Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Background

Quercetin (QTN) is a flavonol antioxidant found in foods, medicinal plants, fruits, vegetables, and beverages. QTN oral consumption produces several biological effects, including antioxidant, cardioprotective, anti-apoptotic, anti-cancer, neuroprotection, anti-hypertensive, and chemo preventive.

Objective

The study aimed to prepare Pluronic®F127/chitosan-myristic acid copolymer (PF127/C-MAc)-based mixed micelles (QTN MM) to improve the biopharmaceutical and hepatoprotective potential of QTN.

Methods

QTN MM was developed employing thin-film hydration and optimized using full factorial design (FFD). Optimized QTN MM was analyzed using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), powder x-ray diffractometry (PXRD), dissolution, permeation, and antioxidant activity in carbon tetrachloride (CCL)-induced albino rats.

Results

PF127/C-MAc ratio (1:1) with CMC value ~ 5 µg/mL showed the suitability for MM. Characterization supported the formation of MM. QTN MM revealed prominent encapsulation efficiency and drug loading of about ~ 95.10% and ~ 12.28% w/w, respectively. MM spherical shape of QTN with a smaller particle size of ~ 34.08 nm and a higher zeta potential of ~ 36.24 nm indicated excellent physical stability. Dissolution and permeation results revealed higher dissolution and permeation of QTN MM compared to QTN and PM. antioxidant activity suggested that QTN MM at (~ 20 mg/kg, p.o.) restored the enhanced marker enzyme level compared to QTN.

Conclusion

The findings demonstrate that developed QTN MM could be used as an alternative nanocarrier to increase the biopharmaceutical and hepatoprotective potential of QTN and other flavonoids.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018278618240304054731
2024-03-18
2025-09-26
Loading full text...

Full text loading...

References

  1. MurotaK. TeraoJ. Antioxidative flavonoid quercetin: Implication of its intestinal absorption and metabolism.Arch. Biochem. Biophys.20034171121710.1016/S0003‑9861(03)00284‑412921774
    [Google Scholar]
  2. KresslerJ. Millard-StaffordM. WarrenG.L. Quercetin and endurance exercise capacity: A systematic review and meta-analysis.Med. Sci. Sports Exerc.201143122396240410.1249/MSS.0b013e31822495a721606866
    [Google Scholar]
  3. ChenC. ZhouJ. JiC. Quercetin: A potential drug to reverse multidrug resistance.Life Sci.20108711-1233333810.1016/j.lfs.2010.07.00420637779
    [Google Scholar]
  4. LesjakM. BearaI. SiminN. PintaćD. MajkićT. BekvalacK. OrčićD. Mimica-DukićN. Antioxidant and anti-inflammatory activities of quercetin and its derivatives.J. Funct. Foods2018401687510.1016/j.jff.2017.10.047
    [Google Scholar]
  5. ZhouH. ZhangY. BiggsD.L. ManningM.C. RandolphT.W. ChristiansU. HybertsonB.M. NgK. Microparticle-based lung delivery of INH decreases INH metabolism and targets alveolar macrophages.J. Control. Release2005107228829910.1016/j.jconrel.2005.06.00916009444
    [Google Scholar]
  6. BureauG. LongpréF. MartinoliM.G. Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation.J. Neurosci. Res.200886240341010.1002/jnr.2150317929310
    [Google Scholar]
  7. KasiriN. RahmatiM. AhmadiL. EskandariN. MotedayyenH. Therapeutic potential of quercetin on human breast cancer in different dimensions.Inflammopharmacol.2020281396210.1007/s10787‑019‑00660‑y31754939
    [Google Scholar]
  8. MoonY.J. WangX. MorrisM.E. Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism.Toxicol. In vitro 200620218721010.1016/j.tiv.2005.06.04816289744
    [Google Scholar]
  9. DajasF. ArredondoF. EcheverryC. FerreiraM. MorquioA. RiveraF. Flavonoids and the brain: Evidences and putative mechanisms for a protective capacity.Curr. Neuropharmacol.20053319320510.2174/1570159054368303
    [Google Scholar]
  10. MarunakaY. MarunakaR. SunH. YamamotoT. KanamuraN. InuiT. TarunoA. Actions of quercetin, a polyphenol, on blood pressure.Molecules201722220910.3390/molecules2202020928146071
    [Google Scholar]
  11. KashyapD. GargV.K. TuliH.S. YererM.B. SakK. SharmaA.K. KumarM. AggarwalV. SandhuS.S. Fisetin and quercetin: Promising flavonoids with chemopreventive potential.Biomolecules20199517410.3390/biom905017431064104
    [Google Scholar]
  12. FearnR.A. HirstB.H. Predicting oral drug absorption and hepatobiliary clearance: Human intestinal and hepatic in vitro cell models.Environ. Toxicol. Pharmacol.200621216817810.1016/j.etap.2005.06.00221783654
    [Google Scholar]
  13. GuglerR. LeschikM. DenglerH.J. Disposition of quercetin in man after single oral and intravenous doses.Eur. J. Clin. Pharmacol.197592-322923410.1007/BF006140221233267
    [Google Scholar]
  14. KaradagA OzcelikB HuangQ Quercetin nanosuspensions produced by high-pressure homogenization.J. Agric. Food Chem.20146281852185910.1021/jf404065p
    [Google Scholar]
  15. LauroM.R. TorreM.L. MaggiL. De SimoneF. ConteU. AquinoR.P. Fast- and slow-release tablets for oral administration of flavonoids: Rutin and quercetin.Drug Dev. Ind. Pharm.200228437137910.1081/DDC‑12000299812056530
    [Google Scholar]
  16. RothwellJ.A. DayA.J. MorganM.R.A. Experimental determination of octanol-water partition coefficients of quercetin and related flavonoids.J. Agric. Food Chem.200553114355436010.1021/jf048366915913295
    [Google Scholar]
  17. JainS. JainA.K. PohekarM. ThankiK. Novel self-emulsifying formulation of quercetin for improved in vivo antioxidant potential: Implications for drug-induced cardiotoxicity and nephrotoxicity.Free Radic. Biol. Med.20136511713010.1016/j.freeradbiomed.2013.05.04123792276
    [Google Scholar]
  18. TranT.H. GuoY. SongD. BrunoR.S. LuX. Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability.J. Pharm. Sci.2014103384085210.1002/jps.2385824464737
    [Google Scholar]
  19. RenJ. FangZ. JiangL. DuQ. Quercetin-containing self-assemble proliposome preparation and evaluation.J. Liposome Res.201727433534210.1080/08982104.2016.123963527667265
    [Google Scholar]
  20. RodriguezE.B. AlmedaR.A. VidallonM.L.P. ReyesC.T. Enhanced bioactivity and efficient delivery of quercetin through nanoliposomal encapsulation using rice bran phospholipids.J. Sci. Food Agric.20199941980198910.1002/jsfa.939630270448
    [Google Scholar]
  21. ShenF. ZhongH. GeW. RenJ. WangX. Quercetin/chitosan-graft-alpha lipoic acid micelles: A versatile antioxidant water dispersion with high stability.Carbohydr. Polym.202023411592710.1016/j.carbpol.2020.11592732070546
    [Google Scholar]
  22. PawarA. SinghS. RajalakshmiS. ShaikhK. BothirajaC. Development of fisetin-loaded folate functionalized pluronic micelles for breast cancer targeting.Artif. Cells Nanomed. Biotechnol.201846sup134736110.1080/21691401.2018.142399129334247
    [Google Scholar]
  23. ManasponC. Viravaidya-PasuwatK. PimphaN. Preparation of folate-conjugated pluronic F127/chitosan core-shell nanoparticles encapsulating doxorubicin for breast cancer treatment.J. Nanomater.2012201211110.1155/2012/593878
    [Google Scholar]
  24. SheuM-T. ChenL.C. ChenY-C. SuC-Y. HongC-S. HoH-O. Development and characterization of self-assembling lecithin-based mixed polymeric micelles containing quercetin in cancer treatment and an in vivo pharmacokinetic study.Int. J. Nanomed.2016111557156610.2147/IJN.S10368127143878
    [Google Scholar]
  25. CagelM. TesanF.C. BernabeuE. SalgueiroM.J. ZubillagaM.B. MorettonM.A. ChiappettaD.A. Polymeric mixed micelles as nanomedicines: Achievements and perspectives.Eur. J. Pharm. Biopharm.201711321122810.1016/j.ejpb.2016.12.01928087380
    [Google Scholar]
  26. KimS.H. TanJ.P.K. NederbergF. FukushimaK. YangY.Y. WaymouthR.M. HedrickJ.L. Mixed micelle formation through stereocomplexation between enantiomeric poly(lactide) block copolymers.Macromolecules2009421252910.1021/ma801739x
    [Google Scholar]
  27. LoC.L. LinS.J. TsaiH.C. ChanW.H. TsaiC.H. ChengC.H.D. HsiueG.H. Mixed micelle systems formed from critical micelle concentration and temperature-sensitive diblock copolymers for doxorubicin delivery.Biomaterials20093023-243961397010.1016/j.biomaterials.2009.04.00219406466
    [Google Scholar]
  28. WangY. YuL. HanL. ShaX. FangX. Difunctional Pluronic copolymer micelles for paclitaxel delivery: Synergistic effect of folate-mediated targeting and Pluronic-mediated overcoming multidrug resistance in tumor cell lines.Int. J. Pharm.20073371-2637310.1016/j.ijpharm.2006.12.03317289311
    [Google Scholar]
  29. YangL. WuX. LiuF. DuanY. LiS. Novel biodegradable polylactide/poly(ethylene glycol) micelles prepared by direct dissolution method for controlled delivery of anticancer drugs.Pharm. Res.200926102332234210.1007/s11095‑009‑9949‑419669098
    [Google Scholar]
  30. LiX. ZhangY. FanY. ZhouY. WangX. FanC. LiuY. ZhangQ. Preparation and evaluation of novel mixed micelles as nanocarriers for intravenous delivery of propofol.Nanoscale Res. Lett.20116127510.1186/1556‑276X‑6‑27521711808
    [Google Scholar]
  31. HussainM.D. Saxena Poloxamer 407/TPGS mixed micelles for delivery of gambogic acid to breast and multidrug-resistant cancer.Int. J. Nanomedicine2012771372110.2147/IJN.S2874522359450
    [Google Scholar]
  32. DuanY. WangJ. YangX. DuH. XiY. ZhaiG. Curcumin-loaded mixed micelles: Preparation, optimization, physicochemical properties and cytotoxicity in vitro .Drug Deliv.2015221505710.3109/10717544.2013.87350124417664
    [Google Scholar]
  33. PatraA. SatpathyS. ShenoyA. BushJ. KaziM. HussainM.D. Formulation and evaluation of mixed polymeric micelles of quercetin for treatment of breast, ovarian, and multidrug resistant cancers.Int. J. Nanomed.2018132869288110.2147/IJN.S15309429844670
    [Google Scholar]
  34. Prasad KushwahaJ. BaidyaD. PatilS. Harmine-loaded galactosylated pluronic F68-gelucire 44/14 mixed micelles for liver targeting.Drug Dev. Ind. Pharm.20194581361136810.1080/03639045.2019.162026731096800
    [Google Scholar]
  35. SiposB. CsókaI. Budai-SzűcsM. KozmaG. BerkesiD. KónyaZ. BaloghG.T. KatonaG. Development of dexamethasone-loaded mixed polymeric micelles for nasal delivery.Eur. J. Pharm. Sci.202116610596010.1016/j.ejps.2021.10596034339828
    [Google Scholar]
  36. OhK.T. BronichT.K. KabanovA.V. Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic® block copolymers.J. Control. Release2004942-341142210.1016/j.jconrel.2003.10.01814744491
    [Google Scholar]
  37. ZhangW. ShiY. ChenY. YeJ. ShaX. FangX. Multifunctional pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug resistant tumors.Biomaterials201132112894290610.1016/j.biomaterials.2010.12.03921256584
    [Google Scholar]
  38. KwonG.S. KataokaK. Block copolymer micelles as long-circulating drug vehicles.Adv. Drug Deliv. Rev.20126423724510.1016/j.addr.2012.09.016
    [Google Scholar]
  39. MissirlisD. TirelliN. HubbellJ.A. Amphiphilic hydrogel nanoparticles. Preparation, characterization, and preliminary assessment as new colloidal drug carriers.Langmuir20052162605261310.1021/la047367s15752059
    [Google Scholar]
  40. MunyendoW.L.L. ZhangZ. AbbadS. WaddadA.Y. LvH. BarazaL.D. ZhouJ. Micelles of TPGS modified apigenin phospholipid complex for oral administration: Preparation, in vitro and in vivo evaluation.J. Biomed. Nanotechnol.20139122034204710.1166/jbn.2013.170424266259
    [Google Scholar]
  41. BadawyM.E.I. RabeaE.I. A Biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection.Int. J. Carbohydr. Chem.2011201112910.1155/2011/460381
    [Google Scholar]
  42. DashM. ChielliniF. OttenbriteR.M. ChielliniE. Chitosan- A versatile semi-synthetic polymer in biomedical applications.Prog. Polym. Sci.2011368981101410.1016/j.progpolymsci.2011.02.001
    [Google Scholar]
  43. HuY. JiangX. DingY. GeH. YuanY. YangC. Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles.Biomaterials200223153193320110.1016/S0142‑9612(02)00071‑612102191
    [Google Scholar]
  44. ThotakuraN. DadarwalM. KumarR. SinghB. SharmaG. KumarP. KatareO.P. RazaK. Chitosan-palmitic acid based polymeric micelles as promising carrier for circumventing pharmacokinetic and drug delivery concerns of tamoxifen.Int. J. Biol. Macromol.20171021220122510.1016/j.ijbiomac.2017.05.01628483602
    [Google Scholar]
  45. de CamposA.M. DieboldY. CarvalhoE.L.S. SánchezA. José AlonsoM. Chitosan nanoparticles as new ocular drug delivery systems: In vitro stability, in vivo fate, and cellular toxicity.Pharm. Res.200421580381010.1023/B:PHAM.0000026432.75781.cb15180338
    [Google Scholar]
  46. KoJ.A. ParkH.J. HwangS.J. ParkJ.B. LeeJ.S. Preparation and characterization of chitosan microparticles intended for controlled drug delivery.Int. J. Pharm.20022491-216517410.1016/S0378‑5173(02)00487‑812433445
    [Google Scholar]
  47. BaeK.H. HaY.J. KimC. LeeK.R. ParkT.G. Pluronic/chitosan shell cross-linked nanocapsules encapsulating magnetic nanoparticles.J. Biomater. Sci. Polym. Ed.200819121571158310.1163/15685620878644045119017471
    [Google Scholar]
  48. YuanH. LuL.J. DuY.Z. HuF.Q. Stearic acid-g-chitosan polymeric micelle for oral drug delivery: In vitro transport and in vivo absorption.Mol. Pharm.20118122523810.1021/mp100289v21138243
    [Google Scholar]
  49. YehT.H. HsuL.W. TsengM.T. LeeP.L. SonjaeK. HoY.C. SungH.W. Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening.Biomaterials201132266164617310.1016/j.biomaterials.2011.03.05621641031
    [Google Scholar]
  50. HouJ. WangJ. SunE. YangL. YanH.M. JiaX.B. ZhangZ.H. Preparation and evaluation of icariside II-loaded binary mixed micelles using Solutol HS15 and Pluronic F127 as carriers.Drug Deliv.20162393248325610.3109/10717544.2016.116727026984338
    [Google Scholar]
  51. JiS. LinX. YuE. DianC. YanX. LiL. ZhangM. ZhaoW. DianL. Curcumin-loaded mixed micelles: Preparation, characterization, and in vitro antitumor activity.J. Nanotechnol.201820181910.1155/2018/9103120
    [Google Scholar]
  52. ThotakuraN. DadarwalM. KumarP. SharmaG. GuruS.K. BhushanS. RazaK. KatareO.P. Chitosan-stearic acid based Polymeric Micelles for the effective delivery of tamoxifen: Cytotoxic and pharmacokinetic evaluation.AAPS PharmSciTech201718375976810.1208/s12249‑016‑0563‑627287243
    [Google Scholar]
  53. HuF-Q. Zhang DuY-Z. Yuan Brain-targeting study of stearic acid-grafted chitosan micelle drug-delivery system.Int. J. Nanomed.201273235324410.2147/IJN.S3270122802685
    [Google Scholar]
  54. WeiZ. HaoJ. YuanS. LiY. JuanW. ShaX. FangX. Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: Formulation, optimization and in vitro characterization.Int. J. Pharm.20093761-217618510.1016/j.ijpharm.2009.04.03019409463
    [Google Scholar]
  55. KassemA.A. Abd El-AlimS.H. BashaM. SalamaA. Phospholipid complex enriched micelles: A novel drug delivery approach for promoting the antidiabetic effect of repaglinide.Eur. J. Pharm. Sci.201799758410.1016/j.ejps.2016.12.00527998799
    [Google Scholar]
  56. XiaH. ZhangZ. JinX. HuQ. ChenX.Y. JiaX. A novel drug-phospholipid complex enriched with micelles: Preparation and evaluation in vitro and in vivo.Int. J. Nanomedicine2013854555410.2147/IJN.S3952623431115
    [Google Scholar]
  57. DixitP. JainD.K. DumbwaniJ. Standardization of an ex vivo method for determination of intestinal permeability of drugs using everted rat intestine apparatus.J. Pharmacol. Toxicol. Methods2012651131710.1016/j.vascn.2011.11.00122107724
    [Google Scholar]
  58. HamiltonK.L. ButtA.G. Glucose transport into everted sacs of the small intestine of mice.Adv. Physiol. Educ.201337441542610.1152/advan.00017.201324292921
    [Google Scholar]
  59. MaitiK. MukherjeeK. GantaitA. AhamedH.N. SahaB.P. MukherjeeP.K. Enhanced therapeutic benefit of quercetin- phospholipid complex in carbon tetrachloride- induced acute liver injury in rats: A comparative study.Iran J. Pharmacol. Ther.2005428490
    [Google Scholar]
  60. ZhangK. ZhangM. LiuZ. ZhangY. GuL. HuG. ChenX. JiaJ. Development of quercetin-phospholipid complex to improve the bioavailability and protection effects against carbon tetrachloride-induced hepatotoxicity in SD rats.Fitoterapia201611310210910.1016/j.fitote.2016.07.00827431774
    [Google Scholar]
  61. AbrahamP. WilfredG. CathrineS.P. Oxidative damage to the lipids and proteins of the lungs, testis and kidney of rats during carbon tetrachloride intoxication.Clin. Chim. Acta19992891-217717910.1016/S0009‑8981(99)00140‑010636716
    [Google Scholar]
  62. ClawsonG.A. Mechanisms of carbon tetrachloride hepatotoxicity.Pathol. Immunopathol. Res.19898210411210.1159/0001571412662164
    [Google Scholar]
  63. BhakuniG.S. BediO. BariwalJ. DeshmukhR. KumarP. Animal models of hepatotoxicity.Inflamm. Res.2016651132410.1007/s00011‑015‑0883‑026427493
    [Google Scholar]
  64. AroraA. NairM.G. StrasburgG.M. Structure-activity relationships for antioxidant activities of a series of flavonoids in a liposomal system.Free Radic. Biol. Med.19982491355136310.1016/S0891‑5849(97)00458‑99641252
    [Google Scholar]
  65. SilvaM.M. SantosM.R. CaroçoG. RochaR. JustinoG. MiraL. Structure-antioxidant activity relationships of flavonoids: A re-examination.Free Radic. Res.200236111219122710.1080/198‑107157602100001647212592674
    [Google Scholar]
  66. GordonM.H. Roedig-PenmanA. Antioxidant activity of quercetin and myricetin in liposomes.Chem. Phys. Lipids1998971798510.1016/S0009‑3084(98)00098‑X10081150
    [Google Scholar]
  67. ReitmanS. FrankelS. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases.Am. J. Clin. Pathol.1957281566310.1093/ajcp/28.1.5613458125
    [Google Scholar]
  68. KindP.R.N. KingE.J. Estimation of plasma phosphatase by determination of hydrolysed phenol with amino-antipyrine.J. Clin. Pathol.19547432232610.1136/jcp.7.4.32213286357
    [Google Scholar]
  69. JangM.H. PiaoX.L. KimJ.M. KwonS.W. ParkJ.H. Inhibition of cholinesterase and amyloid- β aggregation by resveratrol oligomers from Vitis amurensis.Phytother. Res.200822454454910.1002/ptr.240618338769
    [Google Scholar]
  70. KakkarP. DasB. ViswanathanP.N. A modified spectrophotometric assay of superoxide dismutase.Indian J. Biochem. Biophys.19842121301326490072
    [Google Scholar]
  71. BeersR.F.Jr SizerI.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase.J. Biol. Chem.1952195113314010.1016/S0021‑9258(19)50881‑X14938361
    [Google Scholar]
  72. OhkawaH. OhishiN. YagiK. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.Anal. Biochem.197995235135810.1016/0003‑2697(79)90738‑336810
    [Google Scholar]
  73. PrabaharanM. ManoJ.F. Chitosan-based particles as controlled drug delivery systems.Drug Deliv.2004121415710.1080/1071754059088978115801720
    [Google Scholar]
  74. BhattaraiN. RamayH.R. GunnJ. MatsenF.A. ZhangM. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release.J. Control. Release2005103360962410.1016/j.jconrel.2004.12.01915820408
    [Google Scholar]
  75. ParamasivanS. JonesD. BakerL. HantonL. RobinsonS. WormaldP.J. TanL. The use of chitosan-dextran gel shows anti-inflammatory, antibiofilm, and antiproliferative properties in fibroblast cell culture.Am. J. Rhinol. Allergy201428536136510.2500/ajra.2014.28.406925198019
    [Google Scholar]
  76. ThakurC.K. ThotakuraN. KumarR. KumarP. SinghB. ChitkaraD. RazaK. Chitosan-modified PLGA polymeric nanocarriers with better delivery potential for tamoxifen.Int. J. Biol. Macromol.201693Pt A38138910.1016/j.ijbiomac.2016.08.08027586640
    [Google Scholar]
  77. LiuY. Charpin-El HamriG. YeH. FusseneggerM. A synthetic free fatty acid-regulated transgene switch in mammalian cells and mice.Nucleic Acids Res.201846189864987410.1093/nar/gky80530219861
    [Google Scholar]
  78. Rama MohanT. Alice BrantonT. Gopal NayakD.T. Physical, spectroscopic and thermal characterization of biofield treated myristic acid.J. Fundamen. Renewa. Energy Appli.2015551610.4172/2090‑4541.1000180
    [Google Scholar]
  79. KamelR. MostafaD.M. Rutin nanostructured lipid cosmeceutical preparation with sun protective potential.J. Photochem. Photobiol. B2015153596610.1016/j.jphotobiol.2015.09.00226398812
    [Google Scholar]
  80. MontasserI. FessiH. ColemanA.W. Atomic force microscopy imaging of novel type of polymeric colloidal nanostructures.Eur. J. Pharm. Biopharm.200254328128410.1016/S0939‑6411(02)00087‑512445557
    [Google Scholar]
  81. BarbosaA. Costa LimaS. ReisS. Application of pH-responsive fucoidan/chitosan nanoparticles to improve oral quercetin delivery.Molecules201924234610.3390/molecules2402034630669398
    [Google Scholar]
  82. ParhiB. BharatiyaD. SwainS.K. Application of quercetin flavonoid based hybrid nanocomposites: A review.Saudi Pharm. J.202028121719173210.1016/j.jsps.2020.10.01733424263
    [Google Scholar]
  83. LiX.Y. LiY.C. YuD.G. LiaoY.Z. WangX. Fast disintegrating quercetin-loaded drug delivery systems fabricated using coaxial electrospinning.Int. J. Mol. Sci.20131411216472165910.3390/ijms14112164724185912
    [Google Scholar]
  84. Ben SeghirB. BenhamzaM.H. Preparation, optimization and characterization of chitosan polymer from shrimp shells.J. Food Meas. Charact.20171131137114710.1007/s11694‑017‑9490‑9
    [Google Scholar]
  85. RarokarN.R. SaojiS.D. KhedekarP.B. Investigation of effectiveness of some extensively used polymers on thermoreversible properties of Pluronic ® tri-block copolymers.J. Drug Deliv. Sci. Technol.20184422023010.1016/j.jddst.2017.12.002
    [Google Scholar]
  86. NatarajanV. KrithicaN. MadhanB. SehgalP.K. Formulation and evaluation of quercetin polycaprolactone microspheres for the treatment of rheumatoid arthritis.J. Pharm. Sci.2011100119520510.1002/jps.2226620607810
    [Google Scholar]
  87. WangQ. HuC. ZhangH. ZhangY. LiuT. QianA. XiaQ. Evaluation of a new solid non-aqueous self-double-emulsifying drug-delivery system for topical application of quercetin.J. Microencapsul.201633878579410.1080/02652048.2016.126449427875065
    [Google Scholar]
  88. Fernandes QueirozM. MeloK. SabryD. SassakiG. RochaH. Does the use of chitosan contribute to oxalate kidney stone formation?Mar. Drugs201413114115810.3390/md1301014125551781
    [Google Scholar]
  89. TelangeD.R. JainS.P. PetheA.M. KharkarP.S. RarokarN.R. Use of combined nanocarrier system based on chitosan nanoparticles and phospholipids complex for improved delivery of ferulic acid.Int. J. Biol. Macromol.202117128830710.1016/j.ijbiomac.2020.12.21133418046
    [Google Scholar]
  90. GaoL. LiuG. WangX. LiuF. XuY. MaJ. Preparation of a chemically stable quercetin formulation using nanosuspension technology.Int. J. Pharm.20114041-223123710.1016/j.ijpharm.2010.11.00921093559
    [Google Scholar]
  91. PardeshiC.V. BelgamwarV.S. Controlled synthesis of N,N,N-trimethyl chitosan for modulated bioadhesion and nasal membrane permeability.Int. J. Biol. Macromol.20168293394410.1016/j.ijbiomac.2015.11.01226562548
    [Google Scholar]
  92. LiW. HuY. ShiL. ZhangX. XiongL. ZhangW. UllahI. Electrospinning of polycaprolactone/pluronic F127 dissolved in glacial acetic acid: Fibrous scaffolds fabrication, characterization and in vitro evaluation.J. Biomater. Sci. Polym. Ed.201829101155116710.1080/09205063.2018.143943129455624
    [Google Scholar]
  93. TelangeD. WavareK. PatilA. UmekarM. AnandS. DaveV. Drug-phospholipid complex-loaded matrix film formulation for the enhanced transdermal delivery of quercetin.J. Excip. Food Chem.201893150
    [Google Scholar]
  94. CaiX. FangZ. DouJ. YuA. ZhaiG. Bioavailability of quercetin: Problems and promises.Curr. Med. Chem.201320202572258210.2174/0929867311320999012023514412
    [Google Scholar]
  95. HuY. JiangX. DingY. ZhangL. YangC. ZhangJ. ChenJ. YangY. Preparation and drug release behaviors of nimodipine-loaded poly(caprolactone)–poly(ethylene oxide)-polylactide amphiphilic copolymer nanoparticles.Biomaterials200324132395240410.1016/S0142‑9612(03)00021‑812699677
    [Google Scholar]
  96. KozlovM.Y. Melik-NubarovN.S. BatrakovaE.V. KabanovA.V. Relationship between pluronic block copolymer structure, critical micellization concentration and partitioning coefficients of low molecular mass solutes.Macromolecules20003393305331310.1021/ma991634x
    [Google Scholar]
  97. AlamM.A. Al-JenoobiF.I. Al-mohizeaA.M. Everted gut sac model as a tool in pharmaceutical research: Limitations and applications.J. Pharm. Pharmacol.201264332633610.1111/j.2042‑7158.2011.01391.x22309264
    [Google Scholar]
  98. CensiR. MartenaV. HotiE. MalajL. Di MartinoP. Permeation and skin retention of quercetin from microemulsions containing Transcutol ® P.Drug Dev. Ind. Pharm.20123891128113310.3109/03639045.2011.64156422188183
    [Google Scholar]
  99. DhoreP.W. DaveV.S. SaojiS.D. BobdeY.S. MackC. RautN.A. Enhancement of the aqueous solubility and permeability of a poorly water soluble drug ritonavir via lyophilized milk-based solid dispersions.Pharm. Dev. Technol.20172219010210.1080/10837450.2016.119319327291246
    [Google Scholar]
  100. YangD. WangT. LongM. LiP. Quercetin: Its main pharmacological activity and potential application in clinical medicine.Oxid. Med. Cell. Longev.2020202011310.1155/2020/882538733488935
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018278618240304054731
Loading
/content/journals/cdd/10.2174/0115672018278618240304054731
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test