑0‑323‑91864‑0.00026‑7
    [Google Scholar]
  22. Abbaszadeh-GoudarziK. NematollahiM.H. KhanbabaeiH. NaveH.H. MirzaeiH.R. PourghadamyariH. SahebkarA. Targeted delivery of CRISPR/Cas13 as a promising therapeutic approach to treat SARS-CoV-2.Curr. Pharm. Biotechnol.20212291149115510.2174/18734316MTEwtNTgrw33038909
    [Google Scholar]
  23. PoustforooshA. NematollahiM.H. HashemipourH. PardakhtyA. Recent advances in bio-conjugated nanocarriers for crossing the blood-brain barrier in (pre-)clinical studies with an emphasis on vesicles.J. Control. Release202234377779710.1016/j.jconrel.2022.02.01535183653
    [Google Scholar]
  24. RajizadehM.A. MotamedyS. MirY. AkhgarandouzF. NematollahiM.H. NezhadiA. A comprehensive and updated review on the applications of vesicular drug delivery systems in treatment of brain disorders: A shelter against storms.J. Drug Deliv. Sci. Technol.20238910501110.1016/j.jddst.2023.105011
    [Google Scholar]
  25. BeheraA. PadhiS. NayakA.K. Engineered liposomes as drug delivery and imaging agents. Design and Applications of Theranostic Nanomedicines, Woodhead Publishing Series in Biomaterials. RayS. NayakA.K. United StatesElsevier Inc.20237510810.1016/B978‑0‑323‑89953‑6.00010‑6
    [Google Scholar]
  26. AlaviM. KarimiN. SafaeiM. Application of various types of liposomes in drug delivery systems.Adv. Pharm. Bull.2017713910.15171/apb.2017.00228507932
    [Google Scholar]
  27. WitikaB.A. BasseyK.E. DemanaP.H. Siwe-NoundouX. PokaM.S. Current advances in specialised niosomal drug delivery: Manufacture, characterization and drug delivery applications.Int. J. Mol. Sci.20222317966810.3390/ijms2317966836077066
    [Google Scholar]
  28. DeyS. HasnainM.S. JhaS.K. SahooN. NayakA.K. Transferosomes: A novel nanotechnological approach for transdermal drug delivery. Advanced and Modern Approaches for Drug Delivery. NayakA.K. HasnainM.S. LahaB. MaitiS. United StatesAcademic Press, Elsevier Inc.202319922110.1016/B978‑0‑323‑91668‑4.00017‑4
    [Google Scholar]
  29. JafariA. DaneshamouzS. GhasemiyehP. Mohammadi-SamaniS. Ethosomes as dermal/transdermal drug delivery systems: Applications, preparation and characterization.J. Liposome Res.2023331345210.1080/08982104.2022.208574235695714
    [Google Scholar]
  30. Abu-HuwaijR. ZidanA.N. Unlocking the potential of cosmetic dermal delivery with ethosomes: A comprehensive review.J. Cosmet. Dermatol.2024231172610.1111/jocd.1589537393573
    [Google Scholar]
  31. LimongiT. SusaF. MariniM. AllioneM. TorreB. PisanoR. di FabrizioE. Lipid-Based nanovesicular drug delivery systems.Nanomaterials20211112339110.3390/nano1112339134947740
    [Google Scholar]
  32. FonsecaF.N. HaachV. BellaverF.V. BombassaroG. GavaD. da SilvaL.P. BaronL.F. SimonellyM. CarvalhoW.A. SchaeferR. BastosA.P. Immunological profile of mice immunized with a polyvalent virosome-based influenza vaccine.Virol. J.202320118710.1186/s12985‑023‑02158‑037605141
    [Google Scholar]
  33. AsadikaramG. PoustforooshA. PardakhtyA. Torkzadeh-MahaniM. NematollahiM.H. Niosomal virosome derived by vesicular stomatitis virus glycoprotein as a new gene carrier.Biochem. Biophys. Res. Commun.202153498098710.1016/j.bbrc.2020.10.05433131770
    [Google Scholar]
  34. GasparM.M. BoermanO.C. LavermanP. CorvoM.L. StormG. CruzM.E.M. Enzymosomes with surface-exposed superoxide dismutase: In vivo behaviour and therapeutic activity in a model of adjuvant arthritis.J. Control. Release2007117218619510.1016/j.jconrel.2006.10.01817169460
    [Google Scholar]
  35. HashemS.M. GadM.K. AnwarH.M. SalehN.M. ShammaR.N. ElsherifN.I. Itraconazole-loaded ufasomes: Evaluation, characterization, and anti-fungal activity against Candida albicans. Pharmaceutics20221512610.3390/pharmaceutics1501002636678655
    [Google Scholar]
  36. BanerjeeS. NayakA.K. SenK.K. Aquasomes: A nanoparticulate approach for therapeutic applications. Systems of Nanovesicular Drug Delivery. NayakA.K. HasnainM.S. AminabhaviT.M. TorchilinV.P. United StatesAcademic Press, Elsevier Inc.202220721910.1016/B978‑0‑323‑91864‑0.00025‑5
    [Google Scholar]
  37. SharmaG. MahajanA. ThakurK. KaurG. GoniV.G. KumarM.V. BarnwalR.P. SinghG. SinghB. KatareO.P. Exploring the therapeutic potential of sodium deoxycholate tailored deformable-emulsomes of etodolac for effective management of arthritis.Sci. Rep.20231312168110.1038/s41598‑023‑46119‑738066008
    [Google Scholar]
  38. SinghviG. BanerjeeS. RapalliV.K. DubeyS.K. KhanS. JhaP.N. GuptaG. DuaK. HasnainM.S. NayakA.K. QbD-based formulation and optimization of topical hydrogel containing ketoconazole loaded cubosomes.Mater. Sci. Eng. C202111911154810.1016/j.msec.2020.111548
    [Google Scholar]
  39. LopezC. MériadecC. David-BriandE. DupontA. BizienT. ArtznerF. RiaublancA. AntonM. Loading of lutein in egg-sphingomyelin vesicles as lipid carriers: Thermotropic phase behaviour, structure of sphingosome membranes and lutein crystals.Food Res. Int.2020138Pt A10977010.1016/j.foodres.2020.10977033292950
    [Google Scholar]
  40. JiaJ. LiuR.K. SunQ. WangJ.X. Efficient construction of pH-stimuli-responsive colloidosomes with high encapsulation efficiency.Langmuir20233949178081781710.1021/acs.langmuir.3c0241538015806
    [Google Scholar]
  41. PatilM. HussainA. AltamimiM.A. AshiqueS. HaiderN. FarukA. KhurooT. SherikarA. SiddiqueM.U.M. AnsariA. BarbhuiyaT.K. An insight of various vesicular systems, erythrosomes, and exosomes to control metastasis and cancer.DAdv. Cancer Biol.Metastasis.20237100103
    [Google Scholar]
  42. AbdelkaderH. WuZ. Al-KassasR. AlanyR.G. Niosomes and discomes for ocular delivery of naltrexone hydrochloride: Morphological, rheological, spreading properties and photo-protective effects.Int. J. Pharm.20124331-214214810.1016/j.ijpharm.2012.05.01122595640
    [Google Scholar]
  43. BozzutoG. MolinariA. Liposomes as nanomedical devices.Int. J. Nanomedicine20151097599910.2147/IJN.S6886125678787
    [Google Scholar]
  44. DasB. NayakA.K. MallickS. Thyme oil-containing fluconazole-loaded transferosomal bigel for transdermal delivery.AAPS PharmSciTech202324824010.1208/s12249‑023‑02698‑237989918
    [Google Scholar]
  45. CevcG. SchätzleinA. RichardsenH. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements.Biochim. Biophys. Acta Biomembr.200215641213010.1016/S0005‑2736(02)00401‑712100992
    [Google Scholar]
  46. KimA. LeeE.H. ChoiS.H. KimC.K. In vitro and in vivo transfection efficiency of a novel ultradeformable cationic liposome.Biomaterials200425230531310.1016/S0142‑9612(03)00534‑914585718
    [Google Scholar]
  47. CevcG. GebauerD. Hydration-driven transport of deformable lipid vesicles through fine pores and the skin barrier.Biophys. J.20038421010102410.1016/S0006‑3495(03)74917‑012547782
    [Google Scholar]
  48. UpadhyayN. MandalS. BhatiaL. ShaileshS. ChauhanP. A review on ethosomes: An emerging approach for drug delivery through the skin.Recent Res. Sci. Technol.201131924
    [Google Scholar]
  49. ChackoI.A. GhateV.M. DsouzaL. LewisS.A. Lipid vesicles: A versatile drug delivery platform for dermal and transdermal applications.Colloids Surf. B Biointerfaces202019511126210.1016/j.colsurfb.2020.11126232736123
    [Google Scholar]
  50. ZhangH. Thin-film hydration followed by extrusion method for liposome preparation. Liposomes.Springer2017172210.1007/978‑1‑4939‑6591‑5_2
    [Google Scholar]
  51. LaouiniA. Jaafar-MaalejC. Limayem-BlouzaI. SfarS. CharcossetC. FessiH. Preparation, characterization and applications of liposomes: state of the art.J. Coll. Sci. Biotechnol.20121214716810.1166/jcsb.2012.1020
    [Google Scholar]
  52. VermaP. PathakK. Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation.Nanomedicine20128448949610.1016/j.nano.2011.07.00421839053
    [Google Scholar]
  53. DeamerD.W. Preparation and properties of ether-injection liposomes.Ann. N. Y. Acad. Sci.1978308125025810.1111/j.1749‑6632.1978.tb22027.x279292
    [Google Scholar]
  54. JahanfarS. GahavamiM. Khosravi-DaraniK. JahadiM. MozafariM.R. Entrapment of rosemary extract by liposomes formulated by Mozafari method: Physicochemical characterization and optimization.Heliyon2021712e0863210.1016/j.heliyon.2021.e0863235005281
    [Google Scholar]
  55. DurakS. Esmaeili RadM. Alp YetisginA. Eda SutovaH. KutluO. CetinelS. ZarrabiA. Niosomal drug delivery systems for ocular disease-recent advances and future prospects.Nanomaterials2020106119110.3390/nano1006119132570885
    [Google Scholar]
  56. GrimaldiN. AndradeF. SegoviaN. Ferrer-TasiesL. SalaS. VecianaJ. VentosaN. Lipid-based nanovesicles for nanomedicine.Chem. Soc. Rev.201645236520654510.1039/C6CS00409A27722570
    [Google Scholar]
  57. LemboD. CavalliR. Nanoparticulate delivery systems for antiviral drugs.Antivir. Chem. Chemother.2010212537010.3851/IMP168421107015
    [Google Scholar]
  58. LiS.D. HuangL. Pharmacokinetics and biodistribution of nanoparticles.Mol. Pharm.20085449650410.1021/mp800049w18611037
    [Google Scholar]
  59. SharmaP. GargS. Pure drug and polymer based nanotechnologies for the improved solubility, stability, bioavailability and targeting of anti-HIV drugs.Adv. Drug Deliv. Rev.2010624-549150210.1016/j.addr.2009.11.01919931328
    [Google Scholar]
  60. KumarL. VermaS. PrasadD.N. BhardwajA. VaidyaB. JainA.K. Nanotechnology: A magic bullet for HIV AIDS treatment.Artif. Cells Nanomed. Biotechnol.2015432718610.3109/21691401.2014.88340024564348
    [Google Scholar]
  61. BhattacharjeeA. DasP.J. DeyS. NayakA.K. RoyP.K. ChakrabartiS. MarbaniangD. DasS.K. RayS. ChattopadhyayP. MazumderB. Development and optimization of besifloxacin hydrochloride loaded liposomal gel prepared by thin film hydration method using 32 full factorial design.Colloids Surf. A Physicochem. Eng. Asp.202058512407110.1016/j.colsurfa.2019.124071
    [Google Scholar]
  62. GaoW. HuC.M.J. FangR.H. ZhangL. Liposome-like nanostructures for drug delivery.J. Mater. Chem. B Mater. Biol. Med.20131486569658510.1039/c3tb21238f24392221
    [Google Scholar]
  63. AkbarzadehA. Rezaei-SadabadyR. DavaranS. JooS.W. ZarghamiN. HanifehpourY. SamieiM. KouhiM. Nejati-KoshkiK. Liposome: Classification, preparation, and applications.Nanoscale Res. Lett.20138110210.1186/1556‑276X‑8‑10223432972
    [Google Scholar]
  64. PanahiY. FarshbafM. MohammadhosseiniM. MirahadiM. KhalilovR. SaghfiS. AkbarzadehA. Recent advances on liposomal nanoparticles: Synthesis, characterization and biomedical applications.Artif. Cells Nanomed. Biotechnol.201745478879910.1080/21691401.2017.128249628278586
    [Google Scholar]
  65. ShenY. TuJ. Preparation and ocular pharmacokinetics of ganciclovir liposomes.AAPS J.200793E371E37710.1208/aapsj090304418170984
    [Google Scholar]
  66. KorvasováZ. DrašarL. MašekJ. KnotigováP.T. KulichP. MatiašovicJ. KovařčíkK. BartheldyováE. KoudelkaŠ. ŠkrabalováM. MillerA.D. HolýA. LedvinaM. TuránekJ. Antiviral effect of HPMPC (Cidofovir®), entrapped in cationic liposomes: In vitro study on MDBK cell and BHV-1 virus.J. Control. Release2012160233033810.1016/j.jconrel.2012.01.04022326403
    [Google Scholar]
  67. LawS.L. HuangK.J. ChiangC.H. Acyclovir-containing liposomes for potential ocular delivery.J. Control. Release2000631-213514010.1016/S0168‑3659(99)00192‑310640587
    [Google Scholar]
  68. NaderkhaniE. ErberA. Škalko-BasnetN. FlatenG.E. Improved permeability of acyclovir: Optimization of mucoadhesive liposomes using the phospholipid vesicle-based permeation assay.J. Pharm. Sci.2014103266166810.1002/jps.2384524395733
    [Google Scholar]
  69. RamanaL.N. SharmaS. SethuramanS. RangaU. KrishnanU.M. Investigation on the stability of saquinavir loaded liposomes: Implication on stealth, release characteristics and cytotoxicity.Int. J. Pharm.20124311-212012910.1016/j.ijpharm.2012.04.05422569226
    [Google Scholar]
  70. AsasutjaritR. ManagitC. PhanaksriT. TreesuppharatW. FuongfuchatA. Formulation development and in vitro evaluation of transferrin-conjugated liposomes as a carrier of ganciclovir targeting the retina.Int. J. Pharm.202057711908410.1016/j.ijpharm.2020.11908431988033
    [Google Scholar]
  71. RamanaL.N. SharmaS. SethuramanS. RangaU. KrishnanU.M. Stealth anti-CD4 conjugated immunoliposomes with dual antiretroviral drugs : Modern Trojan horses to combat HIV.Eur. J. Pharm. Biopharm.20158930031110.1016/j.ejpb.2014.11.02125500283
    [Google Scholar]
  72. MilkovaV. Vilhelmova-IlievaN. GyurovaA. KamburovaK. DimitrovI. TsvetanovaE. GeorgievaA. MilevaM. Remdesivir-loaded nanoliposomes stabilized by chitosan/hyaluronic acid film with a potential application in the treatment of coronavirus infection.Neurol. Int.20231541320133810.3390/neurolint1504008337987456
    [Google Scholar]
  73. GodboleM.D. SabaleP.M. MathurV.B. Development of lamivudine liposomes by three-level factorial design approach for optimum entrapment and enhancing tissue targeting.J. Microencapsul.202037643144410.1080/02652048.2020.177880632543317
    [Google Scholar]
  74. ManiyarM. ChandakA. KokareC. Lopinavir loaded spray dried liposomes with penetration enhancers for cytotoxic activity.Infect. Disord. Drug Targets202020572473610.2174/187152651966619100811220731593534
    [Google Scholar]
  75. YaoD. LiuD. LuoR. HeS. BaiL. YangY. MaJ. HeX. HuM. LuoH. ChenB. LiuF. YeT. SongX. ZhangZ. XieY. A Tenofovir-loaded glycyrrhetinic acid-modified cationic liposome for targeted therapy of Hepatitis B virus.J. Biomed. Nanotechnol.202016101504151710.1166/jbn.2020.298633422162
    [Google Scholar]
  76. NayakD. BoxiA. AsheS. ThathapudiN.C. NayakB. Stavudine loaded gelatin liposomes for HIV therapy: Preparation, characterization and in vitro cytotoxic evaluation.Mater. Sci. Eng. C20177340641610.1016/j.msec.2016.12.07328183626
    [Google Scholar]
  77. FigueiraT.N. DominguesM.M. IllienF. Cadima-CoutoI. TodorovskiT. AndreuD. SaganS. CastanhoM.A.R.B. WalrantA. VeigaA.S. Enfuvirtide-protoporphyrin IX dual-loaded liposomes: In vitro evidence of synergy against HIV-1 entry into cells.ACS Infect. Dis.20206222423610.1021/acsinfecdis.9b0028531855415
    [Google Scholar]
  78. KenchappaV. CaoR. VenketaramanV. BetageriG.V. Liposomes as carriers for the delivery of efavirenz in combination with glutathione-an approach to combat opportunistic infections.Appl. Sci.2022123146810.3390/app1203146835663347
    [Google Scholar]
  79. FariaM.J. MachadoR. RibeiroA. GonçalvesH. Real OliveiraM.E.C.D. ViseuT. das NevesJ. LúcioM. Rational development of liposomal hydrogels: A strategy for topical vaginal antiretroviral drug delivery in the context of HIV prevention.Pharmaceutics201911948510.3390/pharmaceutics1109048531540519
    [Google Scholar]
  80. PatelG.M. ShelatP.K. LalwaniA.N. QbD based development of proliposome of lopinavir for improved oral bioavailability.Eur. J. Pharm. Sci.2017108506110.1016/j.ejps.2016.08.05727586019
    [Google Scholar]
  81. AhammedV. NarayanR. PaulJ. NayakY. RoyB. ShaviG.V. NayakU.Y. Development and in vivo evaluation of functionalized ritonavir proliposomes for lymphatic targeting.Life Sci.2017183112010.1016/j.lfs.2017.06.02228647214
    [Google Scholar]
  82. BhusariS. AnsariI. ChaudharyA. Development of Darunavir proliposome powder for oral delivery by using Box–Bhenken design.Drug Dev. Ind. Pharm.202046573274310.1080/03639045.2020.175270932290722
    [Google Scholar]
  83. SpinksC. ZidanA. KhanM. HabibM. FaustinoP. Pharmaceutical characterization of novel tenofovir liposomal formulations for enhanced oral drug delivery: In vitro pharmaceutics and Caco-2 permeability investigations.Clin. Pharmacol.20179293810.2147/CPAA.S11987528260952
    [Google Scholar]
  84. VartakR. PatilS.M. SaraswatA. PatkiM. KundaN.K. PatelK. Aerosolized nanoliposomal carrier of remdesivir: An effective alternative for COVID-19 treatment in vitro. Nanomedicine202116141187120210.2217/nnm‑2020‑047533982600
    [Google Scholar]
  85. LiJ. ZhangK. WuD. RenL. ChuX. QinC. HanX. HangT. XuY. YangL. YinL. Liposomal remdesivir inhalation solution for targeted lung delivery as a novel therapeutic approach for COVID-19.Asian.J. Pharmac. Sci.202116677278310.1016/j.ajps.2021.09.00234703490
    [Google Scholar]
  86. KheoaneP.S. EnslinG.M.A. TariraiC. Formulation and characterization of liposomes containing drug absorption enhancers for optimized anti-HIV and antimalarial drug delivery.Drug Deliv. Transl. Res.20231351358137110.1007/s13346‑022‑01264‑w36443635
    [Google Scholar]
  87. AlsarraI.A. HamedA.Y. AlanaziF.K. Acyclovir liposomes for intranasal systemic delivery: Development and pharmacokinetics evaluation.Drug Deliv.200815531332110.1080/1071754080203525118763162
    [Google Scholar]
  88. YeoP.L. LimC.L. ChyeS.M. Kiong LingA.P. KohR.Y. Niosomes: A review of their structure, properties, methods of preparation, and medical applications.Asian Biomed.201811430131410.1515/abm‑2018‑0002
    [Google Scholar]
  89. DevarajG.N. ParakhS.R. DevrajR. ApteS.S. RaoB.R. RambhauD. Release studies on niosomes containing fatty alcohols as bilayer stabilizers instead of cholesterol.J. Colloid Interface Sci.2002251236036510.1006/jcis.2002.839916290741
    [Google Scholar]
  90. RuckmaniK. SankarV. Formulation and optimization of Zidovudine niosomes.AAPS PharmSciTech20101131119112710.1208/s12249‑010‑9480‑220635228
    [Google Scholar]
  91. JacobS. NairA.B. Al-DhubiabB.E. Preparation and evaluation of niosome gel containing acyclovir for enhanced dermal deposition.J. Liposome Res.201727428329210.1080/08982104.2016.122489727558522
    [Google Scholar]
  92. AkhterS. TalegaonkarS. KhanZ. JainG. KharR. AhmadF. Assessment of ocular pharmacokinetics and safety of Ganciclovir loaded nanoformulations.J. Biomed. Nanotechnol.20117114414510.1166/jbn.2011.124121485843
    [Google Scholar]
  93. MehtaS.K. JindalN. Tyloxapol niosomes as prospective drug delivery module for antiretroviral drug nevirapine.AAPS Pharm.Sci.Tech.2015161677510.1208/s12249‑014‑0183‑y25182386
    [Google Scholar]
  94. ZidanA.S. RahmanZ. KhanM.A. Product and process understanding of a novel pediatric anti-HIV tenofovir niosomes with a high-pressure homogenizer.Eur. J. Pharm. Sci.2011441-29310210.1016/j.ejps.2011.06.01221726640
    [Google Scholar]
  95. PatelK.K. KumarP. ThakkarH.P. Formulation of niosomal gel for enhanced transdermal lopinavir delivery and its comparative evaluation with ethosomal gel.AAPS Pharm.Sci.Tech.20121341502151010.1208/s12249‑012‑9871‑723104306
    [Google Scholar]
  96. HashimF. El-RidyM. NasrM. AbdallahY. Preparation and characterization of niosomes containing ribavirin for liver targeting.Drug Deliv.201017528228710.3109/1071754100370625720350052
    [Google Scholar]
  97. FayedN.D. EssaE.A. El MaghrabyG.M. Menthol augmented niosomes for enhanced intestinal absorption of lopinavir.Pharm. Dev. Technol.202227995696410.1080/10837450.2022.213619536227222
    [Google Scholar]
  98. MonavariS.H. Mirzaei ParsaM.J. BolouriB. EbrahimiS.A. Ataei-PirkoohA. The inhibitory effect of Acyclovir loaded nano-niosomes against herpes simplex virus type-1 in cell culture.Med. J. Islam. Repub. Iran2014289925664300
    [Google Scholar]
  99. ZidanA.S. HabibM.J. Maximized mucoadhesion and skin permeation of anti-AIDS-loaded niosomal gels.J. Pharm. Sci.2014103395296410.1002/jps.2386724464823
    [Google Scholar]
  100. KambojS. SainiV. BalaS. Formulation and characterization of drug loaded nonionic surfactant vesicles (niosomes) for oral bioavailability enhancement.Scient.World.J.201420141810.1155/2014/95974124672401
    [Google Scholar]
  101. AkhterS. KushwahaS. WarsiM.H. AnwarM. AhmadM.Z. AhmadI. TalegaonkarS. KhanZ.I. KharR.K. AhmadF.J. Development and evaluation of nanosized niosomal dispersion for oral delivery of ganciclovir.Drug Dev. Ind. Pharm.2012381849210.3109/03639045.2011.59252921726136
    [Google Scholar]
  102. MalikT. ChauhanG. RathG. KesarkarR.N. ChowdharyA.S. GoyalA.K. Efaverinz and nano-gold-loaded mannosylated niosomes: A host cell-targeted topical HIV-1 prophylaxis via thermogel system.Artif Cells Nanomed Biotechnol201846sup1799010.1080/21691401.2017.1414054
    [Google Scholar]
  103. WitikaB.A. WalkerR.B. Development, manufacture and characterization of niosomes for the delivery for nevirapine.Pharmazie2019742919630782257
    [Google Scholar]
  104. WitikaB.A. WalkerR.B. Preformulation characterization and identification of excipients for nevirapine loaded niosomes.Pharmazie2021762778333714283
    [Google Scholar]
  105. PilchE. MusiałW. Liposomes with an ethanol fraction as an application for drug delivery.Int. J. Mol. Sci.20181912380610.3390/ijms1912380630501085
    [Google Scholar]
  106. JainS.K. UmamaheshwariR.B. BhadraD. JainN. Ethosomes: A novel vesicular carrier for enhanced transdermal delivery of an Anti HIV agent.Indian J. Pharm. Sci.2004667281
    [Google Scholar]
  107. DubeyV. MishraD. NaharM. JainV. JainN.K. Enhanced transdermal delivery of an anti-HIV agent via ethanolic liposomes.Nanomedicine20106459059610.1016/j.nano.2010.01.00220093197
    [Google Scholar]
  108. ZhouY. WeiY.H. ZhangG.Q. WuX.A. Synergistic penetration of ethosomes and lipophilic prodrug on the transdermal delivery of acyclovir.Arch. Pharm. Res.201033456757410.1007/s12272‑010‑0411‑220422366
    [Google Scholar]
  109. JainS. TiwaryA.K. SapraB. JainN.K. Formulation and evaluation of ethosomes for transdermal delivery of lamivudine.AAPS PharmSciTech20078424910.1208/pt080411118181532
    [Google Scholar]
  110. SicurellaM. PulaW. MusiałK. Cieślik-BoczulaK. SguizzatoM. BondiA. DrechslerM. MontesiL. EspositoE. MarconiP. Ethosomal gel for topical administration of dimethyl fumarate in the treatment of HSV-1 infections.Int. J. Mol. Sci.2023244413310.3390/ijms2404413336835541
    [Google Scholar]
  111. GuptaR.K. BhardwajD. GuptaS.K. JainA. Formulation and evaluation of transdermal patch from lamivudine and stavudine-loaded ethosomes.J. Emerg. Technol. Innov. Res.20196373401
    [Google Scholar]
  112. CortesiR. RavaniL. ZaidA.N. MenegattiE. RomagnoliR. DrechslerM. EspositoE. Ethosomes for the delivery of anti-HSV-1 molecules: preparation, characterization and in vitro activity.Pharmazie2010651074374921105576
    [Google Scholar]
  113. SudhakarK. MishraV. JainS. RompicherlaN.C. MalviyaN. TambuwalaM.M. Development and evaluation of the effect of ethanol and surfactant in vesicular carriers on Lamivudine permeation through the skin.Int. J. Pharm.202161012122610.1016/j.ijpharm.2021.12122634710540
    [Google Scholar]
  114. HussainA. AltamimiM.A. AfzalO. AltamimiA.S.A. RamzanM. KhurooT. Mechanistic of vesicular ethosomes and elastic liposomes on permeation profiles of acyclovir across artificial membrane, human cultured EpiDerm, and rat skin: In vitro-ex vivo study.Pharmaceutics2023159218910.3390/pharmaceutics1509218937765159
    [Google Scholar]
  115. AlshehriS. HussainA. AltamimiM.A. RamzanM. In vitro, ex vivo, and in vivo studies of binary ethosomes for transdermal delivery of acyclovir: A comparative assessment.J. Drug Deliv. Sci. Technol.20216210239010.1016/j.jddst.2021.102390
    [Google Scholar]
  116. YangQ. LiS. OuH. ZhangY. ZhuG. LiS. LeiL. Exosome-based delivery strategies for tumor therapy: an update on modification, loading, and clinical application.J. Nanobiotechnology20242214110.1186/s12951‑024‑02298‑738281957
    [Google Scholar]
  117. ZhangY. LiuY. LiuH. TangW.H. Exosomes: biogenesis, biologic function and clinical potential.Cell Biosci.2019911910.1186/s13578‑019‑0282‑230815248
    [Google Scholar]
  118. BedfordJ.G. InfusiniG. DagleyL.F. Villalon-LetelierF. ZhengM.Z.M. Bennett-WoodV. ReadingP.C. WakimL.M. Airway exosomes released during influenza virus infection serve as a key component of the antiviral innate immune response.Front. Immunol.20201188710.3389/fimmu.2020.0088732477358
    [Google Scholar]
  119. MausA. StraitL. ZhuD. Nanoparticles as delivery vehicles for antiviral therapeutic drugs.Engineered Regeneration20212314610.1016/j.engreg.2021.03.00138620592
    [Google Scholar]
  120. DaneshiN. EsmaeilzadehA. BahmaieN. 47D11 antibody-engineered exosomes for targeted delivery of remdesivir in patients with COVID-19: Dream or principle? (A critical editorial study).Eurasian J. Med.202254331031210.5152/eurasianjmed.2022.2111635950831
    [Google Scholar]
  121. LeiW. YuC. LinH. ZhouX. Development of tacrolimus-loaded transfersomes for deeper skin penetration enhancement and therapeutic effect improvement in vivo. Asian J. Pharmac. Sci.20138633634510.1016/j.ajps.2013.09.005
    [Google Scholar]
  122. PeiraE. TrottaM. CarlottiM.E. GallarateM. ChirioD. Elastic positively-charged liposomes for topical administration of acyclovir.J. Drug Deliv. Sci. Technol.200717532132410.1016/S1773‑2247(07)50049‑3
    [Google Scholar]
  123. JainS.K. GuptaY. JainA. RaiK. Enhanced transdermal delivery of acyclovir sodium via elastic liposomes.Drug Deliv.200815314114710.1080/1071754080195240718379926
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018313783240603114509
Loading
/content/journals/cdd/10.2174/0115672018313783240603114509
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test