Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Macrophages are immune cells with high heterogeneity and plasticity, crucial for recognizing and eliminating foreign substances, including cancer cells. However, cancer cells can evade the immune system by producing signals that cause macrophages to switch to a pro-tumor phenotype, promoting tumor growth and progression. Tumor-associated macrophages, which infiltrate into tumor tissue, are important immune cells in the tumor microenvironment and can regulate cancer's growth, invasion, and metastasis by inhibiting tumor immunity. This review article highlights the characteristics of tumor-associated macrophages and their role in the occurrence and development of cancer. It outlines how reprogramming macrophages towards an anti-tumor phenotype can improve the response to cancer therapy. Explore the intricate process of engineered nanoparticles serving as carriers for immunostimulatory molecules, activating macrophages to instigate an anti-tumor response. Finally, it summarizes several studies demonstrating targeting macrophages is a potential in preclinical cancer models. Several challenges must be addressed in developing effective macrophage-targeted therapies, such as the heterogeneity of macrophage subtypes and their plasticity. Further research is needed to understand the mechanisms underlying macrophage function in the tumor microenvironment and identify novel targets for macrophage-directed therapies. Targeting macrophages is a promising and innovative approach to improving cancer therapy and patient outcomes.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018299798240403062508
2024-04-08
2025-09-26
Loading full text...

Full text loading...

References

  1. DeNardoD.G. RuffellB. Macrophages as regulators of tumour immunity and immunotherapy.Nat. Rev. Immunol.201919636938210.1038/s41577‑019‑0127‑630718830
    [Google Scholar]
  2. TorrieriG. FontanaF. FigueiredoP. LiuZ. FerreiraM.P.A. TalmanV. MartinsJ.P. FuscielloM. MoslovaK. TeesaluT. CerulloV. HirvonenJ. RuskoahoH. BalasubramanianV. SantosH.A. Dual-peptide functionalized acetalated dextran-based nanoparticles for sequential targeting of macrophages during myocardial infarction.Nanoscale20201242350235810.1039/C9NR09934D31930241
    [Google Scholar]
  3. ZhaoY.D. MuhetaerjiangM. AnH.W. FangX. ZhaoY. WangH. Nanomedicine enables spatiotemporally regulating macrophage-based cancer immunotherapy.Biomaterials202126812055210.1016/j.biomaterials.2020.12055233307365
    [Google Scholar]
  4. ZhangS.Y. SongX.Y. LiY. YeL.L. ZhouQ. YangW.B. Tumor-associated macrophages: A promising target for a cancer immunotherapeutic strategy.Pharmacol. Res.202016110511110.1016/j.phrs.2020.10511133065284
    [Google Scholar]
  5. ZanganehS. SpitlerR. HutterG. HoJ.Q. PauliahM. MahmoudiM. Tumor-associated macrophages, nanomedicine and imaging: The axis of success in the future of cancer immunotherapy.Immunotherapy201791081983510.2217/imt‑2017‑004128877626
    [Google Scholar]
  6. TrembleL.F. FordeP.F. SodenD.M. Clinical evaluation of macrophages in cancer: Role in treatment, modulation and challenges.Cancer Immunol. Immunother.201766121509152710.1007/s00262‑017‑2065‑028948324
    [Google Scholar]
  7. ParkK. AhnJ.W. KimJ.H. KimJ.W. Tumor-associated macrophage-targeted photodynamic cancer therapy using a dextran sulfate-based nano-photosensitizer.Int. J. Biol. Macromol.202221838439310.1016/j.ijbiomac.2022.07.15935902009
    [Google Scholar]
  8. CotechiniT. AtallahA. GrossmanA. Tissue-resident and recruited macrophages in primary tumor and metastatic microenvironments: Potential targets in cancer therapy.Cells202110496010.3390/cells1004096033924237
    [Google Scholar]
  9. CavalleriT. GrecoL. RubbinoF. HamadaT. QuarantaM. GrizziF. SautaE. CraviottoV. BossiP. VetranoS. RimassaL. TorriV. BellazziR. MantovaniA. OginoS. MalesciA. LaghiL. Tumor-associated macrophages and risk of recurrence in stage III colorectal cancer.J. Pathol. Clin. Res.20228430731210.1002/cjp2.26735318822
    [Google Scholar]
  10. CassettaL. PollardJ.W. Targeting macrophages: Therapeutic approaches in cancer.Nat. Rev. Drug Discov.2018171288790410.1038/nrd.2018.16930361552
    [Google Scholar]
  11. AlahariS.V. DongS. AlahariS.K. Are macrophages in tumors good targets for novel therapeutic approaches?Mol. Cells20153829510410.14348/molcells.2015.229825518927
    [Google Scholar]
  12. BrownJ.M. RechtL. StroberS. The promise of targeting macrophages in cancer therapy.Clin. Cancer Res.201723133241325010.1158/1078‑0432.CCR‑16‑312228341752
    [Google Scholar]
  13. ZhaoC.Y. ChengR. YangZ. TianZ.M. Nanotechnology for cancer therapy based on chemotherapy.Molecules201823482610.3390/molecules2304082629617302
    [Google Scholar]
  14. FarooqM.A. AquibM. FarooqA. Haleem KhanD. Joelle MaviahM.B. Sied FilliM. KesseS. Boakye-YiadomK.O. MavlyanovaR. ParveenA. WangB. Recent progress in nanotechnology-based novel drug delivery systems in designing of cisplatin for cancer therapy: An overview.Artif. Cells Nanomed. Biotechnol.20194711674169210.1080/21691401.2019.160453531066300
    [Google Scholar]
  15. KopeckovaK. EckschlagerT. SircJ. HobzovaR. PlchJ. HrabetaJ. MichalekJ. Nanodrugs used in cancer therapy.Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub.2019163212213110.5507/bp.2019.01030967685
    [Google Scholar]
  16. MintzK.J. LeblancR.M. The use of nanotechnology to combat liver cancer: Progress and perspectives.Biochim. Biophys. Acta Rev. Cancer20211876218862110.1016/j.bbcan.2021.18862134454983
    [Google Scholar]
  17. LinZ.P. NguyenL.N.M. OuyangB. MacMillanP. NgaiJ. KingstonB.R. MladjenovicS.M. ChanW.C.W. Macrophages actively transport nanoparticles in tumors after extravasation.ACS Nano20221646080609210.1021/acsnano.1c1157835412309
    [Google Scholar]
  18. MirS.A. HamidL. BaderG.N. ShoaibA. RahamathullaM. AlshahraniM.Y. AlamP. ShakeelF. Role of nanotechnology in overcoming the multidrug resistance in cancer therapy: A review.Molecules20222719660810.3390/molecules2719660836235145
    [Google Scholar]
  19. StephenB.J. SuchantiS. MishraR. SinghA. Cancer nanotechnology in medicine: A promising approach for cancer detection and diagnosis.Crit. Rev. Ther. Drug Carrier Syst.202037437540510.1615/CritRevTherDrugCarrierSyst.202003263432865930
    [Google Scholar]
  20. YahayaM.A.F. LilaM.A.M. IsmailS. ZainolM. AfizanN.A.R.N.M. Tumour-associated macrophages (TAMs) in colon cancer and how to reeducate them.J. Immunol. Res.201920191910.1155/2019/236824930931335
    [Google Scholar]
  21. AldawsariH.M. GorainB. AlhakamyN.A. MdS. Role of therapeutic agents on repolarisation of tumour-associated macrophage to halt lung cancer progression.J. Drug Target.202028216617510.1080/1061186X.2019.164847831339380
    [Google Scholar]
  22. BabuS.N. ChetalG. KumarS. Macrophage migration inhibitory factor: A potential marker for cancer diagnosis and therapy.Asian Pac. J. Cancer Prev.20121351737174410.7314/APJCP.2012.13.5.173722901113
    [Google Scholar]
  23. NgambenjawongC. GustafsonH.H. PunS.H. Progress in tumor-associated macrophage (TAM)-targeted therapeutics.Adv. Drug Deliv. Rev.201711420622110.1016/j.addr.2017.04.01028449873
    [Google Scholar]
  24. ChristofidesA. StraussL. YeoA. CaoC. CharestA. BoussiotisV.A. The complex role of tumor-infiltrating macrophages.Nat. Immunol.20222381148115610.1038/s41590‑022‑01267‑235879449
    [Google Scholar]
  25. ZhangJ. ZhouX. HaoH. Macrophage phenotype-switching in cancer.Eur. J. Pharmacol.202293117522910.1016/j.ejphar.2022.17522936002039
    [Google Scholar]
  26. TuD. DouJ. WangM. ZhuangH. ZhangX. M2 macrophages contribute to cell proliferation and migration of breast cancer.Cell Biol. Int.202145483183810.1002/cbin.1152833325089
    [Google Scholar]
  27. GunassekaranG.R. Poongkavithai VadevooS.M. BaekM.C. LeeB. M1 macrophage exosomes engineered to foster M1 polarization and target the IL-4 receptor inhibit tumor growth by reprogramming tumor-associated macrophages into M1-like macrophages.Biomaterials202127812113710.1016/j.biomaterials.2021.12113734560422
    [Google Scholar]
  28. TariqM. ZhangJ. LiangG. HeQ. DingL. YangB. Gefitinib inhibits M2-like polarization of tumor-associated macrophages in Lewis lung cancer by targeting the STAT6 signaling pathway.Acta Pharmacol. Sin.201738111501151110.1038/aps.2017.12429022575
    [Google Scholar]
  29. SeifF. SharifiL. KhoshmirsafaM. MojibiY. MohsenzadeganM. A review of preclinical experiments toward targeting M2 macrophages in prostate cancer.Curr. Drug Targets201920778979810.2174/138945012066619012314155330674255
    [Google Scholar]
  30. VadevooS.M.P. GunassekaranG.R. YooJ.D. KwonT.H. HurK. ChaeS. LeeB. Epigenetic therapy reprograms M2-type tumor-associated macrophages into an M1-like phenotype by upregulating miR-7083-5p.Front. Immunol.20221397619610.3389/fimmu.2022.97619636483544
    [Google Scholar]
  31. WeissH.J. AngiariS. Metabolite transporters as regulators of immunity.Metabolites2020101041810.3390/metabo1010041833086598
    [Google Scholar]
  32. SunL. KeesT. AlmeidaA.S. LiuB. HeX.Y. NgD. HanX. SpectorD.L. McNeishI.A. GimottyP. AdamsS. EgebladM. Activating a collaborative innate-adaptive immune response to control metastasis.Cancer Cell2021391013611374.e910.1016/j.ccell.2021.08.00534478639
    [Google Scholar]
  33. ChenX. LiuY. GaoY. ShouS. ChaiY. The roles of macrophage polarization in the host immune response to sepsis.Int. Immunopharmacol.20219610779110.1016/j.intimp.2021.10779134162154
    [Google Scholar]
  34. HicksK.C. ChariouP.L. OzawaY. MinnarC.M. KnudsonK.M. MeyerT.J. BianJ. CamM. SchlomJ. GameiroS.R. Tumour-targeted interleukin-12 and entinostat combination therapy improves cancer survival by reprogramming the tumour immune cell landscape.Nat. Commun.2021121515110.1038/s41467‑021‑25393‑x34446712
    [Google Scholar]
  35. CaiH. ZhangY. WangJ. GuJ. Defects in macrophage reprogramming in cancer therapy: The negative impact of PD-L1/PD-1.Front. Immunol.20211269086910.3389/fimmu.2021.69086934248982
    [Google Scholar]
  36. PittetM.J. MichielinO. MiglioriniD. Clinical relevance of tumour-associated macrophages.Nat. Rev. Clin. Oncol.202219640242110.1038/s41571‑022‑00620‑635354979
    [Google Scholar]
  37. WeiX. LiuL. LiX. WangY. GuoX. ZhaoJ. ZhouS. Selectively targeting tumor-associated macrophages and tumor cells with polymeric micelles for enhanced cancer chemo-immunotherapy.J. Control. Release2019313425310.1016/j.jconrel.2019.09.02131629039
    [Google Scholar]
  38. ZhangJ. MuriJ. FitzgeraldG. GorskiT. Gianni-BarreraR. MasscheleinE. D’HulstG. GilardoniP. TurielG. FanZ. WangT. PlanqueM. CarmelietP. PellerinL. WolfrumC. FendtS.M. BanfiA. StockmannC. Soro-ArnáizI. KopfM. De BockK. Endothelial lactate controls muscle regeneration from ischemia by inducing M2-like macrophage polarization.Cell Metab.202031611361153.e710.1016/j.cmet.2020.05.00432492393
    [Google Scholar]
  39. UsmanM.W. GaoJ. ZhengT. RuiC. LiT. BianX. ChengH. LiuP. LuoF. Macrophages confer resistance to PI3K inhibitor GDC-0941 in breast cancer through the activation of NF-κB signaling.Cell Death Dis.20189880910.1038/s41419‑018‑0849‑630042442
    [Google Scholar]
  40. Lopez-YrigoyenM. CassettaL. PollardJ.W. Macrophage targeting in cancer.Ann. N. Y. Acad. Sci.202114991184110.1111/nyas.1437732445205
    [Google Scholar]
  41. GaoJ. LiangY. WangL. Shaping polarization of tumor-associated macrophages in cancer immunotherapy.Front. Immunol.20221388871310.3389/fimmu.2022.88871335844605
    [Google Scholar]
  42. ShirabeK. ManoY. MutoJ. MatonoR. MotomuraT. ToshimaT. TakeishiK. UchiyamaH. YoshizumiT. TaketomiA. MoritaM. TsujitaniS. SakaguchiY. MaeharaY. Role of tumor-associated macrophages in the progression of hepatocellular carcinoma.Surg. Today20124211710.1007/s00595‑011‑0058‑822116397
    [Google Scholar]
  43. ShiC. LiuT. GuoZ. ZhuangR. ZhangX. ChenX. Reprogramming tumor-associated macrophages by nanoparticle-based reactive oxygen species photogeneration.Nano Lett.201818117330734210.1021/acs.nanolett.8b0356830339753
    [Google Scholar]
  44. RheeI. Diverse macrophages polarization in tumor microenvironment.Arch. Pharm. Res.201639111588159610.1007/s12272‑016‑0820‑y27562774
    [Google Scholar]
  45. MillsC.D. LenzL.L. HarrisR.A. A breakthrough: Macrophage-directed cancer immunotherapy.Cancer Res.201676351351610.1158/0008‑5472.CAN‑15‑173726772756
    [Google Scholar]
  46. ShiX. ShiaoS.L. The role of macrophage phenotype in regulating the response to radiation therapy.Transl. Res.2018191648010.1016/j.trsl.2017.11.00229175267
    [Google Scholar]
  47. TariqM. ZhangJ. LiangG. DingL. HeQ. YangB. Macrophage polarization: Anti-cancer strategies to target tumor-associated macrophage in breast cancer.J. Cell. Biochem.201711892484250110.1002/jcb.2589528106295
    [Google Scholar]
  48. VanmeerbeekI. GovaertsJ. LaureanoR.S. SprootenJ. NaulaertsS. BorrasD.M. LaouiD. MazzoneM. Van GinderachterJ.A. GargA.D. The interface of tumour-associated macrophages with dying cancer cells in immuno-oncology.Cells20221123389010.3390/cells1123389036497148
    [Google Scholar]
  49. MantovaniA. MarchesiF. MalesciA. LaghiL. AllavenaP. Tumour-associated macrophages as treatment targets in oncology.Nat. Rev. Clin. Oncol.201714739941610.1038/nrclinonc.2016.21728117416
    [Google Scholar]
  50. MuQ. WangH. ZhangM. Nanoparticles for imaging and treatment of metastatic breast cancer.Expert Opin. Drug Deliv.201714112313610.1080/17425247.2016.120865027401941
    [Google Scholar]
  51. OstuniR. KratochvillF. MurrayP.J. NatoliG. Macrophages and cancer: From mechanisms to therapeutic implications.Trends Immunol.201536422923910.1016/j.it.2015.02.00425770924
    [Google Scholar]
  52. LiuL. YiH. HeH. PanH. CaiL. MaY. Tumor associated macrophage-targeted microRNA delivery with dual-responsive polypeptide nanovectors for anti-cancer therapy.Biomaterials201713416617910.1016/j.biomaterials.2017.04.04328463694
    [Google Scholar]
  53. MantovaniA. AllavenaP. MarchesiF. GarlandaC. Macrophages as tools and targets in cancer therapy.Nat. Rev. Drug Discov.2022211179982010.1038/s41573‑022‑00520‑535974096
    [Google Scholar]
  54. NaskarS. SharmaS. KuotsuK. Chitosan-based nanoparticles: An overview of biomedical applications and its preparation.J. Drug Deliv. Sci. Technol.201949668110.1016/j.jddst.2018.10.022
    [Google Scholar]
  55. XuZ. ChenY. MaL. ChenY. LiuJ. GuoY. YuT. ZhangL. ZhuL. ShuY. Role of exosomal non-coding RNAs from tumor cells and tumor-associated macrophages in the tumor microenvironment.Mol. Ther.202230103133315410.1016/j.ymthe.2022.01.04635405312
    [Google Scholar]
  56. WangH. TianT. ZhangJ. Tumor-associated macrophages (TAMs) in colorectal cancer (CRC): From mechanism to therapy and prognosis.Int. J. Mol. Sci.20212216847010.3390/ijms2216847034445193
    [Google Scholar]
  57. ChengK. CaiN. ZhuJ. YangX. LiangH. ZhangW. Tumor‐associated macrophages in liver cancer: From mechanisms to therapy.Cancer Commun. (Lond.)202242111112114010.1002/cac2.1234536069342
    [Google Scholar]
  58. PanY. YuY. WangX. ZhangT. Tumor-associated macrophages in tumor immunity.Front. Immunol.20201158308410.3389/fimmu.2020.58308433365025
    [Google Scholar]
  59. LuoX. XuJ. YuJ. YiP. Shaping immune responses in the tumor microenvironment of ovarian cancer.Front. Immunol.20211269236010.3389/fimmu.2021.69236034248988
    [Google Scholar]
  60. LuoH. XiaX. HuangL.B. AnH. CaoM. KimG.D. ChenH.N. ZhangW.H. ShuY. KongX. RenZ. LiP.H. LiuY. TangH. SunR. LiC. BaiB. JiaW. LiuY. ZhangW. YangL. PengY. DaiL. HuH. JiangY. HuY. ZhuJ. JiangH. LiZ. CaulinC. ParkJ. XuH. Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment.Nat. Commun.2022131661910.1038/s41467‑022‑34395‑236333338
    [Google Scholar]
  61. HoD.W.H. TsuiY.M. ChanL.K. SzeK.M.F. ZhangX. CheuJ.W.S. ChiuY.T. LeeJ.M.F. ChanA.C.Y. CheungE.T.Y. YauD.T.W. ChiaN.H. LoI.L.O. ShamP.C. CheungT.T. WongC.C.L. NgI.O.L. Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma.Nat. Commun.2021121368410.1038/s41467‑021‑24010‑134140495
    [Google Scholar]
  62. CorreI. VerrecchiaF. CrennV. RediniF. TrichetV. The osteosarcoma microenvironment: A complex but targetable ecosystem.Cells20209497610.3390/cells904097632326444
    [Google Scholar]
  63. de VisserK.E. JoyceJ.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth.Cancer Cell202341337440310.1016/j.ccell.2023.02.01636917948
    [Google Scholar]
  64. DinhH.Q. PanF. WangG. HuangQ.F. OlingyC.E. WuZ.Y. WangS.H. XuX. XuX.E. HeJ.Z. YangQ. OrsulicS. HaroM. LiL.Y. HuangG.W. BreunigJ.J. KoefflerH.P. HedrickC.C. XuL.Y. LinD.C. LiE.M. Integrated single-cell transcriptome analysis reveals heterogeneity of esophageal squamous cell carcinoma microenvironment.Nat. Commun.2021121733510.1038/s41467‑021‑27599‑534921160
    [Google Scholar]
  65. DuanQ. ZhangH. ZhengJ. ZhangL. Turning cold into hot: Firing up the tumor microenvironment.Trends Cancer20206760561810.1016/j.trecan.2020.02.02232610070
    [Google Scholar]
  66. IvashkivL.B. IFNγ: Signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy.Nat. Rev. Immunol.201818954555810.1038/s41577‑018‑0029‑z29921905
    [Google Scholar]
  67. DuanZ. LuoY. Targeting macrophages in cancer immunotherapy.Signal Transduct. Target. Ther.20216112710.1038/s41392‑021‑00506‑633767177
    [Google Scholar]
  68. LavironM. BoissonnasA. Ontogeny of tumor-associated macrophages.Front. Immunol.201910179910.3389/fimmu.2019.0179931417566
    [Google Scholar]
  69. YinH. XiongG. GuoS. XuC. XuR. GuoP. ShuD. Delivery of anti-miRNA for triple-negative breast cancer therapy using RNA nanoparticles targeting stem cell marker CD133.Mol. Ther.20192771252126110.1016/j.ymthe.2019.04.01831085078
    [Google Scholar]
  70. HaoN.B. LüM.H. FanY.H. CaoY.L. ZhangZ.R. YangS.M. Macrophages in tumor microenvironments and the progression of tumors.Clin. Dev. Immunol.2012201211110.1155/2012/94809822778768
    [Google Scholar]
  71. SharmaR. LiawK. SharmaA. JimenezA. ChangM. SalazarS. AmlaniI. KannanS. KannanR.M. Glycosylation of PAMAM dendrimers significantly improves tumor macrophage targeting and specificity in glioblastoma.J. Control. Release202133717919210.1016/j.jconrel.2021.07.01834274384
    [Google Scholar]
  72. RuffellB. CoussensL.M. Macrophages and therapeutic resistance in cancer.Cancer Cell201527446247210.1016/j.ccell.2015.02.01525858805
    [Google Scholar]
  73. QiuS.Q. WaaijerS.J.H. ZwagerM.C. de VriesE.G.E. van der VegtB. SchröderC.P. Tumor-associated macrophages in breast cancer: Innocent bystander or important player?Cancer Treat. Rev.20187017818910.1016/j.ctrv.2018.08.01030227299
    [Google Scholar]
  74. ChoiJ. GyamfiJ. JangH. KooJ.S. The role of tumor-associated macrophage in breast cancer biology.Histol. Histopathol.201833213314528681373
    [Google Scholar]
  75. Muñoz-WolfN. LavelleE.C. Promotion of trained innate immunity by nanoparticles.Semin. Immunol.20215610154210.1016/j.smim.2021.10154234973890
    [Google Scholar]
  76. PettyA.J. YangY. Tumor-associated macrophages in hematologic malignancies: New insights and targeted therapies.Cells2019812152610.3390/cells812152631783588
    [Google Scholar]
  77. WangS. LiuX. YangM. OuyangL. DingJ. WangS. ZhouW. Non-cytotoxic nanoparticles re-educating macrophages achieving both innate and adaptive immune responses for tumor therapy.Asian Journal of Pharmaceutical Sciences202217455757010.1016/j.ajps.2022.06.00136101893
    [Google Scholar]
  78. VangijzegemT. LecomteV. TernadI. Van LeuvenL. MullerR.N. StanickiD. LaurentS. Superparamagnetic iron oxide nanoparticles (SPION): From fundamentals to state-of-the-art innovative applications for cancer therapy.Pharmaceutics202315123610.3390/pharmaceutics1501023636678868
    [Google Scholar]
  79. SongQ. JavidA. ZhangG. LiY. Applications of Magnetite Nanoparticles in Cancer Immunotherapies: Present Hallmarks and Future Perspectives.Front. Immunol.20211270148510.3389/fimmu.2021.70148534675914
    [Google Scholar]
  80. SantoniM. MassariF. MontironiR. BattelliN. Manipulating macrophage polarization in cancer patients: From nanoparticles to human chimeric antigen receptor macrophages.Biochim. Biophys. Acta Rev. Cancer20211876118854710.1016/j.bbcan.2021.18854733932561
    [Google Scholar]
  81. RaoL. ZhaoS.K. WenC. TianR. LinL. CaiB. Activating macrophage-mediated cancer immunotherapy by genetically edited nanoparticles.Adv Mater.20203247e200485310.1002/adma.202004853
    [Google Scholar]
  82. MengQ.F. RaoL. ZanM. ChenM. YuG.T. WeiX. WuZ. SunY. GuoS.S. ZhaoX.Z. WangF.B. LiuW. Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor therapy.Nanotechnology2018291313400410.1088/1361‑6528/aaa7c729334363
    [Google Scholar]
  83. DallavalasaS. BeerakaN.M. BasavarajuC.G. TulimilliS.V. SadhuS.P. RajeshK. AlievG. MadhunapantulaS.V. The role of tumor associated macrophages (TAMs) in cancer progression, chemoresistance, angiogenesis and metastasis - current status.Curr. Med. Chem.202128398203823610.2174/1875533XMTE20ODIe434303328
    [Google Scholar]
  84. WangJ.J. ZengZ.W. XiaoR.Z. XieT. ZhouG.L. ZhanX.R. WangS.L. Recent advances of chitosan nanoparticles as drug carriers.Int. J. Nanomedicine2011676577421589644
    [Google Scholar]
  85. CaoX. TanT. ZhuD. YuH. LiuY. ZhouH. JinY. XiaQ. Paclitaxel-loaded macrophage membrane camouflaged albumin nanoparticles for targeted cancer therapy.Int. J. Nanomedicine2020151915192810.2147/IJN.S24484932256068
    [Google Scholar]
  86. Targeting Macrophages Boosts Pancreatic Cancer Therapy Targeting Macrophages Boosts Pancreatic Cancer Therapy.Cancer Discov.201666OF110.1158/2159‑8290.CD‑NB2016‑05627170064
    [Google Scholar]
  87. XiaH. LiS. LiX. WangW. BianY. WeiS. GroveS. WangW. VatanL. LiuJ.R. McLeanK. RattanR. MunkarahA. GuanJ.L. KryczekI. ZouW. Autophagic adaptation to oxidative stress alters peritoneal residential macrophage survival and ovarian cancer metastasis.JCI Insight2020518e14111510.1172/jci.insight.14111532780724
    [Google Scholar]
  88. WeiC. YangC. WangS. ShiD. ZhangC. LinX. LiuQ. DouR. XiongB. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis.Mol. Cancer20191816410.1186/s12943‑019‑0976‑430927925
    [Google Scholar]
  89. LiuT. ZhuC. ChenX. GuanG. ZouC. ShenS. WuJ. WangY. LinZ. ChenL. ChengP. ChengW. WuA. Ferroptosis, as the most enriched programmed cell death process in glioma, induces immunosuppression and immunotherapy resistance.Neuro-oncol.20222471113112510.1093/neuonc/noac03335148413
    [Google Scholar]
  90. GeninM. ClementF. FattaccioliA. RaesM. MichielsC. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide.BMC Cancer201515157710.1186/s12885‑015‑1546‑926253167
    [Google Scholar]
  91. MukhtarR.A. NseyoO. CampbellM.J. EssermanL.J. Tumor-associated macrophages in breast cancer as potential biomarkers for new treatments and diagnostics.Expert Rev. Mol. Diagn.20111119110010.1586/erm.10.9721171924
    [Google Scholar]
  92. MengJ. JiangY. ZhaoS. TaoY. ZhangT. WangX. ZhangY. SunK. YuanM. ChenJ. WeiY. LanX. ChenM. DavidC.J. ChangZ. GuoX. PanD. ChenM. ShaoZ.M. KangY. ZhengH. Tumor-derived Jagged1 promotes cancer progression through immune evasion.Cell Rep.2022381011049210.1016/j.celrep.2022.11049235263601
    [Google Scholar]
  93. PonzoniM. PastorinoF. Di PaoloD. PerriP. BrignoleC. Targeting macrophages as a potential therapeutic intervention: Impact on inflammatory diseases and cancer.Int. J. Mol. Sci.2018197195310.3390/ijms1907195329973487
    [Google Scholar]
  94. PhanT.X. NguyenV.H. DuongM.T.Q. HongY. ChoyH.E. MinJ.J. Activation of inflammasome by attenuated Salmonella typhimurium in bacteria-mediated cancer therapy.Microbiol. Immunol.2015591166467510.1111/1348‑0421.1233326500022
    [Google Scholar]
  95. RiesC.H. CannarileM.A. HovesS. BenzJ. WarthaK. RunzaV. Rey-GiraudF. PradelL.P. FeuerhakeF. KlamanI. JonesT. JucknischkeU. ScheiblichS. KaluzaK. GorrI.H. WalzA. AbirajK. CassierP.A. SicaA. Gomez-RocaC. de VisserK.E. ItalianoA. Le TourneauC. DelordJ.P. LevitskyH. BlayJ.Y. RüttingerD. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy.Cancer Cell201425684685910.1016/j.ccr.2014.05.01624898549
    [Google Scholar]
  96. AllavenaP. DigificoE. BelgiovineC. Macrophages and cancer stem cells: A malevolent alliance.Mol. Med.202127112110.1186/s10020‑021‑00383‑334583655
    [Google Scholar]
  97. CendrowiczE. SasZ. BremerE. RygielT.P. The role of macrophages in cancer development and therapy.Cancers (Basel)2021138194610.3390/cancers1308194633919517
    [Google Scholar]
  98. KloostermanD.J. AkkariL. Macrophages at the interface of the co-evolving cancer ecosystem.Cell202318681627165110.1016/j.cell.2023.02.02036924769
    [Google Scholar]
  99. XiaY. RaoL. YaoH. WangZ. NingP. ChenX. Engineering macrophages for cancer immunotherapy and drug delivery.Adv. Mater.20203240200205410.1002/adma.20200205432856350
    [Google Scholar]
  100. WhitworthP.W. PakC.C. EsgroJ. KleinermanE.S. FidlerI.J. Macrophages and cancer.Cancer Metastasis Rev.19908431935110.1007/BF000526072182211
    [Google Scholar]
  101. ChenS. LaiS.W.T. BrownC.E. FengM. Harnessing and enhancing macrophage phagocytosis for cancer therapy.Front. Immunol.20211263517310.3389/fimmu.2021.63517333790906
    [Google Scholar]
  102. SîrbeC. RednicS. GramaA. PopT.L. An update on the effects of vitamin D on the Immune System and Autoimmune diseases.Int. J. Mol. Sci.20222317978410.3390/ijms2317978436077185
    [Google Scholar]
  103. RossE.A. DevittA. JohnsonJ.R. Macrophages: The Good, the Bad, and the Gluttony.Front. Immunol.20211270818610.3389/fimmu.2021.70818634456917
    [Google Scholar]
  104. AbdolmalekiF. KovanenP.T. MardaniR. Gheibi-hayatS.M. BoS. SahebkarA. Resolvins: Emerging Players in Autoimmune and Inflammatory Diseases.Clin. Rev. Allergy Immunol.2020581829110.1007/s12016‑019‑08754‑931267470
    [Google Scholar]
  105. RussoS. KwiatkowskiM. GovorukhinaN. BischoffR. MelgertB.N. Meta-inflammation and metabolic reprogramming of macrophages in diabetes and obesity: The importance of metabolites.Front. Immunol.20211274615110.3389/fimmu.2021.74615134804028
    [Google Scholar]
  106. PollakovaD. AndreadiA. PacificiF. Della-MorteD. LauroD. TubiliC. The impact of vegan diet in the prevention and treatment of type 2 diabetes: A systematic review.Nutrients2021136212310.3390/nu1306212334205679
    [Google Scholar]
  107. AgrafiotiP. Morin-BaxterJ. TanagalaK.K.K. DubeyS. SimsP. LallaE. Momen-HeraviF. Decoding the role of macrophages in periodontitis and type 2 diabetes using single-cell RNA-sequencing.FASEB J.2022362e2213610.1096/fj.202101198R35032412
    [Google Scholar]
  108. LeeJ.W. ChunW. LeeH.J. MinJ.H. KimS.M. SeoJ.Y. AhnK.S. OhS.R. The role of macrophages in the development of acute and chronic inflammatory lung diseases.Cells202110489710.3390/cells1004089733919784
    [Google Scholar]
  109. LechnerA. HenkelF.D.R. HartungF. BohnackerS. AlessandriniF. GubernatorovaE.O. DrutskayaM.S. AngioniC. SchreiberY. HaimerlP. GeY. ThomasD. KabatA.M. PearceE.J. OhnmachtC. NedospasovS.A. MurrayP.J. ChakerA.M. Schmidt-WeberC.B. Esser-von BierenJ. Macrophages acquire a TNF-dependent inflammatory memory in allergic asthma.J. Allergy Clin. Immunol.202214962078209010.1016/j.jaci.2021.11.02634974067
    [Google Scholar]
  110. XuH. JiangJ. ChenW. LiW. ChenZ. Vascular macrophages in atherosclerosis.J. Immunol. Res.2019201911410.1155/2019/435478631886303
    [Google Scholar]
  111. HuD. WangZ. WangY. LiangC. Targeting macrophages in atherosclerosis.Curr. Pharm. Biotechnol.202122152008201810.2174/138920102266621012214223333480337
    [Google Scholar]
  112. YingW. FuW. LeeY.S. OlefskyJ.M. The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities.Nat. Rev. Endocrinol.2020162819010.1038/s41574‑019‑0286‑331836875
    [Google Scholar]
  113. BrestoffJ.R. WilenC.B. MoleyJ.R. LiY. ZouW. MalvinN.P. RowenM.N. SaundersB.T. MaH. MackM.R. HykesB.L.Jr BalceD.R. OrvedahlA. WilliamsJ.W. RohatgiN. WangX. McAllasterM.R. HandleyS.A. KimB.S. DoenchJ.G. ZinselmeyerB.H. DiamondM.S. VirginH.W. GelmanA.E. TeitelbaumS.L. Intercellular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obesity.Cell Metab.2021332270282.e810.1016/j.cmet.2020.11.00833278339
    [Google Scholar]
  114. BaigM.S. RoyA. RajpootS. LiuD. SavaiR. BanerjeeS. KawadaM. FaisalS.M. SalujaR. SaqibU. OhishiT. WaryK.K. Tumor-derived exosomes in the regulation of macrophage polarization.Inflamm. Res.202069543545110.1007/s00011‑020‑01318‑032162012
    [Google Scholar]
  115. ChenY.J. LiG.N. LiX.J. WeiL.X. FuM.J. ChengZ.L. YangZ. ZhuG.Q. WangX.D. ZhangC. ZhangJ.Y. SunY.P. SaiyinH. ZhangJ. LiuW.R. ZhuW.W. GuanK.L. XiongY. YangY. YeD. ChenL.L. Targeting IRG1 reverses the immunosuppressive function of tumor-associated macrophages and enhances cancer immunotherapy.Sci. Adv.2023917eadg065410.1126/sciadv.adg065437115931
    [Google Scholar]
  116. ChengW.L. FengP.H. LeeK.Y. ChenK.Y. SunW.L. Van HiepN. LuoC.S. WuS.M. The role of EREG/EGFR pathway in tumor progression.Int. J. Mol. Sci.202122231282810.3390/ijms22231282834884633
    [Google Scholar]
  117. EtzerodtA. MoulinM. DoktorT.K. DelfiniM. Mossadegh-KellerN. BajenoffM. SiewekeM.H. MoestrupS.K. Auphan-AnezinN. LawrenceT. Tissue-resident macrophages in omentum promote metastatic spread of ovarian cancer.J. Exp. Med.20202174e2019186910.1084/jem.2019186931951251
    [Google Scholar]
  118. FangW. ZhouT. ShiH. YaoM. ZhangD. QianH. ZengQ. WangY. JinF. ChaiC. ChenT. Progranulin induces immune escape in breast cancer via up-regulating PD-L1 expression on tumor-associated macrophages (TAMs) and promoting CD8+ T cell exclusion.J. Exp. Clin. Cancer Res.2021401410.1186/s13046‑020‑01786‑633390170
    [Google Scholar]
  119. GambardellaV. CastilloJ. TarazonaN. Gimeno-ValienteF. Martínez-CiarpagliniC. Cabeza-SeguraM. RosellóS. RodaD. HuertaM. CervantesA. FleitasT. The role of tumor-associated macrophages in gastric cancer development and their potential as a therapeutic target.Cancer Treat. Rev.20208610201510.1016/j.ctrv.2020.10201532248000
    [Google Scholar]
  120. MasettiM. CarrieroR. PortaleF. MarelliG. MorinaN. PandiniM. IovinoM. PartiniB. ErreniM. PonzettaA. MagriniE. ColomboP. ElefanteG. ColomboF.S. den HaanJ.M.M. PeanoC. CibellaJ. TermaniniA. KunderfrancoP. BrummelmanJ. ChungM.W.H. LazzeriM. HurleR. CasaleP. LugliE. DePinhoR.A. MukhopadhyayS. GordonS. Di MitriD. Lipid-loaded tumor-associated macrophages sustain tumor growth and invasiveness in prostate cancer.J. Exp. Med.20222192e2021056410.1084/jem.2021056434919143
    [Google Scholar]
  121. SolierS. MüllerS. CañequeT. VersiniA. MansartA. SindikubwaboF. BaronL. EmamL. GestraudP. PantoșG.D. GandonV. GailletC. WuT.D. DingliF. LoewD. BaulandeS. DurandS. SencioV. RobilC. TrotteinF. PéricatD. NäserE. CougouleC. MeunierE. BègueA.L. SalmonH. ManelN. PuisieuxA. WatsonS. DawsonM.A. ServantN. KroemerG. AnnaneD. RodriguezR. A druggable copper-signalling pathway that drives inflammation.Nature2023617796038639410.1038/s41586‑023‑06017‑437100912
    [Google Scholar]
  122. ZhaoS. MiY. GuanB. ZhengB. WeiP. GuY. ZhangZ. CaiS. XuY. LiX. HeX. ZhongX. LiG. ChenZ. LiD. Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer.J. Hematol. Oncol.202013115610.1186/s13045‑020‑00991‑233213490
    [Google Scholar]
  123. ZhangX. LiS. MalikI. DoM.H. JiL. ChouC. ShiW. CapistranoK.J. ZhangJ. HsuT.W. NixonB.G. XuK. WangX. BallabioA. SchmidtL.S. LinehanW.M. LiM.O. Reprogramming tumour-associated macrophages to outcompete cancer cells.Nature2023619797061662310.1038/s41586‑023‑06256‑537380769
    [Google Scholar]
  124. WuY. YangS. MaJ. ChenZ. SongG. RaoD. ChengY. HuangS. LiuY. JiangS. LiuJ. HuangX. WangX. QiuS. XuJ. XiR. BaiF. ZhouJ. FanJ. ZhangX. GaoQ. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level.Cancer Discov.202212113415310.1158/2159‑8290.CD‑21‑031634417225
    [Google Scholar]
  125. TanY. SunR. LiuL. YangD. XiangQ. LiL. TangJ. QiuZ. PengW. WangY. YeL. RenG. XiangT. Tumor suppressor DRD2 facilitates M1 macrophages and restricts NF-κB signaling to trigger pyroptosis in breast cancer.Theranostics202111115214523110.7150/thno.5832233859743
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018299798240403062508
Loading
/content/journals/cdd/10.2174/0115672018299798240403062508
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test