Skip to content
2000
Volume 22, Issue 8
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

The field of nanomedicine shows promising implications in the concurrent delivery of therapeutic and diagnostic (theranostics) compounds in a single platform. Nanotheranostics is incredibly promising since it offers simultaneous non-invasive disease detection and treatment together with the exciting ability to track drug release and distribution in real-time, thereby forecasting and evaluating the efficacy of the therapy. The cancer theranostic approach improves the cancer prognosis safely and effectively. Common classes of nanoscale biomaterials, including magnetic nanoparticles, quantum dots, upconversion nanoparticles, mesoporous silica nanoparticles, carbon-based nanoparticles, and organic dye-based nanoparticles, have demonstrated enormous potential for theranostic activity. The need for improved disease detection and enhanced chemotherapeutic treatments, together with realistic considerations for clinically translatable nanomaterials will be key driving factors for theranostic agent research shortly. The developments of precision theranostic nanomaterials are employed in imaging systems like, MRI, PET, and SPECT with multifunctional ability. In this review, different nanoparticles/nanomaterials that are used/developed for theranostic activity are discussed.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018307617240514092110
2024-05-29
2026-01-30
Loading full text...

Full text loading...

References

  1. JeyamoganS. KhanN.A. SiddiquiR. Application and importance of theranostics in the diagnosis and treatment of cancer.Arch. Med. Res.202152213114210.1016/j.arcmed.2020.10.01633423803
    [Google Scholar]
  2. Masoudi AsilS. GuerreroE.D. BugariniG. CaymeJ. De AvilaN. GarciaJ. HernandezA. MecadoJ. MaderoY. MoncayoF. OlmosR. PerchesD. RomanJ. Salcido-PadillaD. SanchezE. TrejoC. TrevinoP. NurunnabiM. NarayanM. Theranostic applications of multifunctional carbon nanomaterials.VIEW2023422022005610.1002/VIW.2022005637426287
    [Google Scholar]
  3. DennahyI.S. HanZ. MacCuaigW.M. ChalfantH.M. CondacseA. HagoodJ.M. Claros-SortoJ.C. RazaqW. Holter-ChakrabartyJ. SquiresR. EdilB.H. JainA. McNallyL.R. Nanotheranostics for image-guided cancer treatment.Pharmaceutics202214591710.3390/pharmaceutics1405091735631503
    [Google Scholar]
  4. LiJ. LiuF. GuptaS. LiC. Interventional nanotheranostics of pancreatic ductal adenocarcinoma.Theranostics2016691393140210.7150/thno.1512227375787
    [Google Scholar]
  5. SvenskayaY. GarelloF. LengertE. KozlovaA. VerkhovskiiR. BitontoV. RuggieroM.R. GermanS. GorinD. TerrenoE. Biodegradable polyelectrolyte/magnetite capsules for MR imaging and magnetic targeting of tumors.Nanotheranostics20215336237710.7150/ntno.5945833850694
    [Google Scholar]
  6. ChenH. QiuY. DingD. LinH. SunW. WangG.D. HuangW. ZhangW. LeeD. LiuG. XieJ. ChenX. Gadolinium-encapsulated graphene carbon nanotheranostics for imaging-guided photodynamic therapy.Adv. Mater.20183036180274810.1002/adma.20180274830035840
    [Google Scholar]
  7. ZhouL.Q. LiP. CuiX.W. DietrichC.F. Ultrasound nanotheranostics in fighting cancer: Advances and prospects.Cancer Lett.202047020421910.1016/j.canlet.2019.11.03431790760
    [Google Scholar]
  8. YanM. WuS. WangY. LiangM. WangM. HuW. YuG. MaoZ. HuangF. ZhouJ. Recent progress of supramolecular chemotherapy based on host–guest interactions.Adv. Mater.20232023230424910.1002/adma.20230424937478832
    [Google Scholar]
  9. ZhouJ. RaoL. YuG. CookT.R. ChenX. HuangF. Supramolecular cancer nanotheranostics.Chem. Soc. Rev.20215042839289110.1039/D0CS00011F33524093
    [Google Scholar]
  10. DingY. TongZ. JinL. YeB. ZhouJ. SunZ. An NIR discrete metallacycle constructed from perylene bisimide and tetraphenylethylene fluorophores for imaging-guided cancer radio-chemotherapy.Adv. Mater.2021347e210638810.1002/adma.20210638834821416
    [Google Scholar]
  11. EngudarG. Schaarup-JensenH. FliednerF.P. HansenA.E. KempenP. JølckR.I. KjæerA. AndresenT.L. ClausenM.H. JensenA.I. HenriksenJ.R. Remote loading of liposomes with a 124 I-radioiodinated compound and their in vivo evaluation by PET/CT in a murine tumor model.Theranostics20188215828584110.7150/thno.2670630613265
    [Google Scholar]
  12. ManF. LammersT. T M de RosalesR. Imaging nanomedicine-based drug delivery: A review of clinical studies.Mol. Imaging Biol.201820568369510.1007/s11307‑018‑1255‑230084044
    [Google Scholar]
  13. MuraS CouvreurP Nanotheranostics for personalized medicine.Adv Drug Deliv Rev201264131394416
    [Google Scholar]
  14. LimE.K. KimT. PaikS. HaamS. HuhY.M. LeeK. Nanomaterials for theranostics: Recent advances and future challenges.Chem. Rev.2015115132739410.1021/cr300213b25423180
    [Google Scholar]
  15. SiddhardhaB. ParasuramanP. Theranostics application of nanomedicine in cancer detection and treatment.Nanomaterials for Drug Delivery and TherapyAmsterdamElsevier2019598910.1016/B978‑0‑12‑816505‑8.00014‑X
    [Google Scholar]
  16. VogenbergF.R. Isaacson BarashC. PurselM. Personalized medicine: Part 1: Evolution and development into theranostics.P&T2010351056057621037908
    [Google Scholar]
  17. VatsS. SinghM. SirajS. SinghH. TandonS. Role of nanotechnology in theranostics and personalized medicines.J. Health Res. Rev. Dev. Ctries.2017411710.4103/2394‑2010.199328
    [Google Scholar]
  18. HussainS. MubeenI. UllahN. ShahS.S.U.D. KhanB.A. ZahoorM. UllahR. KhanF.A. SultanM.A. Modern diagnostic imaging technique applications and risk factors in the medical field: A review.BioMed Res. Int.2022202211910.1155/2022/516497035707373
    [Google Scholar]
  19. ChenF. EhlerdingE.B. CaiW. Theranostic Nanoparticles.J. Nucl. Med.201455121919192210.2967/jnumed.114.14601925413134
    [Google Scholar]
  20. ChourasiaM.K. JainS.K. Pharmaceutical approaches to colon targeted drug delivery systems.J. Pharm. Pharm. Sci.200361336612753729
    [Google Scholar]
  21. HamidiM. AzadiA. RafieiP. AshrafiH. A pharmacokinetic overview of nanotechnology-based drug delivery systems: An ADME-oriented approach.Crit Rev Ther Drug Carrier Syst.201330543567
    [Google Scholar]
  22. ShettyK. BhandariA. YadavK.S. Nanoparticles incorporated in nanofibers using electrospinning: A novel nano-in-nano delivery system.J. Control. Release202235042143410.1016/j.jconrel.2022.08.03536002053
    [Google Scholar]
  23. GunaydinG. GedikM.E. AyanS. Photodynamic Therapy—Current Limitations and Novel Approaches.Front Chem.2021969169710.3389/fchem.2021.69169734178948
    [Google Scholar]
  24. LiuJ. CuiZ. Fluorescent labeling of proteins of interest in live cells: Beyond fluorescent proteins.Bioconjug. Chem.20203161587159510.1021/acs.bioconjchem.0c0018132379972
    [Google Scholar]
  25. KumariS. SharmaN. SahiS.V. Advances in cancer therapeutics: Conventional thermal therapy to nanotechnology-based photothermal therapy.Pharmaceutics2021138117410.3390/pharmaceutics1308117434452135
    [Google Scholar]
  26. ChenY. WangS. ZhangF. Near-infrared luminescence high-contrast in vivo biomedical imaging.Nat. Rev. Bioeng.202311607810.1038/s44222‑022‑00002‑8
    [Google Scholar]
  27. GowthamP. HariniK. PallaviP. GirigoswamiK. GirigoswamiA. Nano-fluorophores as enhanced diagnostic tools to improve cellular imaging.Nanomed. J.202294107130
    [Google Scholar]
  28. WangK. HeX. YangX. ShiH. Functionalized silica nanoparticles: A platform for fluorescence imaging at the cell and small animal levels.Acc. Chem. Res.20134671367137610.1021/ar300152523489227
    [Google Scholar]
  29. YangC.T. HattiholiA. SelvanS.T. YanS.X. FangW.W. ChandrasekharanP. KoteswaraiahP. HeroldC.J. GulyásB. AwS.E. HeT. NgD.C.E. PadmanabhanP. Gadolinium-based bimodal probes to enhance T1-Weighted magnetic resonance/optical imaging.Acta Biomater.2020110153610.1016/j.actbio.2020.03.04732335310
    [Google Scholar]
  30. KimJ. LeeN. HyeonT. Recent development of nanoparticles for molecular imaging.Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci.201737521072017002210.1098/rsta.2017.002229038377
    [Google Scholar]
  31. LeeN. HyeonT. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents.Chem. Soc. Rev.20124172575258910.1039/C1CS15248C22138852
    [Google Scholar]
  32. UmarA. AtaboS. A review of imaging techniques in scientific research/clinical diagnosis.MOJ Anat Physiol.201965175183
    [Google Scholar]
  33. MaX. ChengZ. Positron emission tomography (PET) imaging in live animalsHandbook of In Vivo Chemistry in Mice: From Lab to Living SystemHoboken, New JerseyWiley202012749
    [Google Scholar]
  34. LiX. AntonN. ZuberG. VandammeT. Contrast agents for preclinical targeted X-ray imaging.Adv. Drug Deliv. Rev.20147611613310.1016/j.addr.2014.07.01325086373
    [Google Scholar]
  35. SunX. CaiW. ChenX. Positron emission tomography imaging using radiolabeled inorganic nanomaterials.Acc. Chem. Res.201548228629410.1021/ar500362y25635467
    [Google Scholar]
  36. LjungbergM. Quantitative SPECT imaging.Basic Sciences of Nuclear Medicine.ChamSpringer International Publishing202147350010.1007/978‑3‑030‑65245‑6_18
    [Google Scholar]
  37. PolyakA. RossT.L. Nanoparticles for SPECT and PET imaging: Towards personalized medicine and theranostics.Curr. Med. Chem.201825344328435310.2174/092986732466617083009555328875837
    [Google Scholar]
  38. AhmadiM. KhoramjouyM. DadashzadehS. AsadianE. MosayebniaM. GeramifarP. ShahhosseiniS. Ghorbani-BidkorpehF. Pharmacokinetics and biodistribution studies of [99mTc]-Labeled ZIF-8 nanoparticles to pave the way for image-guided drug delivery and theranostics.J. Drug Deliv. Sci. Technol.20238110424910.1016/j.jddst.2023.104249
    [Google Scholar]
  39. HuangQ. ZengZ. A review on real-time 3D ultrasound imaging technology.BioMed Res. Int.2017201712010.1155/2017/602702928459067
    [Google Scholar]
  40. PereraR.H. HernandezC. ZhouH. KotaP. BurkeA. ExnerA.A. Ultrasound imaging beyond the vasculature with new generation contrast agents.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20157459360810.1002/wnan.132625580914
    [Google Scholar]
  41. CarreseB. SanitàG. LambertiA. Nanoparticles design for theranostic approach in cancer disease.Cancers (Basel)20221419465410.3390/cancers1419465436230578
    [Google Scholar]
  42. ParveenS. MisraR. SahooS.K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging.Nanomedicine20128214716610.1016/j.nano.2011.05.01621703993
    [Google Scholar]
  43. ParveenS. SahooS.K. Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery.Eur. J. Pharmacol.20116702-337238310.1016/j.ejphar.2011.09.02321951969
    [Google Scholar]
  44. ParveenS. SahooS.K. Polymeric nanoparticles for cancer therapy.J. Drug Target.200816210812310.1080/1061186070179435318274932
    [Google Scholar]
  45. DilnawazF. AcharyaS. SahooS.K. Recent trends of nanomedicinal approaches in clinics.Int. J. Pharm.20185381-226327810.1016/j.ijpharm.2018.01.01629339248
    [Google Scholar]
  46. DilnawazF. Multifunctional mesoporous silica nanoparticles for cancer therapy and imaging.Curr. Med. Chem.201926315745576310.2174/092986732566618050110104429714137
    [Google Scholar]
  47. DilnawazF. Polymeric biomaterial and lipid based nanoparticles for oral drug delivery.Curr. Med. Chem.201724222423243827804879
    [Google Scholar]
  48. HuangH. LovellJ.F. Advanced functional nanomaterials for theranostics.Adv. Funct. Mater.2017272160352410.1002/adfm.20160352428824357
    [Google Scholar]
  49. LiechtyW.B. KryscioD.R. SlaughterB.V. PeppasN.A. Polymers for drug delivery systems.Annu. Rev. Chem. Biomol. Eng.20101114917310.1146/annurev‑chembioeng‑073009‑10084722432577
    [Google Scholar]
  50. SungY.K. KimS.W. Recent advances in polymeric drug delivery systems.Biomater. Res.20202411210.1186/s40824‑020‑00190‑732537239
    [Google Scholar]
  51. TanY.Y. YapP.K. Xin LimG.L. MehtaM. ChanY. NgS.W. KapoorD.N. NegiP. AnandK. SinghS.K. JhaN.K. LimL.C. MadheswaranT. SatijaS. GuptaG. DuaK. ChellappanD.K. Perspectives and advancements in the design of nanomaterials for targeted cancer theranostics.Chem. Biol. Interact.202032910922110.1016/j.cbi.2020.10922132768398
    [Google Scholar]
  52. GaoZ.G. FainH.D. RapoportN. Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound.J. Control. Release2005102120322210.1016/j.jconrel.2004.09.02115653146
    [Google Scholar]
  53. GhezziM. PescinaS. PadulaC. SantiP. Del FaveroE. CantùL. NicoliS. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions.J. Control. Release202133231233610.1016/j.jconrel.2021.02.03133652113
    [Google Scholar]
  54. LammersT. SubrV. PeschkeP. KühnleinR. HenninkW.E. UlbrichK. KiesslingF. HeilmannM. DebusJ. HuberP.E. StormG. Image-guided and passively tumour-targeted polymeric nanomedicines for radiochemotherapy.Br. J. Cancer200899690091010.1038/sj.bjc.660456119238631
    [Google Scholar]
  55. AbbasiE. AvalS.F. AkbarzadehA. MilaniM. NasrabadiH.T. JooS.W. HanifehpourY. Nejati-KoshkiK. Pashaei-AslR. Dendrimers: Synthesis, applications, and properties.Nanoscale Res. Lett.20149124710.1186/1556‑276X‑9‑24724994950
    [Google Scholar]
  56. XiongH. LiuS. WeiT. ChengQ. SiegwartD.J. Theranostic dendrimer-based lipid nanoparticles containing PEGylated BODIPY dyes for tumor imaging and systemic mRNA delivery in vivo.J. Control. Release202032519820510.1016/j.jconrel.2020.06.03032629133
    [Google Scholar]
  57. AkbarzadehA. Rezaei-SadabadyR. DavaranS. JooS.W. ZarghamiN. HanifehpourY. SamieiM. KouhiM. Nejati-KoshkiK. Liposome: Classification, preparation, and applications.Nanoscale Res. Lett.20138110210.1186/1556‑276X‑8‑10223432972
    [Google Scholar]
  58. SkU.H. KojimaC. Dendrimers for theranostic applications.Biomol. Concepts20156320521710.1515/bmc‑2015‑001226136305
    [Google Scholar]
  59. SongY. HuangZ. SongY. TianQ. LiuX. SheZ. JiaoJ. LuE. DengY. The application of EDTA in drug delivery systems: Doxorubicin liposomes loaded via NH4EDTA gradient.Int. J. Nanomedicine201493611362125120359
    [Google Scholar]
  60. TianB. Al-JamalW.T. Al-JamalK.T. KostarelosK. Doxorubicin-loaded lipid-quantum dot hybrids: Surface topography and release properties.Int. J. Pharm.2011416244344710.1016/j.ijpharm.2011.01.05721315141
    [Google Scholar]
  61. BowenT. Al-JamalW.T. KostarelosK. KostarelosK. The engineering of doxorubicin-loaded liposome-quantum dot hybrids for cancer theranostics.Chin. Phys. B201423808780510.1088/1674‑1056/23/8/087805
    [Google Scholar]
  62. SeleciM. Ag SeleciD. ScheperT. StahlF. ScheperT. StahlF. Theranostic liposome–nanoparticle hybrids for drug delivery and bioimaging.Int. J. Mol. Sci.2017187141510.3390/ijms1807141528671589
    [Google Scholar]
  63. Abu LilaA.S. KiwadaH. IshidaT. The accelerated blood clearance (ABC) phenomenon: Clinical challenge and approaches to manage.J. Control. Release20131721384710.1016/j.jconrel.2013.07.02623933235
    [Google Scholar]
  64. WeisslederR. Molecular imaging in cancer.Science200631257771168117110.1126/science.112594916728630
    [Google Scholar]
  65. HeH. ZhangX. DuL. YeM. LuY. XueJ. WuJ. ShuaiX. Molecular imaging nanoprobes for theranostic applications.Adv. Drug Deliv. Rev.202218611432010.1016/j.addr.2022.11432035526664
    [Google Scholar]
  66. KimD. JeongY.Y. JonS. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer.ACS Nano2010473689369610.1021/nn901877h20550178
    [Google Scholar]
  67. YueL. WangJ. DaiZ. HuZ. ChenX. QiY. ZhengX. YuD. A pH-responsive, self-sacrificial nanotheranostic agent for potential in vivo and in vitro dual modal MRI/CT imaging, real-time and in-situ monitoring of cancer therapy.Bioconjug. Chem.201728240040910.1021/acs.bioconjchem.6b0056228042941
    [Google Scholar]
  68. EjigahV. OwoseniO. Bataille-BackerP. OgundipeO.D. FisusiF.A. AdesinaS.K. Approaches to improve macromolecule and nanoparticle accumulation in the tumor microenvironment by the enhanced permeability and retention effect.Polymers (Basel)20221413260110.3390/polym1413260135808648
    [Google Scholar]
  69. WuJ. The Enhanced Permeability and Retention (EPR) effect: The significance of the concept and methods to enhance its application.J. Pers. Med.202111877110.3390/jpm1108077134442415
    [Google Scholar]
  70. DuW. YuanY. WangL. CuiY. WangH. XuH. LiangG. Multifunctional bioconjugate for cancer cell-targeted theranostics.Bioconjug. Chem.201526122571257810.1021/acs.bioconjchem.5b0057026580576
    [Google Scholar]
  71. GaoX. CuiY. LevensonR.M. ChungL.W.K. NieS. In vivo cancer targeting and imaging with semiconductor quantum dots.Nat. Biotechnol.200422896997610.1038/nbt99415258594
    [Google Scholar]
  72. ChengY. SamiaA.C. MeyersJ.D. PanagopoulosI. FeiB. BurdaC. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer.J. Am. Chem. Soc.200813032106431064710.1021/ja801631c18642918
    [Google Scholar]
  73. KelkarS.S. ReinekeT.M. Theranostics: Combining imaging and therapy.Bioconjug. Chem.201122101879190310.1021/bc200151q21830812
    [Google Scholar]
  74. Díaz-GonzálezM de la Escosura-MuñizA. Fernandez-ArgüellesMT García AlonsoFJ G Costa-FernandezJM Quantum dot bioconjugates for diagnostic applications.Top Curr Chem (Cham)2020378235
    [Google Scholar]
  75. SusumuK. MeiB.C. MattoussiH. Multifunctional ligands based on dihydrolipoic acid and polyethylene glycol to promote biocompatibility of quantum dots.Nat. Protoc.20094342443610.1038/nprot.2008.24719265801
    [Google Scholar]
  76. CormodeD.P. NahaP.C. FayadZ.A. Nanoparticle contrast agents for computed tomography: A focus on micelles.Contrast Media Mol. Imaging201491375210.1002/cmmi.155124470293
    [Google Scholar]
  77. AnaniT. RahmatiS. SultanaN. DavidA.E. MRI-traceable theranostic nanoparticles for targeted cancer treatment.Theranostics202111257960110.7150/thno.4881133391494
    [Google Scholar]
  78. DavidK.I. RavikumarT.S. SethuramanS. KrishnanU.M. Development and evaluation of a multi-functional organic–inorganic nanotheranostic hybrid for pancreatic cancer therapy.Biomed. Mater.202116505501610.1088/1748‑605X/ac177c34298521
    [Google Scholar]
  79. KhorenkoM. PfeiferJ. NappJ. MeschkovA. AlvesF. SchepersU. FeldmannC. Theranostic inorganic–organic hybrid nanoparticles with a cocktail of chemotherapeutic and cytostatic drugs.J. Mater. Chem. B Mater. Biol. Med.202311163635364910.1039/D3TB00226H37017673
    [Google Scholar]
  80. GaoF. WuJ. GaoH. HuX. LiuL. MidgleyA.C. LiuQ. SunZ. LiuY. DingD. WangY. KongD. HuangX. Hypoxia-tropic nanozymes as oxygen generators for tumor-favoring theranostics.Biomaterials202023011963510.1016/j.biomaterials.2019.11963531767443
    [Google Scholar]
  81. GaoH. CaoZ. LiuH. ChenL. BaiY. WuQ. YuX. WeiW. WangM. Multifunctional nanomedicines-enabled chemodynamic-synergized multimodal tumor therapy via Fenton and Fenton-like reactions.Theranostics20231361974201410.7150/thno.8088737064867
    [Google Scholar]
  82. YangH. HeY. WangY. YangR. WangN. ZhangL.M. GaoM. JiangX. Theranostic nanoparticles with aggregation-induced emission and mri contrast enhancement characteristics as a dual-modal imaging platform for image-guided tumor photodynamic therapy.Int. J. Nanomedicine2020153023303810.2147/IJN.S24454132431499
    [Google Scholar]
  83. MénardM. MeyerF. Affolter-ZbaraszczukC. RabineauM. AdamA. RamirezP.D. Bégin-ColinS. MertzD. Design of hybrid protein-coated magnetic core-mesoporous silica shell nanocomposites for MRI and drug release assessed in a 3D tumor cell model.Nanotechnology2019301717400110.1088/1361‑6528/aafe1c30641488
    [Google Scholar]
  84. SansonC. DiouO. ThévenotJ. IbarboureE. SoumA. BrûletA. MirauxS. ThiaudièreE. TanS. BrissonA. DupuisV. SandreO. LecommandouxS. Doxorubicin loaded magnetic polymersomes: Theranostic nanocarriers for MR imaging and magneto-chemotherapy.ACS Nano2011521122114010.1021/nn102762f21218795
    [Google Scholar]
  85. LiuD. YangF. XiongF. GuN.s. Smart drug delivery system and its clinical potential theranostic.Theranostics20166913061323
    [Google Scholar]
  86. Sánchez-LópezE. GuerraM. Dias-FerreiraJ. Lopez-MachadoA. EttchetoM. CanoA. EspinaM. CaminsA. GarciaM.L. SoutoE.B. Current applications of nanoemulsions in cancer therapeutics.Nanomaterials (Basel)20199682110.3390/nano906082131159219
    [Google Scholar]
  87. ZhangH. YuQ. LiY. YangZ. ZhouX. ChenS. JiangZ.X. Fluorinated cryptophane-A and porphyrin-based theranostics for multimodal imaging-guided photodynamic therapy.Chem. Commun. (Camb.)202056253617362010.1039/D0CC00694G32108215
    [Google Scholar]
  88. HouW. LouJ.W.H. BuJ. ChangE. DingL. ValicM. JeonH.H. CharronD.M. CoolensC. CuiD. ChenJ. ZhengG. A nanoemulsion with a porphyrin shell for cancer theranostics.Angew. Chem. Int. Ed.20195842149741497810.1002/anie.20190866431410962
    [Google Scholar]
  89. JainP. HassanN. IqbalZ. DilnawazF. Mesoporous silica nanoparticles: A versatile platform for biomedical applications.Recent Pat. Drug Deliv. Formul.201912422823710.2174/187221131366618120315285930501606
    [Google Scholar]
  90. NiuS. ZhangX. WilliamsG.R. WuJ. GaoF. FuZ. ChenX. LuS. ZhuL.M. Hollow mesoporous silica nanoparticles gated by chitosan-copper sulfide composites as theranostic agents for the treatment of breast cancer.Acta Biomater.202112640842010.1016/j.actbio.2021.03.02433731303
    [Google Scholar]
  91. KempenP.J. GreasleyS. ParkerK.A. CampbellJ.C. ChangH.Y. JonesJ.R. SinclairR. GambhirS.S. JokerstJ.V. Theranostic mesoporous silica nanoparticles biodegrade after pro-survival drug delivery and ultrasound/magnetic resonance imaging of stem cells.Theranostics20155663164210.7150/thno.1138925825602
    [Google Scholar]
  92. FreidusL.G. KumarP. MarimuthuT. PradeepP. ChoonaraY.E. Theranostic mesoporous silica nanoparticles loaded with a curcumin-naphthoquinone conjugate for potential cancer intervention.Front. Mol. Biosci.2021867079210.3389/fmolb.2021.67079234095225
    [Google Scholar]
  93. HeQ. ZhangJ. ChenF. GuoL. ZhuZ. ShiJ. An anti-ROS/hepatic fibrosis drug delivery system based on salvianolic acid B loaded mesoporous silica nanoparticles.Biomaterials201031307785779610.1016/j.biomaterials.2010.07.00820674009
    [Google Scholar]
  94. LiuY. CrawfordB.M. Vo-DinhT. Gold nanoparticles-mediated photothermal therapy and immunotherapy.Immunotherapy201810131175118810.2217/imt‑2018‑002930236026
    [Google Scholar]
  95. UsmanM. HusseinM. KuraA. FakuraziS. MasarudinM. Ahmad SaadF. Graphene oxide as a nanocarrier for a theranostics delivery system of protocatechuic acid and gadolinium/gold nanoparticles.Molecules201823250010.3390/molecules2302050029495251
    [Google Scholar]
  96. DemiralA. VerimliN. GoralıS.İ. YılmazH. ÇulhaM. ErdemS.S. A rational design of multi-functional nanoplatform: Fluorescent-based “off-on” theranostic gold nanoparticles modified with D-α-Tocopherol succinate.J. Photochem. Photobiol. B202122211226110.1016/j.jphotobiol.2021.11226134330081
    [Google Scholar]
  97. El-GharebW.I. SwidanM.M. IbrahimI.T. Abd El-BaryA. TadrosM.I. SakrT.M. 99mTc-doxorubicin-loaded gallic acid-gold nanoparticles (99mTc-DOX-loaded GA-Au NPs) as a multifunctional theranostic agent.Int. J. Pharm.202058611951410.1016/j.ijpharm.2020.11951432565281
    [Google Scholar]
  98. de OliveiraG. Aminolevulinic acid with gold nanoparticles: A novel theranostic agent for atherosclerosis.Analyst (Lond.)201514019741980
    [Google Scholar]
  99. BhattacharyaS. MK.R. PriyadarshaniJ. GangulyR. ChakrabortyS. Targeting magnetic nanoparticles in physiologically mimicking tissue microenvironment.ACS Appl. Mater. Interfaces20221428316893170110.1021/acsami.2c0724635786842
    [Google Scholar]
  100. DilnawazF. SinghA. MohantyC. SahooS.K. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy.Biomaterials201031133694370610.1016/j.biomaterials.2010.01.05720144478
    [Google Scholar]
  101. DilnawazF. SinghA. MewarS. SharmaU. JagannathanN.R. SahooS.K. The transport of non-surfactant based paclitaxel loaded magnetic nanoparticles across the blood brain barrier in a rat model.Biomaterials201233102936295110.1016/j.biomaterials.2011.12.04622264522
    [Google Scholar]
  102. MirandaM.S. AlmeidaA.F. GomesM.E. RodriguesM.T. Magnetic micellar nanovehicles: Prospects of multifunctional hybrid systems for precision theranostics.Int. J. Mol. Sci.202223191179310.3390/ijms23191179336233094
    [Google Scholar]
  103. MirkovićM. RadovićM. StankovićD. MilanovićZ. JankovićD. MatovićM. JeremićM. AntićB. Vranješ-ĐurićS. 99mTc–bisphosphonate–coated magnetic nanoparticles as potential theranostic nanoagent.Mater. Sci. Eng. C201910212413310.1016/j.msec.2019.04.03431146983
    [Google Scholar]
  104. ChenJ. LvM. SuX. WangS. WangY. FanZ. ZhangL. TangG. ICAM1-targeting theranostic nanoparticles for magnetic resonance imaging and therapy of triple-negative breast cancer.Int. J. Nanomedicine2022175605561910.2147/IJN.S37429336444196
    [Google Scholar]
  105. LaranjeiraM.S. RibeiroT.P. MagalhãesA.I. SilvaP.C. SantosJ.A.M. MonteiroF.J. Magnetic mesoporous silica nanoparticles as a theranostic approach for breast cancer: Loading and release of the poorly soluble drug exemestane.Int. J. Pharm.202261912171110.1016/j.ijpharm.2022.12171135367583
    [Google Scholar]
  106. KubovcikovaM. KonerackaM. StrbakO. MolcanM. ZavisovaV. AntalI. KhmaraI. LucanskaD. TomcoL. BarathovaM. ZatovicovaM. DobrotaD. PastorekovaS. KopcanskyP. Poly-L-lysine designed magnetic nanoparticles for combined hyperthermia, magnetic resonance imaging and cancer cell detection.J. Magn. Magn. Mater.201947531632610.1016/j.jmmm.2018.11.027
    [Google Scholar]
  107. LiuY. ZhangN. Gadolinium loaded nanoparticles in theranostic magnetic resonance imaging.Biomaterials201233215363537510.1016/j.biomaterials.2012.03.08422521487
    [Google Scholar]
  108. WangW. ZhangQ. ZhangM. LiuY. ShenJ. ZhouN. LuX. ZhaoC. Multifunctional red carbon dots: A theranostic platform for magnetic resonance imaging and fluorescence imaging-guided chemodynamic therapy.Analyst (Lond.)2020145103592359710.1039/D0AN00267D32319476
    [Google Scholar]
  109. WuY.F. WuH.C. KuanC.H. LinC.J. WangL.W. ChangC.W. WangT.W. Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy.Sci. Rep.2016612117010.1038/srep2117026880047
    [Google Scholar]
  110. KayaD. KüçükadaK. AlemdarN. Modeling the drug release from reduced graphene oxide-reinforced hyaluronic acid/gelatin/poly(ethylene oxide) polymeric films.Carbohydr. Polym.201921518919710.1016/j.carbpol.2019.03.04130981344
    [Google Scholar]
  111. SarkarG. SahaN.R. RoyI. BhattacharyyaA. AdhikariA. RanaD. BhowmikM. BoseM. MishraR. ChattopadhyayD. Cross-linked methyl cellulose/graphene oxide rate controlling membranes for in vitro and ex vivo permeation studies of diltiazem hydrochloride.RSC Advances2016642361363614510.1039/C5RA26358A
    [Google Scholar]
  112. WilhelmS. Perspectives for upconverting nanoparticles.ACS Nano20171111106441065310.1021/acsnano.7b0712029068198
    [Google Scholar]
  113. TuL. LiuX. WuF. ZhangH. Excitation energy migration dynamics in upconversion nanomaterials.Chem. Soc. Rev.20154461331134510.1039/C4CS00168K25223635
    [Google Scholar]
  114. TopelS.D. BalciogluS. AteşB. AsilturkM. TopelÖ. EricsonM.B. Cellulose acetate encapsulated upconversion nanoparticles – A novel theranostic platform.Mater. Today Commun.20212610182910.1016/j.mtcomm.2020.101829
    [Google Scholar]
  115. GuryevE.L. SmyshlyaevaA.S. ShilyaginaN.Y. SokolovaE.A. ShanwarS. KostyukA.B. LyubeshkinA.V. SchulgaA.A. KonovalovaE.V. LinQ. RoyI. BalalaevaI.V. DeyevS.M. ZvyaginA.V. UCNP-based photoluminescent nanomedicines for targeted imaging and theranostics of cancer.Molecules20202518430210.3390/molecules2518430232961731
    [Google Scholar]
  116. DeminaP.A. KhaydukovK.V. BabayevaG. VaraksaP.O. AtanovaA.V. StepanovM.E. NikolaevaM.E. KrylovI.V. EvstratovaI.I. PokrovskyV.S. ZhigarkovV.S. AkasovR.A. EgorovaT.V. KhaydukovE.V. GeneralovaA.N. Upconversion nanoparticles intercalated in large polymer micelles for tumor imaging and chemo/photothermal therapy.Int. J. Mol. Sci.202324131057410.3390/ijms24131057437445751
    [Google Scholar]
  117. YuY. HuangY. FengW. YangM. ShaoB. LiJ. YeF. NIR-triggered upconversion nanoparticles@thermo-sensitive liposome hybrid theranostic nanoplatform for controlled drug delivery.RSC Advances20211146290652907210.1039/D1RA04431A35478587
    [Google Scholar]
  118. LiP. YanY. ChenB. ZhangP. WangS. ZhouJ. FanH. WangY. HuangX. Lanthanide-doped upconversion nanoparticles complexed with nano-oxide graphene used for upconversion fluorescence imaging and photothermal therapy.Biomater. Sci.20186487788410.1039/C7BM01113J29493665
    [Google Scholar]
  119. VillalvaM.D. AgarwalV. UlanovaM. SachdevP.S. BraidyN. Quantum dots as a theranostic approach in Alzheimer’s disease: A systematic review.Nanomedicine (Lond.)202116181595161110.2217/nnm‑2021‑010434180261
    [Google Scholar]
  120. WangY. ChenJ. TianJ. WangG. LuoW. HuangZ. HuangY. LiN. GuoM. FanX. Tryptophan-sorbitol based carbon quantum dots for theranostics against hepatocellular carcinoma.J. Nanobiotechnology20222017810.1186/s12951‑022‑01275‑235164792
    [Google Scholar]
  121. ChenH. LiuZ. WeiB. HuangJ. YouX. ZhangJ. YuanZ. TangZ. GuoZ. WuJ. Redox responsive nanoparticle encapsulating black phosphorus quantum dots for cancer theranostics.Bioact. Mater.20216365566510.1016/j.bioactmat.2020.08.03433005829
    [Google Scholar]
  122. HaiderM. CaglianiR. JagalJ. JayakumarM.N. FayedB. ShakartallaS.B. PasrichaR. GreishK. El-AwadyR. Peptide-functionalized graphene oxide quantum dots as colorectal cancer theranostics.J. Colloid Interface Sci.2023630Pt A69871310.1016/j.jcis.2022.10.04536274405
    [Google Scholar]
  123. CuiY. DuanW. JinY. WoF. XiF. WuJ. Graphene quantum dot-decorated luminescent porous silicon dressing for theranostics of diabetic wounds.Acta Biomater.202113154455410.1016/j.actbio.2021.07.01834265475
    [Google Scholar]
  124. ChangC-H. TsaiI-C. ChiangC-J. ChaoY-P. A theranostic approach to breast cancer by a quantum dots- and magnetic nanoparticles-conjugated peptide.J. Taiwan Inst. Chem. Eng.201997889510.1016/j.jtice.2019.02.013
    [Google Scholar]
  125. LiH. JinK. LuoM. WangX. ZhuX. LiuX. JiangT. ZhangQ. WangS. PangZ. Size dependency of circulation and biodistribution of biomimetic nanoparticles: Red blood cell membrane-coated nanoparticles.Cells20198888110.3390/cells808088131412631
    [Google Scholar]
  126. MalhotraS. DumogaS. SinghN. Red blood cells membrane‐derived nanoparticles: Applications and key challenges in their clinical translation.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2022143e177610.1002/wnan.177635106966
    [Google Scholar]
  127. SheD. PengS. LiuL. HuangH. ZhengY. LuY. GengD. YinB. Biomimic FeS2 nanodrug with hypothermal photothermal effect by clinical approved NIR-Ⅱ light for augmented chemodynamic therapy.Chem. Eng. J.202040012593310.1016/j.cej.2020.125933
    [Google Scholar]
  128. JiangQ. LiuY. GuoR. YaoX. SungS. PangZ. YangW. Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors.Biomaterials201919229230810.1016/j.biomaterials.2018.11.02130465973
    [Google Scholar]
  129. MarshallS.K. AngsantikulP. PangZ. NasongklaN. HussenR.S.D. ThamphiwatanaS.D. Biomimetic targeted theranostic nanoparticles for breast cancer treatment.Molecules20222719647310.3390/molecules2719647336235009
    [Google Scholar]
  130. LiL. FuJ. WangX. ChenQ. ZhangW. CaoY. RanH. Biomimetic “Nanoplatelets” as a targeted drug delivery platform for breast cancer theranostics.ACS Appl. Mater. Interfaces20211333605362110.1021/acsami.0c1925933449625
    [Google Scholar]
  131. BukhariS.I. ImamS.S. AhmadM.Z. VuddandaP.R. AlshehriS. MahdiW.A. AhmadJ. Recent progress in lipid nanoparticles for cancer theranostics: Opportunity and challenges.Pharmaceutics202113684010.3390/pharmaceutics1306084034200251
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018307617240514092110
Loading
/content/journals/cdd/10.2174/0115672018307617240514092110
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test