Skip to content
2000
Volume 22, Issue 8
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Insulin is a peptide hormone that is essential for regulating body homeostasis. Furthermore, it is involved in various neurological functions such as memory, behaviors, and cognition. The ubiquitous distribution of insulin receptors on various brain cells, such as neurons, microglia, astrocytes, and oligodendrocytes, and their differential localization across various brain regions, including the hippocampus, hypothalamus, and olfactory bulb, collectively underscore the crucial involvement of insulin in the modulation of cerebral functions. Along with ageing, in some pathological conditions such as diabetes and brain insulin resistance, the need for exogenous insulin is felt to compensate for insulin deficiency. In these cases, the biggest obstacle to the delivery of insulin to the brain is the blood-brain barrier (a physical barrier consisting of endothelial cells with tight junctions), which prevents the direct entry of most substances possessing high molecular weight, like insulin, into the brain. Therefore, different delivery methods have been proposed by researchers for insulin delivery that directly or indirectly cause the transfer of insulin to the brain. Some of these methods lack high efficiency and cause many side effects for the patient. In this regard, many new technologies have come to the aid of researchers and have introduced more effective delivery strategies, including the use of nanocarriers. Despite the promising outcomes demonstrated in the experimental models, the utilization of these techniques in human studies remains at a nascent stage and necessitates further comprehensive investigation. This review article aims to examine the diverse methods of insulin administration to the brain by gathering extensive information on insulin and its obstacles to brain delivery.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018305677240611080910
2024-06-20
2026-01-14
Loading full text...

Full text loading...

References

  1. BalahorogluR. Zi̇rekA.K. ÇoklukE. AtmacaM. ŞekeroğluM. HuyutZ. The relationship between insulin resistance and trace elements in patients with polycystic ovary syndrome.Online Türk Sağlık Bilimleri Dergisi20205237538210.26453/otjhs.571510
    [Google Scholar]
  2. ArnoldS.E. ArvanitakisZ. Macauley-RambachS.L. KoenigA.M. WangH.Y. AhimaR.S. CraftS. GandyS. BuettnerC. StoeckelL.E. HoltzmanD.M. NathanD.M. Brain insulin resistance in type 2 diabetes and Alzheimer disease: Concepts and conundrums.Nat. Rev. Neurol.201814316818110.1038/nrneurol.2017.18529377010
    [Google Scholar]
  3. WallumB.J. TaborskyG.J.Jr PorteD.Jr FiglewiczD.P. JacobsonL. BeardJ.C. WardW.K. DorsaD. Cerebrospinal fluid insulin levels increase during intravenous insulin infusions in man.J. Clin. Endocrinol. Metab.198764119019410.1210/jcem‑64‑1‑1903536982
    [Google Scholar]
  4. MargolisR.U. AltszulerN. Insulin in the cerebrospinal fluid.Nature196721551081375137610.1038/2151375a06055448
    [Google Scholar]
  5. SchwartzM.W. SipolsA. KahnS.E. LattemannD.F. TaborskyG.J.Jr BergmanR.N. WoodsS.C. PorteD.Jr Kinetics and specificity of insulin uptake from plasma into cerebrospinal fluid.Am. J. Physiol.19902593 Pt 1E378E3832205107
    [Google Scholar]
  6. KnoxE.G. AburtoM.R. ClarkeG. CryanJ.F. O’DriscollC.M. The blood-brain barrier in aging and neurodegeneration.Mol. Psychiatry20222762659267310.1038/s41380‑022‑01511‑z35361905
    [Google Scholar]
  7. VigneriR. GoldfineI.D. FrittittaL. Insulin, insulin receptors, and cancer.J. Endocrinol. Invest.201639121365137610.1007/s40618‑016‑0508‑727368923
    [Google Scholar]
  8. FlierJ.S. Insulin receptors and insulin resistance.Annu. Rev. Med.198334114516010.1146/annurev.me.34.020183.0010456344753
    [Google Scholar]
  9. PandiniG. FrascaF. MineoR. SciaccaL. VigneriR. BelfioreA. Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved.J. Biol. Chem.200227742396843969510.1074/jbc.M20276620012138094
    [Google Scholar]
  10. MamikM.K. AsahchopE.L. ChanW.F. ZhuY. BrantonW.G. McKenzieB.A. CohenE.A. PowerC. Insulin treatment prevents neuroinflammation and neuronal injury with restored neurobehavioral function in models of HIV/AIDS neurodegeneration.J. Neurosci.20163641106831069510.1523/JNEUROSCI.1287‑16.201627733618
    [Google Scholar]
  11. ZhuL. FanL. ZhuY. WangY. BaiH. YangQ. BenJ. ZhangH. LiX. ZhuX. ChenQ. Insulin antagonizes LPS-induced inflammatory responses by activating SR-A1/ERK axis in macrophages.Inflammation201942275476210.1007/s10753‑018‑0933‑130488142
    [Google Scholar]
  12. van der HeideL.P. RamakersG.M.J. SmidtM.P. Insulin signaling in the central nervous system: Learning to survive.Prog. Neurobiol.200679420522110.1016/j.pneurobio.2006.06.00316916571
    [Google Scholar]
  13. MielkeJ.G. TaghibiglouC. WangY.T. Endogenous insulin signaling protects cultured neurons from oxygen–glucose deprivation-induced cell death.Neuroscience2006143116517310.1016/j.neuroscience.2006.07.05516978790
    [Google Scholar]
  14. ApostolatosA. SongS. AcostaS. PeartM. WatsonJ.E. BickfordP. CooperD.R. PatelN.A. Insulin promotes neuronal survival via the alternatively spliced protein kinase CδII isoform.J. Biol. Chem.2012287129299931010.1074/jbc.M111.31308022275369
    [Google Scholar]
  15. MergenthalerP. LindauerU. DienelG.A. MeiselA. Sugar for the brain: The role of glucose in physiological and pathological brain function.Trends Neurosci.2013361058759710.1016/j.tins.2013.07.00123968694
    [Google Scholar]
  16. FernandezA.M. Martinez-RachadellL. NavarreteM. Pose-UtrillaJ. DavilaJ.C. PignatelliJ. Diaz-PachecoS. Guerra-CanteraS. Viedma-MorenoE. PalenzuelaR. Ruiz de Martin EstebanS. MostanyR. Garcia-CaceresC. TschöpM. IglesiasT. de CeballosM.L. GutierrezA. Torres AlemanI. Insulin regulates neurovascular coupling through astrocytes.Proc. Natl. Acad. Sci.202211929e220452711910.1073/pnas.220452711935858325
    [Google Scholar]
  17. SuzukiR. LeeK. JingE. BiddingerS.B. McDonaldJ.G. MontineT.J. CraftS. KahnC.R. Diabetes and insulin in regulation of brain cholesterol metabolism.Cell Metab.201012656757910.1016/j.cmet.2010.11.00621109190
    [Google Scholar]
  18. FerrisH.A. PerryR.J. MoreiraG.V. ShulmanG.I. HortonJ.D. KahnC.R. Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism.Proc. Natl. Acad. Sci.201711451189119410.1073/pnas.162050611428096339
    [Google Scholar]
  19. BrüningJ.C. GautamD. BurksD.J. GilletteJ. SchubertM. OrbanP.C. KleinR. KroneW. Müller-WielandD. KahnC.R. Role of brain insulin receptor in control of body weight and reproduction.Science200028954872122212510.1126/science.289.5487.212211000114
    [Google Scholar]
  20. KnezovicA. BudisaS. Babic PerhocA. HomolakJ. Osmanovic BarilarJ. From determining brain insulin resistance in a sporadic Alzheimer’s disease model to exploring the region-dependent effect of intranasal insulin.Mol. Neurobiol.20236042005202310.1007/s12035‑022‑03188‑536596966
    [Google Scholar]
  21. KellarD. CraftS. Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches.Lancet Neurol.202019975876610.1016/S1474‑4422(20)30231‑332730766
    [Google Scholar]
  22. TschritterO. PreisslH. HennigeA.M. StumvollM. PorubskaK. FrostR. MarxH. KlöselB. LutzenbergerW. BirbaumerN. HäringH.U. FritscheA. The cerebrocortical response to hyperinsulinemia is reduced in overweight humans: A magnetoencephalographic study.Proc. Natl. Acad. Sci.200610332121031210810.1073/pnas.060440410316877540
    [Google Scholar]
  23. DjiogueS. Nwabo KamdjeA.H. VecchioL. KipanyulaM.J. FarahnaM. AldebasiY. Seke EtetP.F. Insulin resistance and cancer: The role of insulin and IGFs.Endocr. Relat. Cancer2013201R1R1710.1530/ERC‑12‑032423207292
    [Google Scholar]
  24. KullmannS. HeniM. HallschmidM. FritscheA. PreisslH. HäringH.U. Brain insulin resistance at the crossroads of metabolic and cognitive disorders in humans.Physiol. Rev.20169641169120910.1152/physrev.00032.201527489306
    [Google Scholar]
  25. ShimobayashiM. AlbertV. WoelnerhanssenB. FreiI.C. WeissenbergerD. Meyer-GerspachA.C. ClementN. MoesS. ColombiM. MeierJ.A. SwierczynskaM.M. JenöP. BeglingerC. PeterliR. HallM.N. Insulin resistance causes inflammation in adipose tissue.J. Clin. Invest.201812841538155010.1172/JCI9613929528335
    [Google Scholar]
  26. Jiménez-OsorioA.S. MonroyA. AlavezS. Curcumin and insulin resistance—Molecular targets and clinical evidences.Biofactors201642656158010.1002/biof.130227325504
    [Google Scholar]
  27. AkhtarA. SahS.P. Insulin signaling pathway and related molecules: Role in neurodegeneration and Alzheimer’s disease.Neurochem. Int.202013510470710.1016/j.neuint.2020.10470732092326
    [Google Scholar]
  28. SaltielA.R. PessinJ.E. Insulin signaling pathways in time and space.Trends Cell Biol.2002122657110.1016/S0962‑8924(01)02207‑311849969
    [Google Scholar]
  29. ŚwiderskaE StrycharzJ WróblewskiA SzemrajJ DrzewoskiJ ŚliwińskaA. Role of PI3K/AKT pathway in insulin-mediated glucose uptake.Blood glucose levels20181118
    [Google Scholar]
  30. SoltaniN. RezazadehH. SharifiM.R. Insulin resistance and the role of gamma-aminobutyric acid.J. Res. Med. Sci.20212613910.4103/jrms.JRMS_374_2034484371
    [Google Scholar]
  31. ZandH. MorshedzadehN. NaghashianF. Signaling pathways linking inflammation to insulin resistance.Diabetes Metab. Syndr.201711Suppl. 1S307S30910.1016/j.dsx.2017.03.00628365222
    [Google Scholar]
  32. ParkC. SeeleyR. CraftS. WoodsS. Intracerebroventricular insulin enhances memory in a passive-avoidance task.Physiol. Behav.200068450951410.1016/S0031‑9384(99)00220‑610713291
    [Google Scholar]
  33. EichenbaumH. The hippocampus and declarative memory: Cognitive mechanisms and neural codes.Behav. Brain Res.20011271-219920710.1016/S0166‑4328(01)00365‑511718892
    [Google Scholar]
  34. PlagemannA. A matter of insulin: Developmental programming of body weight regulation.J. Matern. Fetal Neonatal Med.200821314314810.1080/1476705080192986918297568
    [Google Scholar]
  35. Sat-MuñozD. Martínez-HerreraB.E. Quiroga-MoralesL.A. Trujillo-HernándezB. González-RodríguezJ.A. Gutiérrez-RodríguezL.X. Leal-CortésC.A. Portilla-de-BuenE. Rubio-JuradoB. Salazar-PáramoM. Gómez-SánchezE. Delgadillo-CristernaR. Carrillo-NuñezG.G. Nava-ZavalaA.H. Balderas-PeñaL.M.A. Adipocytokines and insulin resistance: Their role as benign breast disease and breast cancer risk factors in a high-prevalence overweight-obesity group of women over 40 years old.Int. J. Environ. Res. Public Health20221910609310.3390/ijerph1910609335627631
    [Google Scholar]
  36. XuN. LiuH. WangY. XueY. Relationship between insulin resistance and thyroid cancer in Chinese euthyroid subjects without conditions affecting insulin resistance.BMC Endocr. Disord.20222215810.1186/s12902‑022‑00943‑635255873
    [Google Scholar]
  37. YangJ.J. Brain insulin resistance and the therapeutic value of insulin and insulin-sensitizing drugs in Alzheimer’s disease neuropathology.Acta Neurol. Belg.202212251135114210.1007/s13760‑022‑01907‑235482277
    [Google Scholar]
  38. HnilicovaP. KantorovaE. SutovskyS. GrofikM. ZelenakK. KurcaE. ZilkaN. ParvanovovaP. KolisekM. Imaging methods applicable in the diagnostics of alzheimer’s disease, considering the involvement of insulin resistance.Int. J. Mol. Sci.2023244332510.3390/ijms2404332536834741
    [Google Scholar]
  39. DevaskarS.U. SinghB.S. CarnaghiL.R. RajakumarP.A. GiddingsS.J. Insulin II gene expression in rat central nervous system.Regul. Pept.1993481-2556310.1016/0167‑0115(93)90335‑68265817
    [Google Scholar]
  40. BanksW.A. OwenJ.B. EricksonM.A. Insulin in the brain: There and back again.Pharmacol. Ther.20121361829310.1016/j.pharmthera.2012.07.00622820012
    [Google Scholar]
  41. KumarR. SahaP. KumarY. SahanaS. DubeyA. PrakashO. A Review on Diabetes Mellitus: Type1 & Type2.World J. Pharm. Pharm. Sci.2020910838850
    [Google Scholar]
  42. KitabchiA.E. UmpierrezG.E. MurphyM.B. BarrettE.J. KreisbergR.A. MaloneJ.I. WallB.M. Management of hyperglycemic crises in patients with diabetes.Diabetes Care200124113115310.2337/diacare.24.1.13111194218
    [Google Scholar]
  43. DavidsonP.C. SteedR.D. BodeB.W. Glucommander.Diabetes Care200528102418242310.2337/diacare.28.10.241816186273
    [Google Scholar]
  44. MartinA. Intravenous insulin infusions: What nurses need to know.Critical Care Nursing Clinics.2013251152023410642
    [Google Scholar]
  45. AnnaneD. CariouA. MaximeV. AzoulayE. D’honneurG. TimsitJ.F. CohenY. WolfM. FartoukhM. AdrieC. SantréC. BollaertP.E. MathonetA. AmathieuR. TabahA. Clec’hC. MayauxJ. LejeuneJ. ChevretS. Corticosteroid treatment and intensive insulin therapy for septic shock in adults: A randomized controlled trial.JAMA2010303434134810.1001/jama.2010.220103758
    [Google Scholar]
  46. SwaminathanS.K. AhlschwedeK.M. SarmaV. CurranG.L. OmtriR.S. DeckleverT. LoweV.J. PodusloJ.F. KandimallaK.K. Insulin differentially affects the distribution kinetics of amyloid beta 40 and 42 in plasma and brain.J. Cereb. Blood Flow Metab.201838590491810.1177/0271678X1770970928569090
    [Google Scholar]
  47. RheaE.M. SalamehT.S. BanksW.A. Routes for the delivery of insulin to the central nervous system: A comparative review.Exp. Neurol.2019313101510.1016/j.expneurol.2018.11.00730500332
    [Google Scholar]
  48. Van den BergheG. WoutersP. WeekersF. VerwaestC. BruyninckxF. SchetzM. VlasselaersD. FerdinandeP. LauwersP. BouillonR. Intensive insulin therapy in critically ill patients.N. Engl. J. Med.2001345191359136710.1056/NEJMoa01130011794168
    [Google Scholar]
  49. YangM. GuoQ. ZhangX. SunS. WangY. ZhaoL. HuE. LiC. Intensive insulin therapy on infection rate, days in NICU, in-hospital mortality and neurological outcome in severe traumatic brain injury patients: A randomized controlled trial.Int. J. Nurs. Stud.200946675375810.1016/j.ijnurstu.2009.01.00419232615
    [Google Scholar]
  50. BilottaF. CaramiaR. CernakI. PaoloniF.P. DoronzioA. CuzzoneV. SantoroA. RosaG. Intensive insulin therapy after severe traumatic brain injury: A randomized clinical trial.Neurocrit. Care20089215916610.1007/s12028‑008‑9084‑918373223
    [Google Scholar]
  51. VespaP. McArthurD.L. SteinN. HuangS.C. ShaoW. FilippouM. EtchepareM. GlennT. HovdaD.A. Tight glycemic control increases metabolic distress in traumatic brain injury.Crit. Care Med.20124061923192910.1097/CCM.0b013e31824e0fcc22610193
    [Google Scholar]
  52. YAOS-y. The dilemma and breakthrough of oral administration of insulin.Yao Xue Xue Bao2020202015491561
    [Google Scholar]
  53. Abdel-MoneimA. RamadanH. Novel strategies to oral delivery of insulin: Current progress of nanocarriers for diabetes management.Drug Dev. Res.202283230131610.1002/ddr.2190334859477
    [Google Scholar]
  54. KrischerJ.P. SchatzD.A. BundyB. SkylerJ.S. GreenbaumC.J. Effect of oral insulin on prevention of diabetes in relatives of patients with type 1 diabetes: A randomized clinical trial.JAMA2017318191891190210.1001/jama.2017.1707029164254
    [Google Scholar]
  55. PatelH.M. RymanB.E. Oral administration of insulin by encapsulation within liposomes.FEBS Lett.1976621606310.1016/0014‑5793(76)80016‑6129340
    [Google Scholar]
  56. TashimaT. Shortcut approaches to substance delivery into the brain based on intranasal administration using nanodelivery strategies for insulin.Molecules20202521518810.3390/molecules2521518833171799
    [Google Scholar]
  57. HomayunB. LinX. ChoiH.J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals.Pharmaceutics201911312910.3390/pharmaceutics1103012930893852
    [Google Scholar]
  58. BanksW.A. FarrS.A. MorleyJ.E. Permeability of the blood-brain barrier to albumin and insulin in the young and aged SAMP8 mouse.J. Gerontol. A Biol. Sci. Med. Sci.20005512B601B60610.1093/gerona/55.12.B60111129390
    [Google Scholar]
  59. RegerM.A. WatsonG.S. GreenP.S. WilkinsonC.W. BakerL.D. CholertonB. FishelM.A. PlymateS.R. BreitnerJ.C.S. DeGroodtW. MehtaP. CraftS. Intranasal insulin improves cognition and modulates β-amyloid in early AD.Neurology200870644044810.1212/01.WNL.0000265401.62434.3617942819
    [Google Scholar]
  60. RheaE.M. HumannS.R. NirkheS. FarrS.A. MorleyJ.E. BanksW.A. Intranasal insulin transport is preserved in aged SAMP8 mice and is altered by albumin and insulin receptor inhibition.J. Alzheimers Dis.201757124125210.3233/JAD‑16109528222522
    [Google Scholar]
  61. BornJ. LangeT. KernW. McGregorG.P. BickelU. FehmH.L. Sniffing neuropeptides: A transnasal approach to the human brain.Nat. Neurosci.20025651451610.1038/nn0602‑84911992114
    [Google Scholar]
  62. FrancisG.J. MartinezJ.A. LiuW.Q. XuK. AyerA. FineJ. TuorU.I. GlaznerG. HansonL.R. FreyW.H.II TothC. Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy.Brain2008131Pt 123311333419015157
    [Google Scholar]
  63. ZhangT. TangJ.Z. FeiX. LiY. SongY. QianZ. PengQ. Can nanoparticles and nano‒protein interactions bring a bright future for insulin delivery?Acta Pharm. Sin. B202111365166710.1016/j.apsb.2020.08.01633777673
    [Google Scholar]
  64. LoftsA. Abu-HijlehF. RiggN. MishraR.K. HoareT. Using the intranasal route to administer drugs to treat neurological and psychiatric illnesses: Rationale, successes, and future needs.CNS Drugs202236773977010.1007/s40263‑022‑00930‑435759210
    [Google Scholar]
  65. LiX. MontagueE.C. PollinziA. LoftsA. HoareT. Design of smart size, surface, and shape‐switching nanoparticles to improve therapeutic efficacy.Small2022186210463210.1002/smll.20210463234936204
    [Google Scholar]
  66. TanM.S.A. ParekhH.S. PandeyP. SiskindD.J. FalconerJ.R. Nose-to-brain delivery of antipsychotics using nanotechnology: A review.Expert Opin. Drug Deliv.202017683985310.1080/17425247.2020.176256332343186
    [Google Scholar]
  67. BozeyaA. Al-DomiD. Al-FandiM. Development of an insulin nano-delivery system through buccal administration.Curr. Drug Deliv.202219888990110.2174/156720181966622011212111535023456
    [Google Scholar]
  68. LeeJ.H. JahrlingJ.B. DennerL. DineleyK.T. Targeting insulin for Alzheimer’s disease: mechanisms, status and potential directions.J. Alzheimers Dis.201864s1S427S45310.3233/JAD‑17992329710715
    [Google Scholar]
  69. CraftS. BakerL.D. MontineT.J. MinoshimaS. WatsonG.S. ClaxtonA. ArbuckleM. CallaghanM. TsaiE. PlymateS.R. GreenP.S. LeverenzJ. CrossD. GertonB. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: A pilot clinical trial.Arch. Neurol.2012691293810.1001/archneurol.2011.23321911655
    [Google Scholar]
  70. BrünnerY.F. BenedictC. FreiherrJ. Intranasal insulin reduces olfactory sensitivity in normosmic humans.J. Clin. Endocrinol. Metab.20139810E1626E163010.1210/jc.2013‑206123928664
    [Google Scholar]
  71. SchöpfV. KollndorferK. PollakM. MuellerC.A. FreiherrJ. Intranasal insulin influences the olfactory performance of patients with smell loss, dependent on the body mass index: A pilot study.Rhinology201553437137810.4193/Rhino15.06526275583
    [Google Scholar]
  72. CaliasP. 2-Hydroxypropyl-β-cyclodextrins and the blood-brain barrier: Considerations for Niemann-Pick disease type C1.Curr. Pharm. Des.201823406231623810.2174/138161282366617101916422029065825
    [Google Scholar]
  73. TothC. BrusseeV. MartinezJ.A. McDonaldD. CunninghamF.A. ZochodneD.W. Rescue and regeneration of injured peripheral nerve axons by intrathecal insulin.Neuroscience2006139242944910.1016/j.neuroscience.2005.11.06516529870
    [Google Scholar]
  74. PrausnitzM.R. LangerR. Transdermal drug delivery.Nat. Biotechnol.200826111261126810.1038/nbt.150418997767
    [Google Scholar]
  75. GodinB. TouitouE. Transdermal skin delivery: Predictions for humans from in vivo, ex vivo and animal models.Adv. Drug Deliv. Rev.200759111152116110.1016/j.addr.2007.07.00417889400
    [Google Scholar]
  76. BosJ.D. MeinardiM.M.H.M. The 500 Dalton rule for the skin penetration of chemical compounds and drugs.Exp. Dermatol.20009316516910.1034/j.1600‑0625.2000.009003165.x10839713
    [Google Scholar]
  77. KarandeP. JainA. ErgunK. KisperskyV. MitragotriS. Design principles of chemical penetration enhancers for transdermal drug delivery.Proc. Natl. Acad. Sci.2005102134688469310.1073/pnas.050117610215774584
    [Google Scholar]
  78. LiY. QuanY. ZangL. JinM. KamiyamaF. KatsumiH. YamamotoA. TsutsumiS. Transdermal delivery of insulin using trypsin as a biochemical enhancer.Biol. Pharm. Bull.20083181574157910.1248/bpb.31.157418670091
    [Google Scholar]
  79. ProwT.W. GriceJ.E. LinL.L. FayeR. ButlerM. BeckerW. WurmE.M.T. YoongC. RobertsonT.A. SoyerH.P. RobertsM.S. Nanoparticles and microparticles for skin drug delivery.Adv. Drug Deliv. Rev.201163647049110.1016/j.addr.2011.01.01221315122
    [Google Scholar]
  80. ZhangY. YuJ. BombaH.N. ZhuY. GuZ. Mechanical force-triggered drug delivery.Chem. Rev.201611619125361256310.1021/acs.chemrev.6b0036927680291
    [Google Scholar]
  81. BanksW.A. The source of cerebral insulin.Eur. J. Pharmacol.20044901-351210.1016/j.ejphar.2004.02.04015094069
    [Google Scholar]
  82. RajasekarN. NathC. HanifK. ShuklaR. Intranasal insulin improves cerebral blood flow, Nrf-2 expression and BDNF in STZ (ICV)-induced memory impaired rats.Life Sci.201717311010.1016/j.lfs.2016.09.02027693383
    [Google Scholar]
  83. GiuffridaM.L. CopaniA. RizzarelliE. A promising connection between BDNF and Alzheimer’s disease.Aging20181081791179210.18632/aging.10151830082505
    [Google Scholar]
  84. CookA.M. MieureK.D. OwenR.D. PesaturoA.B. HattonJ. Intracerebroventricular administration of drugs.Pharmacotherapy200929783284510.1592/phco.29.7.83219558257
    [Google Scholar]
  85. OnoT. SteffensA. SasakiK. Influence of peripheral and intracerebroventricular glucose and insulin infusions on peripheral and cerebrospinal fluid glucose and insulin levels.Physiol. Behav.198330230130610.1016/0031‑9384(83)90023‑96342012
    [Google Scholar]
  86. WoodsS.C. LotterE.C. McKayL.D. PorteD.Jr Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons.Nature1979282573850350510.1038/282503a0116135
    [Google Scholar]
  87. AirE.L. BenoitS.C. Blake SmithK.A. CleggD.J. WoodsS.C. Acute third ventricular administration of insulin decreases food intake in two paradigms.Pharmacol. Biochem. Behav.2002721-242342910.1016/S0091‑3057(01)00780‑811900815
    [Google Scholar]
  88. HaasC.B. KalinineE. ZimmerE.R. HanselG. BrochierA.W. OsesJ.P. PortelaL.V. MullerA.P. Brain insulin administration triggers distinct cognitive and neurotrophic responses in young and aged rats.Mol. Neurobiol.20165395807581710.1007/s12035‑015‑9494‑626497034
    [Google Scholar]
  89. CuiF. TaoA. CunD. ZhangL. ShiK. Preparation of insulin loaded PLGA-Hp55 nanoparticles for oral delivery.J. Pharm. Sci.200796242142710.1002/jps.2075017051590
    [Google Scholar]
  90. JainS. RathiV.V. JainA.K. DasM. GoduguC. Folate-decorated PLGA nanoparticles as a rationally designed vehicle for the oral delivery of insulin.Nanomedicine2012791311133710.2217/nnm.12.3122583576
    [Google Scholar]
  91. DingY. XiaX.H. ZhangC. Synthesis of metallic nanoparticles protected with N, N, N -trimethyl chitosan chloride via a relatively weak affinity.Nanotechnology200617164156416210.1088/0957‑4484/17/16/02721727553
    [Google Scholar]
  92. JinJ. SongM. HourstonD.J. Novel chitosan-based films cross-linked by genipin with improved physical properties.Biomacromolecules20045116216810.1021/bm034286m14715022
    [Google Scholar]
  93. PregoC. FabreM. TorresD. AlonsoM.J. Efficacy and mechanism of action of chitosan nanocapsules for oral peptide delivery.Pharm. Res.200623354955610.1007/s11095‑006‑9570‑816525861
    [Google Scholar]
  94. TakeuchiH. ThongborisuteJ. MatsuiY. SugiharaH. YamamotoH. KawashimaY. Novel mucoadhesion tests for polymers and polymer-coated particles to design optimal mucoadhesive drug delivery systems.Adv. Drug Deliv. Rev.200557111583159410.1016/j.addr.2005.07.00816169120
    [Google Scholar]
  95. MaoS. BakowskyU. JintapattanakitA. KisselT. Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives and insulin.J. Pharm. Sci.20069551035104810.1002/jps.2052016565978
    [Google Scholar]
  96. Fernández-UrrusunoR. CalvoP. Remuñán-LópezC. Vila-JatoJ.L. José AlonsoM. Enhancement of nasal absorption of insulin using chitosan nanoparticles.Pharm. Res.199916101576158110.1023/A:101890870544610554100
    [Google Scholar]
  97. SarmentoB. RibeiroA. VeigaF. FerreiraD. NeufeldR. Oral bioavailability of insulin contained in polysaccharide nanoparticles.Biomacromolecules20078103054306010.1021/bm070392317877397
    [Google Scholar]
  98. SpanglerR.S. Insulin administration via liposomes.Diabetes Care199013991192210.2337/diacare.13.9.9112226109
    [Google Scholar]
  99. HeH. LuY. QiJ. ZhuQ. ChenZ. WuW. Adapting liposomes for oral drug delivery.Acta Pharm. Sin. B201991364810.1016/j.apsb.2018.06.00530766776
    [Google Scholar]
  100. FadaeiMS FadaeiMR KheiriehAE Rahmanian-DevinP DabbaghiMM TavallaeiKN Niosome as a promising tool for increasing the effectiveness of anti-inflammatory compounds.EXCLI J.202423212263
    [Google Scholar]
  101. TakeuchiH. YamamotoH. NiwaT. HinoT. KawashimaY. Enteral absorption of insulin in rats from mucoadhesive chitosan-coated liposomes.Pharm. Res.199613689690110.1023/A:10160093135488792429
    [Google Scholar]
  102. MohammadpourF. KamaliH. GholamiL. McCloskeyA.P. KesharwaniP. SahebkarA. Solid lipid nanoparticles: A promising tool for insulin delivery.Expert Opin. Drug Deliv.202219121577159510.1080/17425247.2022.213832836287584
    [Google Scholar]
  103. MishraV. BansalK. VermaA. YadavN. ThakurS. SudhakarK. RosenholmJ. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems.Pharmaceutics201810419110.3390/pharmaceutics1004019130340327
    [Google Scholar]
  104. KhezriK. SaeediM. Morteza-SemnaniK. AkbariJ. RostamkalaeiS.S. An emerging technology in lipid research for targeting hydrophilic drugs to the skin in the treatment of hyperpigmentation disorders: kojic acid-solid lipid nanoparticles.Artif. Cells Nanomed. Biotechnol.202048184185310.1080/21691401.2020.177027132456476
    [Google Scholar]
  105. MüllerR. MaaßenS. WeyhersH. SpechtF. LucksJ. Cytotoxicity of magnetite-loaded polylactide, polylactide/glycolide particles and solid lipid nanoparticles.Int. J. Pharm.19961381859410.1016/0378‑5173(96)04539‑5
    [Google Scholar]
  106. AkbariJ. SaeediM. AhmadiF. HashemiS.M.H. BabaeiA. YaddollahiS. RostamkalaeiS.S. Asare-AddoK. NokhodchiA. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration.Pharm. Dev. Technol.202227552554410.1080/10837450.2022.208455435635506
    [Google Scholar]
  107. SoutoE.B. BaldimI. OliveiraW.P. RaoR. YadavN. GamaF.M. MahantS. SLN and NLC for topical, dermal, and transdermal drug delivery.Expert Opin. Drug Deliv.202017335737710.1080/17425247.2020.172788332064958
    [Google Scholar]
  108. YangR. GaoR. LiF. HeH. TangX. The influence of lipid characteristics on the formation, in vitro release, and in vivo absorption of protein-loaded SLN prepared by the double emulsion process.Drug Dev. Ind. Pharm.201137213914810.3109/03639045.2010.49715120578879
    [Google Scholar]
  109. Baghban TaraghdariZ. ImaniR. MohabatpourF. A review on bioengineering approaches to insulin delivery: A pharmaceutical and engineering perspective.Macromol. Biosci.2019194180045810.1002/mabi.20180045830614193
    [Google Scholar]
  110. RaguramanV. JayasriM.A. SuthindhiranK. Magnetosome mediated oral Insulin delivery and its possible use in diabetes management.J. Mater. Sci. Mater. Med.20203187510.1007/s10856‑020‑06417‑232761252
    [Google Scholar]
  111. GardnerP. Microfabricated nanochannel implantable drug delivery devices: Trends, limitations and possibilities.Expert Opin. Drug Deliv.20063447948710.1517/17425247.3.4.47916822223
    [Google Scholar]
  112. Pinzón-DazaM. CampiaI. KopeckaJ. GarzónR. GhigoD. RigantC. Nanoparticle- and liposome-carried drugs: new strategies for active targeting and drug delivery across blood-brain barrier.Curr. Drug Metab.201314662564010.2174/138920021131406000123869808
    [Google Scholar]
  113. SharmaG. SharmaA.R. LeeS.S. BhattacharyaM. NamJ.S. ChakrabortyC. Advances in nanocarriers enabled brain targeted drug delivery across blood brain barrier.Int. J. Pharm.201955936037210.1016/j.ijpharm.2019.01.05630721725
    [Google Scholar]
  114. FournierE. PassiraniC. Montero-MeneiC.N. BenoitJ.P. Biocompatibility of implantable synthetic polymeric drug carriers: Focus on brain biocompatibility.Biomaterials200324193311333110.1016/S0142‑9612(03)00161‑312763459
    [Google Scholar]
  115. ShahD. AgarawalV. ParikhR. Noninvasive insulin delivery system: A review.Int. J. Appl.Pharmac.2010213540
    [Google Scholar]
  116. El MaaloufI.R. CapocciaK. PrieferR. Non-invasive ways of administering insulin.Diabetes Metab. Syndr.202216410247810.1016/j.dsx.2022.10247835397293
    [Google Scholar]
  117. PardridgeW.M. Brain delivery of nanomedicines: Trojan horse liposomes for plasmid DNA gene therapy of the brain.Frontiers in Medical Technology2020260223610.3389/fmedt.2020.60223635047884
    [Google Scholar]
  118. SharmaK PuranikN YadavD. Neural stem cell-based regenerative therapy: A new approach to diabetes treatment.Endocr Metab Immune Disord Drug Target.202424553154010.2174/1871530323666230512121416
    [Google Scholar]
  119. ShahR. ShahV.N. PatelM. MaahsD.M. Insulin delivery methods: Past, present and future.Int. J. Pharm. Investig.2016611910.4103/2230‑973X.17645627014614
    [Google Scholar]
  120. FurnaryA.P. ZerrK.J. GrunkemeierG.L. StarrA. Continuous intravenous insulin infusion reduces the incidence of deep sternal wound infection in diabetic patients after cardiac surgical procedures.Ann. Thorac. Surg.199967235236010.1016/S0003‑4975(99)00014‑410197653
    [Google Scholar]
  121. SkjaervoldN.K. LyngO. SpigsetO. AadahlP. Pharmacology of intravenous insulin administration: Implications for future closed-loop glycemic control by the intravenous/intravenous route.Diabetes Technol. Ther.2012141232910.1089/dia.2011.011821751892
    [Google Scholar]
  122. BahmanF. TaurinS. AltayebD. TahaS. BakhietM. GreishK. Oral insulin delivery using poly (styrene co-maleic acid) micelles in a diabetic mouse model.Pharmaceutics20201211102610.3390/pharmaceutics1211102633120872
    [Google Scholar]
  123. GuoZ. ChenY. MaoY.F. ZhengT. JiangY. YanY. YinX. ZhangB. Long-term treatment with intranasal insulin ameliorates cognitive impairment, tau hyperphosphorylation, and microglial activation in a streptozotocin-induced Alzheimer’s rat model.Sci. Rep.2017714597110.1038/srep4597128382978
    [Google Scholar]
  124. RezvaniO. ShabbakE. AslaniA. BidarR. JafariM. SafarnezhadS. A randomized, double-blind, placebo-controlled trial to determine the effects of topical insulin on wound healing.Ostomy Wound Manage.2009558222819717853
    [Google Scholar]
  125. WongC.Y. Al-SalamiH. DassC.R. Current status and applications of animal models in pre-clinical development of orally administered insulin-loaded nanoparticles.J. Drug Target.202028988290310.1080/1061186X.2020.175907832310678
    [Google Scholar]
  126. DyerA.M. HinchcliffeM. WattsP. CastileJ. Jabbal-GillI. NankervisR. SmithA. IllumL. Nasal delivery of insulin using novel chitosan based formulations: A comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles.Pharm. Res.2002197998100810.1023/A:101641852301412180553
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018305677240611080910
Loading
/content/journals/cdd/10.2174/0115672018305677240611080910
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test