Skip to content
2000
Volume 22, Issue 8
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Fatty acid vesicles, or ufasomes, are spherical structures that encapsulate and deliver bioactive molecules to the skin or other tissues. They are formed from both saturated and unsaturated fatty acids and offer advantages over liposomes, including greater stability and a wider range of pH compatibility. They are composed of two layers of fatty acid molecules with their hydrocarbon tails facing inwards and their carboxylic groups facing outwards. The space between the two layers is filled with surfactants. There are various methods for characterizing and evaluating the properties of vesicles and drug-loaded vesicles, such as differential scanning calorimetry (DSC), Electron microscopy, UV-visible spectrophotometry, Dialysis, Franz diffusion cell, and stability testing. Each method provides specific information about the vesicles, such as their size, zeta potential, morphology, drug content, entrapment efficiency, drug release, permeability, and stability. Ufasomes have potential applications in topical/transdermal drug delivery as food additives, cosmetics, vaccines, gene therapy vectors, and diagnostic tools. Their ability to encapsulate and deliver bioactive molecules makes them valuable in various fields, including drug delivery and biomedical research. In summary, fatty acid vesicles represent a versatile drug delivery system with potential applications in various fields.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018302045240510114907
2025-05-22
2026-01-14
Loading full text...

Full text loading...

References

  1. GebickiJ.M. HicksM. Ufasomes are stable particles surrounded by unsaturated fatty acid membranes.Nature1973243540423223410.1038/243232a04706295
    [Google Scholar]
  2. LimongiT. SusaF. MariniM. AllioneM. TorreB. PisanoR. di FabrizioE. Lipid-based nanovesicular drug delivery systems.Nanomaterials20211112339110.3390/nano1112339134947740
    [Google Scholar]
  3. QushawyM. AlenziA.M. AlbalawiS.A. AlghamdiS.G. AlbalawiR.F. AlbalawiH.S. Review on different vesicular drug delivery systems (VDDSs) and their applications.Recent Pat. Nanotechnol.2023171183210.2174/187221051666622022815062435227188
    [Google Scholar]
  4. MurakamiM. YoshikawaH. TakadaK. MuranishiS. Effect of oleic acid vesicles on intestinal absorption of carboxyfluorescein in rats.Pharm. Res.198631354010.1023/A:101636871463124271354
    [Google Scholar]
  5. ZhuT.F. BudinI. SzostakJ.W. Chapter Twenty-two-preparation of fatty acid micelles.Laboratory Methods in Enzymology: Cell, Lipid and Carbohydrate. LorschJ. Academic Press201328328810.1016/B978‑0‑12‑420067‑8.00022‑2
    [Google Scholar]
  6. AkbarzadehA. Rezaei-SadabadyR. DavaranS. JooS.W. ZarghamiN. HanifehpourY. SamieiM. KouhiM. KoshkiN.K. Liposome: Classification, preparation, and applications.Nanoscale Res. Lett.20138110210.1186/1556‑276X‑8‑10223432972
    [Google Scholar]
  7. HayashiK. KiriishiM. SugaK. OkamotoY. UmakoshiH. Investigation of fatty acid ketohydrazone modified liposome’s properties as a drug carrier.J. Drug Deliv.201520151710.1155/2015/48167026649201
    [Google Scholar]
  8. CaritáA. EloyJ. ChorilliM. LeeR. LeonardiG. Recent advances and perspectives in liposomes for cutaneous drug delivery.Curr. Med. Chem.201725560663528990515
    [Google Scholar]
  9. RosalinaA. SagitaE. IskandarsyahI. Novasome: Combining ufasome and niosome for excellent vesicular drug delivery system.Sci. Pharm.2023212636
    [Google Scholar]
  10. KaurL. SinghG. KaurM. DhawanR. KaurN. KhajuriaN. Impact of molecular building blocks on dynamic nature of novel biomimetic drug delivery systems as ufasomes and ufosomes: Modification in structure and surface charge.Curr. Nanomed.202313291101
    [Google Scholar]
  11. CristianoM.C. FroiioF. MancusoA. CoscoD. DiniL. Di MarzioL. FrestaM. PaolinoD. Oleuropein-laded ufasomes improve the nutraceutical efficacy.Nanomaterials202111110510.3390/nano1101010533406805
    [Google Scholar]
  12. FanY. FangY. MaL. The self-crosslinked ufasome of conjugated linoleic acid: Investigation of morphology, bilayer membrane and stability.Colloids Surf. B Biointerfaces201412381410.1016/j.colsurfb.2014.08.02825217809
    [Google Scholar]
  13. ApolinárioA.C. HauschkeL. NunesJ.R. LopesL.B. Lipid nanovesicles for biomedical applications: ‘What is in a name’?Prog. Lipid Res.20218210109610.1016/j.plipres.2021.10109633831455
    [Google Scholar]
  14. CascheraF. de la SernaJ.B. LöfflerP.M.G. RasmussenT.E. HanczycM.M. BagatolliL.A. MonnardP.A. Stable vesicles composed of monocarboxylic or dicarboxylic fatty acids and trimethylammonium amphiphiles.Langmuir20112723140781409010.1021/la203057b21932777
    [Google Scholar]
  15. CascheraF. StanoP. LuisiP.L. Reactivity and fusion between cationic vesicles and fatty acid anionic vesicles.J. Colloid Interface Sci.2010345256156510.1016/j.jcis.2010.01.05920181356
    [Google Scholar]
  16. ApelC.L. DeamerD.W. MautnerM.N. Self-assembled vesicles of monocarboxylic acids and alcohols: conditions for stability and for the encapsulation of biopolymers.Biochim. Biophys. Acta Biomembr.2002155911910.1016/S0005‑2736(01)00400‑X11825583
    [Google Scholar]
  17. WangM.H. KimJ.C. Vesicles composed of fatty acid and N-[3-(dimethylamino)propyl]-octadecanamide: Effect of fatty acid chain length on physicochemical properties of vesicles.Drug Dev. Ind. Pharm.201440331832410.3109/03639045.2012.76057823360361
    [Google Scholar]
  18. ChenI.A. SzostakJ.W. A kinetic study of the growth of fatty acid vesicles.Biophys. J.200487298899810.1529/biophysj.104.03987515298905
    [Google Scholar]
  19. XuW. LiuH. SongA. HaoJ. Bilayers and wormlike micelles at high pH in fatty acid soap systems.J. Colloid Interface Sci.201646530431010.1016/j.jcis.2015.12.00626688122
    [Google Scholar]
  20. FanY. MaJ. FangY. LiuT. HuX. XiaY. Neutral and acid-adapted fatty acid vesicles of conjugated linoleic acid.Colloids Surf. B Biointerfaces201816738539110.1016/j.colsurfb.2018.04.03529702469
    [Google Scholar]
  21. XuW. ZhangH. DongS. HaoJ. (133)Cs NMR and molecular dynamics simulation on bilayers of Cs(+) ion binding to aggregates of fatty acid soap at high pH.Langmuir20143039115671157310.1021/la503193h25255857
    [Google Scholar]
  22. KawabataY. IchiguchiK. AndoT. KatoT. Vesicle formations at critical vesicle concentration in a polyoxyethylene type nonionic surfactant system.Colloids Surf. A Physicochem. Eng. Asp.201446217918510.1016/j.colsurfa.2014.09.009
    [Google Scholar]
  23. PatelD. JaniR. UfasomesP. A vesicular drug delivery.Syst. Rev. Pharm.2011227278
    [Google Scholar]
  24. GebickiJ.M. HicksM. Preparation and properties of vesicles enclosed by fatty acid membranes.Chem. Phys. Lipids197616214216010.1016/0009‑3084(76)90006‑21269068
    [Google Scholar]
  25. LakshmiS.V. ManoharD.R. MathanS. DharanS.S. Ufasomes: A potential vesicular carrier system.J. Pharm. Sci. & Res.20201213321335
    [Google Scholar]
  26. WuthierR.E. Lipids of matrix vesicles.Fed. Proc.1976352117121765160
    [Google Scholar]
  27. KaurM. KaurL. SinghG. SinghL. KaurA. DhawanR.K. Investigation of fatty acid ketohydrazone modified liposome’s properties as a drug carrier.Curr. Nanosci.202319336237110.2174/1573413718666220919113148
    [Google Scholar]
  28. NaikP.V. DixitS.G. Ufasomes as Plausible Carriers for Horizontal Gene Transfer.J. Dispers. Sci. Technol.200829680480810.1080/01932690701781402
    [Google Scholar]
  29. BrockerhoffH. Model of interaction of polar lipids, cholesterol, and proteins in biological membranes.Lipids19749964565010.1007/BF025321694414692
    [Google Scholar]
  30. KunitakeT. Synthetic bilayer membranes: Molecular design, self‐organization, and application.Angew. Chem. Int. Ed. Engl.199231670972610.1002/anie.199207091
    [Google Scholar]
  31. FujikawaS.M. ChenI.A. SzostakJ.W. Shrink-wrap vesicles.Langmuir20052126121241212910.1021/la052590q16342983
    [Google Scholar]
  32. SubongkotT. NgawhirunpatT. OpanasopitP. Development of ultradeformable liposomes with fatty acids for enhanced dermal rosmarinic acid delivery.Pharmaceutics202113340410.3390/pharmaceutics1303040433803716
    [Google Scholar]
  33. AhmedS. AminM.M. SayedS. A comprehensive review on recent nanosystems for enhancing antifungal activity of fenticonazole nitrate from different routes of administration.Drug Deliv.2023301217912910.1080/10717544.2023.217912936788709
    [Google Scholar]
  34. LiuH. HuX. LiL. MengX. FangY. XiaY. Micron and nano hybrid ufasomes from conjugated linoleic acid, their vesiculation and encapsulation of ginsenoside Rg3.J. Sci. Food Agric.2022102104140415010.1002/jsfa.1176334997612
    [Google Scholar]
  35. VermaS. BhardwajA. VijM. BajpaiP. GoutamN. KumarL. Oleic acid vesicles: A new approach for topical delivery of antifungal agent.Artif. Cells Nanomed. Biotechnol.20144229510110.3109/21691401.2013.79435123656670
    [Google Scholar]
  36. SinghN. SinghG. KaurL. DhawanR.K. SandhuG.S. SharmaM. KaurM. Ufasomes: An emerging vesicular system and a comparative study with other vesicular carriers.Int. J. Pharm. Sci. Rev. Res.202274213313810.47583/ijpsrr.2022.v74i02.021
    [Google Scholar]
  37. SalamaA.H. AburahmaM.H. Ufasomes nano-vesicles-based lyophilized platforms for intranasal delivery of cinnarizine: Preparation, optimization, ex-vivo histopathological safety assessment and mucosal confocal imaging.Pharm. Dev. Technol.201621670671525996631
    [Google Scholar]
  38. JunyaprasertV.B. SinghsaP. SuksiriworapongJ. ChantasartD. Physicochemical properties and skin permeation of Span 60/Tween 60 niosomes of ellagic acid.Int. J. Pharm.2012423230331110.1016/j.ijpharm.2011.11.03222155414
    [Google Scholar]
  39. ZhengY. ZiY. TaoL. XuJ. ChenJ. YangM. WangX. ZhongJ. Effects of Span surfactants on the preparation and properties of fish oil-loaded sodium alginate-stabilized emulsions and calcium alginate-stabilized capsules.Int. J. Biol. Macromol.202222183184110.1016/j.ijbiomac.2022.08.18736063894
    [Google Scholar]
  40. AhmedY.M. OrfaliR. HamadD.S. RatebM.E. FaroukH.O. Sustainable release of propranolol hydrochloride laden with biconjugated-ufasomes chitosan hydrogel attenuates cisplatin-induced sciatic nerve damage in in vitro/in vivo evaluation.Pharmaceutics2022148153610.3390/pharmaceutics1408153635893792
    [Google Scholar]
  41. NaikA. PechtoldL.A.R.M. PottsR.O. GuyR.H. Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans.J. Control. Release199537329930610.1016/0168‑3659(95)00088‑7
    [Google Scholar]
  42. DaveV. YadavS. SharmaS. PanwarN. Guggulusome - A novel vesicular carriers for enhanced transdermal delivery.Iraqi J. Pharm Sci.2017231738210.31351/vol23iss1pp73‑82
    [Google Scholar]
  43. KotlaN.G. ChandrasekarB. RooneyP. SivaramanG. LarrañagaA. KrishnaK.V. PanditA. RochevY. Biomimetic lipid-based nanosystems for enhanced dermal delivery of drugs and bioactive agents.ACS Biomater. Sci. Eng.2017371262127210.1021/acsbiomaterials.6b0068133440514
    [Google Scholar]
  44. HanS. Molecular dynamics simulation of oleic acid/oleate bilayers: An atomistic model for a ufasome membrane.Chem. Phys. Lipids2013175-176798310.1016/j.chemphyslip.2013.08.00423994553
    [Google Scholar]
  45. SalihS.O. Invasomes as a novel delivery carrier for transdermal delivery: Review article.Medi. Pharmaceut. Sci.202220222
    [Google Scholar]
  46. AsharaK.C. PaunJ.S. SoniwalaM.M. ChavdaJ.R. NathawaniS.V. MoriN.M. Vesicular drug delivery system: A novel approach.Mintage. J. Pharm. Med. Sci.20143114
    [Google Scholar]
  47. BhattacharyaS. Preparation and characterizations of glyceryl oleate ufasomes of terbinafine hydrochloride: A novel approach to trigger Candida albicans fungal infection.Future J. Pharm. Sci.202171310.1186/s43094‑020‑00143‑w
    [Google Scholar]
  48. RasiS. MavelliF. LuisiP.L. Matrix effect in oleate micelles-vesicles transformation.Orig. Life Evol. Biosph.2004341/221522410.1023/B:ORIG.0000009841.20997.ac14979657
    [Google Scholar]
  49. BlackR. BlosserM. A self-assembled aggregate composed of a fatty acid membrane and the building blocks of biological polymers provides a first step in the emergence of protocells.Life2016633310.3390/life603003327529283
    [Google Scholar]
  50. RasiS. MavelliF. LuisiP.L. Cooperative micelle binding and matrix effect in oleate vesicle formation.J. Phys. Chem. B200310750140681407610.1021/jp0277199
    [Google Scholar]
  51. RukariT. PingaleP. UpasaniC. Vesicular drug delivery systems for the fungal infections’ treatment through topical application-A systemic review.J. Curr. Sci. Technol.202313250051610.59796/jcst.V13N2.2023.1856
    [Google Scholar]
  52. HashemS.M. GadM.K. AnwarH.M. SalehN.M. ShammaR.N. ElsherifN.I. Itraconazole-loaded ufasomes: Evaluation, characterization, and anti-fungal activity against Candida albicans. Pharmaceutics20221512610.3390/pharmaceutics1501002636678655
    [Google Scholar]
  53. BoseS. KohnM.B. Preparation and characterization of lipid based nanosystems for topical delivery of quercetin.Eur. J. Pharm. Sci.201348344245210.1016/j.ejps.2012.12.00523246734
    [Google Scholar]
  54. RashidA.M. HammidA.S.N. Formulation and characterization of itraconazole as nanosuspension dosage form for enhancement of solubility.Iraqi J. Pharm. Sci.201928212413310.31351/vol28iss2pp124‑133
    [Google Scholar]
  55. MuhammedS.A. Al-KinaniK.K. Formulation and in vitro evaluation of meloxicam as a self-microemulsifying drug delivery system.F1000 Res.20231231510.12688/f1000research.130749.137359788
    [Google Scholar]
  56. Bin JardanY.A. AhadA. RaishM. Al-JenoobiF.I. Preparation and characterization of transethosome formulation for the enhanced delivery of sinapic acid.Pharmaceutics20231510239110.3390/pharmaceutics1510239137896151
    [Google Scholar]
  57. KadhimZ.M. MahmoodH.S. AlaayediM. GhareebM.M. Formulation of flurbiprofen as microsponge drug delivery system.Int. J. Pharmaceut. Res.202012748753
    [Google Scholar]
  58. KhafeefH.k. RajabN.R. Eplerenone crystal nanosuspension for solubility enhancement: Preparation and evaluation.Maaen J. Med. Sci.202327380
    [Google Scholar]
  59. NashatB.I. Al-KinaniK.K. Nanoemulsion formulation of lefl unomide for transdermal delivery: Preparation and characterization.Int. J. Drug Del. Technol.2023131576510.25258/ijddt.13.1.09
    [Google Scholar]
  60. HicksM. GebickiJ.M. Microscopic studies of fatty acid vesicles.Chem. Phys. Lipids197720324325210.1016/0009‑3084(77)90040‑8
    [Google Scholar]
  61. AbdulqaderA.A. SultanN.A.R. Preparation and characterization of Posaconazole as a Nano-micelles using d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS).Iraqi J. Pharm Sci.2023322632
    [Google Scholar]
  62. HazzaaS.A.A. AyashN. Cilnidipine nanocrystals, formulation and evaluation for optimization of solubility and dissolution rate.Iraqi J. Pharm Sci.202332127135
    [Google Scholar]
  63. FanY. FangY. MaL. JiangH. Investigation of micellization and vesiculation of conjugated linoleic acid by means of self‐assembling and self‐crosslinking.J. Surfactants Deterg.201518117918810.1007/s11743‑014‑1591‑4
    [Google Scholar]
  64. NoorA.H. GhareebM.M. Formulation and evaluation of ondansetron HCl nanoparticles for transdermal delivery.Iraqi J. Pharm Sci.202029707810.31351/vol29iss2pp70‑79
    [Google Scholar]
  65. NoorA.D. RajabN.A. Formulation and characterization of niosomes for controlled delivery of tolmetin.J. Pharm. Negat. Results202213159169
    [Google Scholar]
  66. RaheemaA.D. Preparation and in-vitro evaluation of secnidazole as periodontal in-situ gel for treatment of periodontal disease.Iraqi J. Pharm Sci.2022312
    [Google Scholar]
  67. AthiraJ.N. AswathiK. AshithaG. AthiraP.P. SreejaC.N. Ufasome: A potential phospholipid carrieras a novel pharmaceutical formulation.Int. Res. J. Pharm.201454250253
    [Google Scholar]
  68. MohammedI.A. GhareebM.M. Investigation of Solubility Enhancement Approach of Ticagrelor.Iraqi J. Pharm Sci.20182781910.31351/vol27iss1pp8‑19
    [Google Scholar]
  69. Al-MahmoodA.A. AlhammidS.N.A. Formulation and characterization of floating biphasic tablet consisting of cefdinir nanosuspension.Int. J. Health Sci.202261215412172
    [Google Scholar]
  70. WissamM.S. KamalB.A. Preparation and in vitro permeation of chlopheniramine maleate (CPM) from gel through rat skin.Iraqi J. Pharm Sci.200817677310.31351/vol17iss2pp67‑73
    [Google Scholar]
  71. GarrósN. SalgadosB.P. DomènechÒ. LagunasR.M.J. BeirampourN. MeyabadiM.R. MallandrichM. CalpenaA.C. ColomH. Baricitinib lipid-based nanosystems as a topical alternative for atopic dermatitis treatment.Pharmaceuticals202316689410.3390/ph1606089437375841
    [Google Scholar]
  72. LuhaibiD.K. AliH.H.M. Al-AniI. ShalanN. Al-AkaylehF. Al-RemawiM. NasereddinJ. QinnaN.A. Al-AdhamI. KhanfarM. The formulation and evaluation of deep eutectic vehicles for the topical delivery of azelaic acid for acne treatment.Molecules20232819692710.3390/molecules2819692737836770
    [Google Scholar]
  73. Al-SarrafM. HusseinA. Al-KinaniK. Formulation, characterization, and optimization of zaltoprofen nanostructured lipid carriers (Nlcs).Int. J. Drug Deliv. Technol.202111434442
    [Google Scholar]
  74. FareedY.N. KassabJ.H. Diacerein loaded novasome for transdermal delivery: Preparation, in-vitro characterization and factors affecting formulation.Iraqi J. Pharm Sci.2023202332
    [Google Scholar]
  75. AlkhiroA.R. GhareebM.M. Formulation and evaluation of iornoxicam as dissolving microneedle patch.Iraqi J. Pharm Sci.202029118419410.31351/vol29iss1pp184‑194
    [Google Scholar]
  76. AshoorJA GhareebMM Preparation and in vitro evaluation of methotrexate mucoadhesive nanogel proposed for cervical cancer therapy.Kerbala J. Pharm. Pharmaceut. Sci.20222022101115
    [Google Scholar]
  77. TaftiM.Z.S. MoshiriA. MarvastiE.F. TarashiS. KhaliliS.S.F. MotahharyA. FatehA. VaziriF. BadiA.S. SiadatS.D. The effect of saturated and unsaturated fatty acids on the production of outer membrane vesicles from Bacteroides fragilis and Bacteroides thetaiotaomicron. Gastroenterol. Hepatol. Bed Bench201912215516231191841
    [Google Scholar]
  78. CarrilloC. CaviaM.M. TorreA.S.R. Oleic acid inhibits store-operated calcium entry in human colorectal adenocarcinoma cells.Eur. J. Nutr.201251667768410.1007/s00394‑011‑0246‑821956128
    [Google Scholar]
  79. VermaS. UtrejaP. Exploring therapeutic potential of invasomes, transfersomes, transethosomes, oleic acid vesicles, and cubosomes adopting topical/transdermal route.Micro Nanosyst.202214132010.2174/1876402913666210406163452
    [Google Scholar]
  80. RamakrishnanK. SalinasR.C. HiguitaA.N.I. Skin and soft tissue infections.Am. Fam. Physician201592647448326371732
    [Google Scholar]
  81. KovitwanichkanontT. ChongA. Superficial fungal infections.Aust. J. Gen. Pract.2019481070671110.31128/AJGP‑05‑19‑493031569324
    [Google Scholar]
  82. MartinM.V. The use of fluconazole and itraconazole in the treatment of Candida albicans infections: A review.J. Antimicrob. Chemother.199944442943710.1093/jac/44.4.42910588302
    [Google Scholar]
  83. GuptaA.K. FoleyK.A. VersteegS.G. New antifungal agents and new formulations against dermatophytes.Mycopathologia20171821-212714110.1007/s11046‑016‑0045‑027502503
    [Google Scholar]
  84. MathurM. DeviV.K. Potential of novel drug delivery systems in the management of topical candidiasis.J. Drug Target.201725868570310.1080/1061186X.2017.133135228521529
    [Google Scholar]
  85. VartakR. MenonS. PatkiM. BillackB. PatelK. Ebselen nanoemulgel for the treatment of topical fungal infection.Eur. J. Pharm. Sci.202014810532310.1016/j.ejps.2020.10532332259677
    [Google Scholar]
  86. NgianG-S. Rheumatoid arthritis.Aust. Fam. Physician201039962662820877764
    [Google Scholar]
  87. RaduA.F. BungauS.G. Management of rheumatoid arthritis: An overview.Cells20211011285710.3390/cells1011285734831081
    [Google Scholar]
  88. BissettD.L. Glucosamine: An ingredient with skin and other benefits.J. Cosmet. Dermatol.20065430931510.1111/j.1473‑2165.2006.00277.x17716251
    [Google Scholar]
  89. DahmerS. SchillerR.M. Glucosamine.Am. Fam. Physician200878447147618756654
    [Google Scholar]
  90. GrossK. KircikL. KricorianG. 5% 5-Fluorouracil cream for the treatment of small superficial Basal cell carcinoma: Efficacy, tolerability, cosmetic outcome, and patient satisfaction.Dermatol. Surg.200733443344010.1097/00042728‑200704000‑0000817430377
    [Google Scholar]
  91. RasheedM.S. AnsariS.F. ShahzadiI. Formulation, characterization of glucosamine loaded transfersomes and in vivo evaluation using papain induced arthritis model.Sci. Rep.20221211981310.1038/s41598‑022‑23103‑136396950
    [Google Scholar]
  92. MetterleL. NelsonC. PatelN. Intralesional 5-fluorouracil (FU) as a treatment for nonmelanoma skin cancer (NMSC): A review.J. Am. Acad. Dermatol.201674355255710.1016/j.jaad.2015.09.04026577512
    [Google Scholar]
  93. PatelG. YadavB.K.N. Study of 5-fluorouracil loaded chitosan nanoparticles for treatment of skin cancer.Recent Pat. Nanotechnol.202014321022410.2174/187221051366619070216555631267881
    [Google Scholar]
  94. ZakirF. VaidyaB. GoyalA.K. MalikB. VyasS.P. Development and characterization of oleic acid vesicles for the topical delivery of fluconazole.Drug Deliv.201017423824810.3109/1071754100368098120235758
    [Google Scholar]
  95. KaurN GargR DevganM SinghA SinghV. Ufasomes and transfersomes gel of oxiconazole: A comparative study.J. Bionanosci.201711319420210.1166/jbns.2017.1428
    [Google Scholar]
  96. SharmaA. AroraS. Formulation and in vitro evaluation of ufasomes for dermal administration of methotrexate.ISRN Pharm.201220121810.5402/2012/87365322745918
    [Google Scholar]
  97. MittalR SharmaA AroraS. Ufasomes mediated cutaneous delivery of dexamethasone: Formulation and evaluation of anti-inflammatory activity by carrageenin-induced rat paw edema model.J Pharm20132013680580
    [Google Scholar]
  98. DhillonV. SharmaS. JainS. AroraS. SharmaA. New topical 5-fu by drug entrapment in oleic acid vesicles.Amer. J. PharmTech Res.201111
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018302045240510114907
Loading
/content/journals/cdd/10.2174/0115672018302045240510114907
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cholesterol; Drug delivery; fatty acids; oleic acid; topical; transdermal; ufasomes; vesicles
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test