Skip to content
2000
Volume 22, Issue 9
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Nanoliposomal formulations, utilizing lipid bilayers to encapsulate therapeutic agents, hold promise for targeted drug delivery. Recent studies have explored the application of machine learning (ML) techniques in this field. This study aims to elucidate the motivations behind integrating ML into liposomal formulations, providing a nuanced understanding of its applications and highlighting potential advantages. The review begins with an overview of liposomal formulations and their role in targeted drug delivery. It then systematically progresses through current research on ML in this area, discussing the principles guiding ML adaptation for liposomal preparation and characterization. Additionally, the review proposes a conceptual model for effective ML incorporation. The review explores popular ML techniques, including ensemble learning, decision trees, instance-based learning, and neural networks. It discusses feature extraction and selection, emphasizing the influence of dataset nature and ML method choice on technique relevance. The review underscores the importance of supervised learning models for structured liposomal formulations, where labeled data is essential. It acknowledges the merits of K-fold cross-validation but notes the prevalent use of single train/test splits in liposomal formulation studies. This practice facilitates the visualization of results through 3D plots for practical interpretation. While highlighting the mean absolute error as a crucial metric, the review emphasizes consistency between predicted and actual values. It clearly demonstrates ML techniques' effectiveness in optimizing critical formulation parameters such as encapsulation efficiency, particle size, drug loading efficiency, polydispersity index, and liposomal flux. In conclusion, the review navigates the nuances of various ML algorithms, illustrating ML's role as a decision support system for liposomal formulation development. It proposes a structured framework involving experimentation, physicochemical analysis, and iterative ML model refinement through human-centered evaluation, guiding future studies. Emphasizing meticulous experimentation, interdisciplinary collaboration, and continuous validation, the review advocates seamless ML integration into liposomal drug delivery research for robust advancements. Future endeavors are encouraged to uphold these principles.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018302321240620072039
2025-06-27
2026-01-30
Loading full text...

Full text loading...

References

  1. AbdallaY. ElbadawiM. JiM. AlkahtaniM. AwadA. OrluM. GaisfordS. BasitA.W. Machine learning using multi-modal data predicts the production of selective laser sintered 3D printed drug products.Int. J. Pharm.202363312262810.1016/j.ijpharm.2023.12262836682506
    [Google Scholar]
  2. JordanM.I. MitchellT.M. Machine learning: Trends, perspectives, and prospects.Science2015349624525526010.1126/science.aaa841526185243
    [Google Scholar]
  3. SabetianG. AzimiA. KazemiA. HoseiniB. AsmarianN. KhalooV. ZandF. MasjediM. ShahriariradR. ShahriariradS. Prediction of patients with COVID-19 requiring intensive care: A cross-sectional study based on machine-learning approach from iran.Indian J. Crit. Care Med.202226668869510.5005/jp‑journals‑10071‑2422635836646
    [Google Scholar]
  4. JiangJ. LuA. MaX. OuyangD. WilliamsR.O.III The applications of machine learning to predict the forming of chemically stable amorphous solid dispersions prepared by hot-melt extrusion.Int. J. Pharm. X2023510016410.1016/j.ijpx.2023.10016436798832
    [Google Scholar]
  5. JiangJ. PengH.H. YangZ. MaX. SahakijpijarnS. MoonC. OuyangD. WilliamsR.O.III The applications of machine learning (ML) in designing dry powder for inhalation by using thin-film-freezing technology.Int. J. Pharm.202262612217910.1016/j.ijpharm.2022.12217936084876
    [Google Scholar]
  6. RahmatinejadZ. DehghaniT. HoseiniB. RahmatinejadF. LotfataA. ReihaniH. EslamiS. A comparative study of explainable ensemble learning and logistic regression for predicting in-hospital mortality in the emergency department.Sci. Rep.2024141340610.1038/s41598‑024‑54038‑438337000
    [Google Scholar]
  7. LotfataA MoosazadehM HelbichM HoseiniB Socioeconomic and environmental determinants of asthma prevalence: A cross-sectional study at the U.S. County level using geographically weighted random forests.Int. J. Health Geogr.20232211810.1186/s12942‑023‑00343‑6
    [Google Scholar]
  8. YeZ. YangW. YangY. OuyangD. Interpretable machine learning methods for in vitro pharmaceutical formulation development.Food Front.20212219520710.1002/fft2.78
    [Google Scholar]
  9. YangX. WangY. ByrneR. SchneiderG. YangS. Concepts of artificial intelligence for computer-assisted drug discovery.Chem. Rev.201911918105201059410.1021/acs.chemrev.8b0072831294972
    [Google Scholar]
  10. HeS. LeanseL.G. FengY. Artificial intelligence and machine learning assisted drug delivery for effective treatment of infectious diseases.Adv. Drug Deliv. Rev.202117811392210.1016/j.addr.2021.11392234461198
    [Google Scholar]
  11. UristaD.V. CarruéD.B. OteroI. ArrasateS. Quevedo-TumailliV.F. GestalM. González-DíazH. MunteanuC.R. Prediction of antimalarial drug-decorated nanoparticle delivery systems with random forest models.Biology20209819810.3390/biology908019832751710
    [Google Scholar]
  12. BaharifarH. AmaniA. Size, loading efficiency, and cytotoxicity of albumin-loaded chitosan nanoparticles: An artificial neural networks study.J. Pharm. Sci.2017106141141710.1016/j.xphs.2016.10.01327866686
    [Google Scholar]
  13. BanniganP. AldeghiM. BaoZ. HäseF. Aspuru-GuzikA. AllenC. Machine learning directed drug formulation development.Adv. Drug Deliv. Rev.202117511380610.1016/j.addr.2021.05.01634019959
    [Google Scholar]
  14. AkbarzadehA. Rezaei-SadabadyR. DavaranS. JooS.W. ZarghamiN. HanifehpourY. SamieiM. KouhiM. Nejati-KoshkiK. Liposome: Classification, preparation, and applications.Nanoscale Res. Lett.20138110210.1186/1556‑276X‑8‑10223432972
    [Google Scholar]
  15. AlavizadehS.H. BadieeA. KhamesipourA. JalaliS.A. FirouzmandH. AbbasiA. JaafariM.R. The role of liposome–protamine–DNA nanoparticles containing CpG oligodeoxynucleotides in the course of infection induced by Leishmania major in BALB/c mice.Exp. Parasitol.2012132331331910.1016/j.exppara.2012.06.01422819791
    [Google Scholar]
  16. AminM. BagheriM. MansourianM. JaafariM.R. ten HagenT.L.M. Regulation of in vivo behavior of TAT-modified liposome by associated protein corona and avidity to tumor cells.Int. J. Nanomedicine2018137441745510.2147/IJN.S17027430532532
    [Google Scholar]
  17. AngmoS. RanaS. YadavK. SandhirR. SinghalN.K. Novel liposome eencapsulated guanosine di phosphate based therapeutic target against anemia of inflammation.Sci. Rep.2018811768410.1038/s41598‑018‑35992‑230523271
    [Google Scholar]
  18. DingT. LiT. WangZ. LiJ. Curcumin liposomes interfere with quorum sensing system of Aeromonas sobria and in silico analysis.Sci. Rep.201771861210.1038/s41598‑017‑08986‑928819178
    [Google Scholar]
  19. LiL. BraitehF.S. KurzrockR. Liposome-encapsulated curcumin.Cancer200510461322133110.1002/cncr.2130016092118
    [Google Scholar]
  20. LiuP. ChenG. ZhangJ. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives.Molecules2022274137210.3390/molecules2704137235209162
    [Google Scholar]
  21. DasS SamantaA MondalS RoyD NayakAK Design and release kinetics of liposomes containing abiraterone acetate for treatment of prostate cancer.Sens. Int.2021210007710.1016/j.sintl.2020.100077
    [Google Scholar]
  22. KarimiM. GheybiF. ZamaniP. MashreghiM. GolmohammadzadehS. DarbanS.A. BadieeA. JaafariM.R. Preparation and characterization of stable nanoliposomal formulations of curcumin with high loading efficacy: In vitro and in vivo anti-tumor study.Int. J. Pharm.202058011921110.1016/j.ijpharm.2020.11921132156530
    [Google Scholar]
  23. KarimiM. MashreghiM. Shokooh SaremiS. JaafariM.R. Spectrofluorometric method development and validation for the determination of curcumin in nanoliposomes and plasma.J. Fluoresc.20203051113111910.1007/s10895‑020‑02574‑332643044
    [Google Scholar]
  24. HamedinasabH. RezayanA.H. MellatM. MashreghiM. JaafariM.R. Development of chitosan-coated liposome for pulmonary delivery of N-acetylcysteine.Int. J. Biol. Macromol.20201561455146310.1016/j.ijbiomac.2019.11.19031770553
    [Google Scholar]
  25. MirhadiE. MashreghiM. AskarizadehA. MehrabianA. AlavizadehS.H. ArabiL. BadieeA. JaafariM.R. Redox-sensitive doxorubicin liposome: A formulation approach for targeted tumor therapy.Sci. Rep.20221211131010.1038/s41598‑022‑15239‑x35788647
    [Google Scholar]
  26. YazdaniM. NikpoorA.R. GholizadehZ. Mohamadian RoshanN. SeifalianA. JaafariM.R. BadieeA. Comparison of two routes of administration of a cationic liposome formulation for a prophylactic DC vaccination in a murine melanoma model.Int. Immunopharmacol.20219810783310.1016/j.intimp.2021.10783334352472
    [Google Scholar]
  27. AhmedS.A. SalamaA.A. GaberM.H. AliS.A. Development and characterization of soy lecithin liposome as potential drug carrier systems for doxorubicin.J. Pharm. Innov.20231831415142610.1007/s12247‑023‑09732‑7
    [Google Scholar]
  28. RajputA. ButaniS. Donepezil HCl liposomes: Development, characterization, cytotoxicity, and pharmacokinetic study.AAPS PharmSciTech20222327410.1208/s12249‑022‑02209‑935149912
    [Google Scholar]
  29. BaskararajS PanneerselvamT GovindarajS ArunachalamS ParasuramanP PandianSRK Formulation and characterization of folate receptor-targeted PEGylated liposome encapsulating bioactive compounds from Kappaphycus alvarezii for cancer therapy.3 Biotech202010313610.1007/s13205‑020‑2132‑7
    [Google Scholar]
  30. RoyA.S. DasS. SamantaA. Design, formulation and evaluation of liposome containing isoniazid.Int. J. Appl. Pharmac.2018102525610.22159/ijap.2018v10i2.24174
    [Google Scholar]
  31. AsharF. HaniU. OsmaniR.A.M. KazimS.M. SelvamuthukumarS. Preparation and optimization of ibrutinib-loaded nanoliposomes using response surface methodology.Polymers20221418388610.3390/polym1418388636146030
    [Google Scholar]
  32. KunjiappanS. PanneerselvamT. SomasundaramB. ArunachalamS. SankaranarayananM. ParasuramanP. Preparation of liposomes encapsulated Epirubicin-gold nanoparticles for Tumor specific delivery and release.Biomed. Phys. Eng. Express20184404502710.1088/2057‑1976/aac9ec
    [Google Scholar]
  33. ObiedallahM.M. MironovM.A. BelyaevD.V. EneA. VakhrushevaD.V. KrasnoborovaS.Y. BershitskyS.Y. ShchepkinD.V. MininA.S. IshmetovaR.I. IgnatenkoN.K. TolshchinaS.G. FedorovaO.V. RusinovG.L. Optimization, characterization, and cytotoxicity studies of novel anti-tubercular agent-loaded liposomal vesicles.Sci. Rep.202414152410.1038/s41598‑023‑49576‑238177202
    [Google Scholar]
  34. Rahmanian-DevinP. AskariV.R. Sanei-FarZ. Baradaran RahimiV. KamaliH. JaafariM.R. GolmohammadzadehS. Preparation and characterization of solid lipid nanoparticles encapsulated noscapine and evaluation of its protective effects against imiquimod-induced psoriasis-like skin lesions.Biomed. Pharmacother.202316811582310.1016/j.biopha.2023.11582337924792
    [Google Scholar]
  35. RoyD. DasS. SamantaA. Design and in vitro release kinetics of liposomal formulation of acyclovir.Int. J. Appl. Pharmac.2019116616510.22159/ijap.2019v11i6.34917
    [Google Scholar]
  36. Cardoso-DaoduI.M. IlomuanyaM.O. AmenaghawonA.N. AzubuikeC.P. Artificial neural network for optimizing the formulation of curcumin-loaded liposomes from statistically designed experiments.Prog. Biomater.2022111556510.1007/s40204‑022‑00179‑635041189
    [Google Scholar]
  37. ArulsudarN. SubramanianN. MuthyR.S. Comparison of artificial neural network and multiple linear regression in the optimization of formulation parameters of leuprolide acetate loaded liposomes.J. Pharm. Pharm. Sci.20058224325816124936
    [Google Scholar]
  38. SubramanianN. YajnikA. MurthyR.S.R. Artificial neural network as an alternative to multiple regression analysis in optimizing formulation parmaeters of cytarabine liposomes.AAPS Pharm.Sci.Tech.200451111910.1208/pt05010415198525
    [Google Scholar]
  39. ZhaoF. LuJ. JinX. WangZ. SunY. GaoD. LiX. LiuR. Comparison of response surface methodology and artificial neural network to optimize novel ophthalmic flexible nano-liposomes: Characterization, evaluation, in vivo pharmacokinetics and molecular dynamics simulation.Colloids Surf. B Biointerfaces201817228829710.1016/j.colsurfb.2018.08.04630173096
    [Google Scholar]
  40. Di FrancescoV. BosoD.P. MooreT.L. SchreflerB.A. DecuzziP. Machine learning instructed microfluidic synthesis of curcumin-loaded liposomes.Biomed. Microdevices20232532910.1007/s10544‑023‑00671‑137542568
    [Google Scholar]
  41. HanR. YeZ. ZhangY. ChengY. ZhengY. OuyangD. Predicting liposome formulations by the integrated machine learning and molecular modeling approaches.Asian J. Pharmac. Sci.202318310081110.1016/j.ajps.2023.10081137274923
    [Google Scholar]
  42. HuangS.M. KuoC.H. ChenC.A. LiuY.C. ShiehC.J. RSM and ANN modeling-based optimization approach for the development of ultrasound-assisted liposome encapsulation of piceid.Ultrason. Sonochem.20173611212210.1016/j.ultsonch.2016.11.01628069190
    [Google Scholar]
  43. CernA. BarenholzY. TropshaA. GoldblumA. Computer-aided design of liposomal drugs: In silico prediction and experimental validation of drug candidates for liposomal remote loading.J. Control. Release201417312513110.1016/j.jconrel.2013.10.02924184343
    [Google Scholar]
  44. Kashani-Asadi-JafariF. AftabA. GhaemmaghamiS. A machine learning framework for predicting entrapment efficiency in niosomal particles.Int. J. Pharm.202262712220310.1016/j.ijpharm.2022.12220336116690
    [Google Scholar]
  45. HoseiniB. JaafariM.R. GolabpourA. Momtazi-BorojeniA.A. KarimiM. EslamiS. Application of ensemble machine learning approach to assess the factors affecting size and polydispersity index of liposomal nanoparticles.Sci. Rep.20231311801210.1038/s41598‑023‑43689‑437865639
    [Google Scholar]
  46. HoseiniB. JaafariM.R. GolabpourA. Momtazi-BorojeniA.A. EslamiS. Optimizing nanoliposomal formulations: Assessing factors affecting entrapment efficiency of curcumin-loaded liposomes using machine learning.Int. J. Pharm.202364612341410.1016/j.ijpharm.2023.12341437714314
    [Google Scholar]
  47. SelvarajC. ChandraI. SinghS.K. Artificial intelligence and machine learning approaches for drug design: challenges and opportunities for the pharmaceutical industries.Mol. Divers.20222631893191310.1007/s11030‑021‑10326‑z34686947
    [Google Scholar]
  48. GrantM.J. BoothA. A typology of reviews: An analysis of 14 review types and associated methodologies.Health Info. Libr. J.20092629110810.1111/j.1471‑1842.2009.00848.x19490148
    [Google Scholar]
  49. AziziA. AboutorabiR. Mazloum-KhorasaniZ. HoseiniB. TaraM. Diabetic personal health record: A systematic review article.Iran. J. Public Health201645111388139828032056
    [Google Scholar]
  50. BakhshayeshS. HoseiniB. BergquistR. NabovatiE. GholoobiA. Mohammad-EbrahimiS. EslamiS. Cost-utility analysis of home-based cardiac rehabilitation as compared to usual post-discharge care: Systematic review and meta-analysis of randomized controlled trials.Expert Rev. Cardiovasc. Ther.2020181176177610.1080/14779072.2020.181923932893713
    [Google Scholar]
  51. Ladan GoshayeshiL. BahariA. TorabianF. MolooghiK. Musavi MohammadiE. SahranavardM. Hosseinzadeh MalekiH. Sabzeh NoughabiZ. HoseiniB. Association between carotid intima-media thickness and ulcerative colitis: A systematic review and meta-analysis.Electron. Physician20181066956696410.19082/695630034664
    [Google Scholar]
  52. HoseiniB. BagheriN. KianiB. AziziA. TabeshH. TaraM. Access to dialysis services: A systematic mapping review based on geographical information systems.Geospat. Health201813157710.4081/gh.2018.57729772871
    [Google Scholar]
  53. Ghale-NoieZ.N. SalmaninejadA. BergquistR. MollazadehS. HoseiniB. SahebkarA. Genetic aspects and immune responses in Covid-19: Important organ involvement.Adv. Exp. Med. Biol.2021132732210.1007/978‑3‑030‑71697‑4_134279825
    [Google Scholar]
  54. RahmatinejadZ. GoshayeshiL. BergquistR. GoshayeshiL. GolabpourA. HoseiniB. PTEN hamartoma tumour syndrome: case report based on data from the Iranian hereditary colorectal cancer registry and literature review.Diagn. Pathol.20231814310.1186/s13000‑023‑01331‑x37016356
    [Google Scholar]
  55. DasS. SamantaA. BankuraK. RoyD. NayakA. Fabrication and release kinetics of liposomes containing leuprolide acetate.J. Basi. Appl.Res.Biomed.202171353810.51152/jbarbiomed.v7i1.213
    [Google Scholar]
  56. CipollaD. WuH. GondaI. ChanH.K. Aerosol performance and long-term stability of surfactant-associated liposomal ciprofloxacin formulations with modified encapsulation and release properties.AAPS Pharm.Sci.Tech.20141551218122710.1208/s12249‑014‑0155‑224889736
    [Google Scholar]
  57. TelangeD.R. PandharinathR.R. PetheA.M. JainS.P. PingaleP.L. Calcium ion-sodium alginate-piperine-based microspheres: Evidence of enhanced encapsulation efficiency, bio-adhesion, controlled delivery, and oral bioavailability of isoniazid.AAPS Pharm.Sci.Tech.20222349910.1208/s12249‑022‑02236‑635338414
    [Google Scholar]
  58. ChenZ. MaZ. HeJ. SongJ. ZhaoJ. ZhaoY. Formulation and characterization of natural surfactant-stabilized zein nanoparticles for encapsulation of ergocalciferol.Food Biophys.202419118219010.1007/s11483‑023‑09816‑4
    [Google Scholar]
  59. Di CostanzoA. AngelicoR. Formulation strategies for enhancing the bioavailability of silymarin: The state of the art.Molecules20192411215510.3390/molecules2411215531181687
    [Google Scholar]
  60. AroraS. SinghB. KumarS. KumarA. SinghA. SinghC. Piperine loaded drug delivery systems for improved biomedical applications: Current status and future directions.Health Sci. Rep.2023910013810.1016/j.hsr.2023.100138
    [Google Scholar]
  61. DewiM.K. ChaerunisaaA.Y. MuhaiminM. JoniI.M. Improved activity of herbal medicines through nanotechnology.Nanomaterials20221222407310.3390/nano1222407336432358
    [Google Scholar]
  62. JiaW. SunM. LianJ. HouS. Feature dimensionality reduction: A review.Complex & Intelligent Systems2022832663269310.1007/s40747‑021‑00637‑x
    [Google Scholar]
  63. Esmaeilzadeh-GharedaghiE. FaramarziM.A. AminiM.A. Rouholamini NajafabadiA. RezayatS.M. AmaniA. Effects of processing parameters on particle size of ultrasound prepared chitosan nanoparticles: An Artificial Neural Networks Study.Pharm. Dev. Technol.201217563864710.3109/10837450.2012.69626922681416
    [Google Scholar]
  64. ItaK. PrinzeJ. Machine learning for skin permeability prediction: Random forest and XG boost regression.J. Drug Target.2024321576510.1080/1061186X.2023.228409637962433
    [Google Scholar]
  65. MaX. KittikunakornN. SormanB. XiH. ChenA. MarshM. MongeauA. PichéN. WilliamsR.O.III SkomskiD. Application of deep learning convolutional neural networks for internal tablet defect detection: High accuracy, throughput, and adaptability.J. Pharm. Sci.202010941547155710.1016/j.xphs.2020.01.01431982393
    [Google Scholar]
  66. MaX. KittikunakornN. SormanB. XiH. ChenA. MarshM. MongeauA. PichéN. WilliamsR.III SkomskiD. Deep learning convolutional neural networks for pharmaceutical tablet defect detection.Microsc. Microanal.202026S21606160910.1017/S1431927620018693
    [Google Scholar]
  67. DžeroskiS PanovP ŽenkoB. Machine Learning, Ensemble Methods. MeyersR. Computational ComplexitySpringerNew York, NY201210.1007/978‑1‑4614‑1800‑9_114
    [Google Scholar]
  68. OjoS. ImoizeA. AlienyiD. Radial basis function neural network path loss prediction model for LTE networks in multitransmitter signal propagation environments.Int. J. Commun. Syst.2021343e468010.1002/dac.4680
    [Google Scholar]
  69. IsabonaJ. ImoizeA.L. KimY. Machine learning-based boosted regression ensemble combined with hyperparameter tuning for optimal adaptive learning.Sensors20222210377610.3390/s2210377635632184
    [Google Scholar]
  70. AlajmiMS AlmeshalAM Least squares boosting ensemble and quantum-behaved particle swarm optimization for predicting the surface roughness in face milling process of aluminum material.Applied Sciences.2021115212610.3390/app11052126
    [Google Scholar]
  71. LiaoH. ZhangX. ZhaoC. ChenY. ZengX. LiH. LightGBM: an efficient and accurate method for predicting pregnancy diseases.J. Obstet. Gynaecol.202242462062910.1080/01443615.2021.194500634392771
    [Google Scholar]
  72. HajihosseinlouM. MaghsoudiA. GhezelbashR. A novel scheme for mapping of MVT-type Pb–Zn prospectivity: LightGBM, a highly efficient gradient boosting decision tree machine learning algorithm.Nat. Resour. Res.20233262417243810.1007/s11053‑023‑10249‑6
    [Google Scholar]
  73. XingY. ZhengZ. SunY. Agha AlikhaniM. A review on machine learning application in biodiesel production studies.Int. J. Chem. Eng.2021202111210.1155/2021/2154258
    [Google Scholar]
  74. BerkRA Classification and Regression Trees (CART).Statistical Learning from a Regression Perspective.Springer Series in Statistics. SpringerNew York, NY200816510.1007/978‑0‑387‑77501‑2_3
    [Google Scholar]
  75. LangsetmoL. SchousboeJ.T. TaylorB.C. CauleyJ.A. FinkH.A. CawthonP.M. KadoD.M. EnsrudK.E. Advantages and disadvantages of random forest models for prediction of hip fracture risk versus mortality risk in the oldest old.JBMR Plus202378e1075710.1002/jbm4.1075737614297
    [Google Scholar]
  76. KaramizadehS. AbdullahS.M. HalimiM. ShayanJ. RajabiMj. Advantage and drawback of support vector machine functionality.2014 International Conference on Computer, Communications, and Control Technology (I4CT)Langkawi, Malaysia, 2014, pp. 63-65.201410.1109/I4CT.2014.6914146
    [Google Scholar]
  77. JadhavS.D. ChanneH. Comparative study of K-NN, naive Bayes and decision tree classification techniques.Int. J. Sci. Res.2016511842184510.21275/v5i1.NOV153131
    [Google Scholar]
  78. LiewB.X.W. KovacsF.M. RügamerD. RoyuelaA. Machine learning versus logistic regression for prognostic modelling in individuals with non-specific neck pain.Eur. Spine J.20223182082209110.1007/s00586‑022‑07188‑w35353221
    [Google Scholar]
  79. TuJ.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes.J. Clin. Epidemiol.199649111225123110.1016/S0895‑4356(96)00002‑98892489
    [Google Scholar]
  80. Talaei KhoeiT. Ould SlimaneH. KaabouchN. Deep learning: Systematic review, models, challenges, and research directions.Neural Comput. Appl.20233531231032312410.1007/s00521‑023‑08957‑4
    [Google Scholar]
  81. KunjiappanS. RamasamyL.K. KannanS. PavadaiP. TheivendrenP. PalanisamyP. Optimization of ultrasound-aided extraction of bioactive ingredients from Vitis vinifera seeds using RSM and ANFIS modeling with machine learning algorithm.Sci. Rep.2024141121910.1038/s41598‑023‑49839‑y38216594
    [Google Scholar]
  82. GoshayeshiL HoseiniB YousefliZ KhooieA EtminaniK EsmaeilzadehA GolabpourA Predictive model for survival in patients with gastric cancer.Electron Physician20179126035604210.19082/6035
    [Google Scholar]
  83. KhaniS. AbbasiS. KeyhanfarF. AmaniA. Use of artificial neural networks for analysis of the factors affecting particle size in mebudipine nanoemulsion.J. Biomol. Struct. Dyn.201937123162316710.1080/07391102.2018.151034130238824
    [Google Scholar]
  84. LandiA. PiaggiP. LaurinoM. MenicucciD. Artificial Neural Networks for nonlinear regression and classification.2010 10th International Conference on Intelligent Systems Design and Applications,Cairo, Egypt, 2010, pp. 115-120.10.1109/ISDA.2010.5687280
    [Google Scholar]
  85. DayhoffJ.E. DeLeoJ.M. Artificial neural networks.Cancer200191S8Suppl.1615163510.1002/1097‑0142(20010415)91:8+<1615::AID‑CNCR1175>3.0.CO;2‑L11309760
    [Google Scholar]
  86. SethananK. PitakasoR. SrichokT. KhonjunS. WeerayuthN. PrasitpuriprechaC. PreepremT. JantamaS.S. GonwiratS. EnkvetchakulP. KaewtaC. NanthasamroengN. Computer-aided diagnosis using embedded ensemble deep learning for multiclass drug-resistant tuberculosis classification.Front. Med.202310112222210.3389/fmed.2023.112222237441685
    [Google Scholar]
  87. WangZ. DongJ. WuL. DaiC. WangJ. WenY. ZhangY. YangX. HeS. BoX. DEML: Drug synergy and interaction prediction using ensemble-based multi-task learning.Molecules202328284410.3390/molecules2802084436677903
    [Google Scholar]
  88. EzzatA. WuM. LiX.L. KwohC.K. Drug-target interaction prediction using ensemble learning and dimensionality reduction.Methods2017129818810.1016/j.ymeth.2017.05.01628549952
    [Google Scholar]
  89. YuanQ. GaoJ. WuD. ZhangS. MamitsukaH. ZhuS. DrugE-Rank: improving drug–target interaction prediction of new candidate drugs or targets by ensemble learning to rank.Bioinformatics20163212i18i2710.1093/bioinformatics/btw24427307615
    [Google Scholar]
  90. HayashiY. NakanoY. MarumoY. KumadaS. OkadaK. OnukiY. Application of machine learning to a material library for modeling of relationships between material properties and tablet properties.Int. J. Pharm.202160912115810.1016/j.ijpharm.2021.12115834624447
    [Google Scholar]
  91. GalataD.L. KönyvesZ. NagyB. NovákM. MészárosL.A. SzabóE. FarkasA. MarosiG. NagyZ.K. Real-time release testing of dissolution based on surrogate models developed by machine learning algorithms using NIR spectra, compression force and particle size distribution as input data.Int. J. Pharm.202159712033810.1016/j.ijpharm.2021.12033833545285
    [Google Scholar]
  92. FurxhiI. MurphyF. MullinsM. PolandC.A. Machine learning prediction of nanoparticle in vitro toxicity: A comparative study of classifiers and ensemble-classifiers using the Copeland Index.Toxicol. Lett.201931215716610.1016/j.toxlet.2019.05.01631102714
    [Google Scholar]
  93. NeumannD. MerkwirthC. LamprechtA. Nanoparticle design characterized by In Silico preparation parameter prediction using ensemble models.J. Pharm. Sci.20109941982199610.1002/jps.2194119877172
    [Google Scholar]
  94. SchmittJ.M. BaumannJ.M. MorgenM.M. Predicting spray dried dispersion particle size via machine learning regression methods.Pharm. Res.202239123223323910.1007/s11095‑022‑03370‑335986124
    [Google Scholar]
  95. YanT. SunB. BarnardA.S. Predicting archetypal nanoparticle shapes using a combination of thermodynamic theory and machine learning.Nanoscale20181046218182182610.1039/C8NR07341D30452032
    [Google Scholar]
  96. AkpokiroV. MartinT. OluwadareO. EnsembleSplice: Ensemble deep learning model for splice site prediction.BMC Bioinformatics202223141310.1186/s12859‑022‑04971‑w36203144
    [Google Scholar]
  97. GabelJ. DesaphyJ. RognanD. Beware of machine learning-based scoring functions-on the danger of developing black boxes.J. Chem. Inf. Model.201454102807281510.1021/ci500406k25207678
    [Google Scholar]
  98. MariottiE. Alonso MoralJ.M. GattA. Exploring the balance between interpretability and performance with carefully designed constrainable Neural Additive Models.Inf. Fusion20239910188210.1016/j.inffus.2023.101882
    [Google Scholar]
  99. AlzubaidiL. FadhelM.A. AlbahriA.S. SalhiA. GuptaA. GuY. Domain adaptation and feature fusion for the detection of abnormalities in x-ray forearm images.Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.202320231510.1109/EMBC40787.2023.1034030938082960
    [Google Scholar]
  100. KerriganD HullmanJ BertiniE. A survey of domain knowledge elicitation in applied machine learning.Multimodal Technol. Interact.20215127310.3390/mti5120073
    [Google Scholar]
  101. ShneidermanB. Human-centered artificial intelligence: Reliable, safe & trustworthy.Int. J. Hum. Comput. Interact.202036649550410.1080/10447318.2020.1741118
    [Google Scholar]
  102. ColinJ. FelT. CadèneR. SerreT. WhatI. What I cannot predict, i do not understand: a human-centered evaluation framework for explainability methods.Adv. Neural Inf. Process. Syst.2022352832284537786623
    [Google Scholar]
  103. LuqueA. CarrascoA. MartínA. de las HerasA. The impact of class imbalance in classification performance metrics based on the binary confusion matrix.Pattern Recognit.20199121623110.1016/j.patcog.2019.02.023
    [Google Scholar]
  104. JainN. SumanS. PrustyB.R. Performance comparison of two statistical parametric methods for outlier detection and correction.IFAC-PapersOnLine2021541616817410.1016/j.ifacol.2021.10.089
    [Google Scholar]
  105. RahmatinejadZ. ReihaniH. HannaA.A. PourmandA. RahmatinejadF. EslamiS. HoseiniB. Author response.Indian J. Crit. Care Med.202428218318410.5005/jp‑journals‑10071‑2460938323265
    [Google Scholar]
  106. SchomakerM. HeumannC. Bootstrap inference when using multiple imputation.Stat. Med.201837142252226610.1002/sim.765429682776
    [Google Scholar]
  107. HoseiniB. RahmatinejadZ. ReihaniH. HannaA.A. PourmandA. TabatabaeiS.M. RahmatinejadF. EslamiS. Comparison of six scoring systems for predicting in-hospital mortality among patients with SARS-COV2 presenting to the emergency department.Indian J. Crit. Care Med.202327641642510.5005/jp‑journals‑10071‑2446337378368
    [Google Scholar]
  108. McCagueC. MacKayK. WelshC. ConstantinouA. JenaR. Crispin-OrtuzarM. McCagueC. MacKayK. WelshC. ConstantinouA. AznarM. BaileyM. BradyA. BrentonJ.D. BuddenkotteT. CouturierD-L. Escudero SanchezL. GilbertF. GravesM. Guerrero UrbanoT. HallG. McLaughlinP. McGoughW. NougaretS. ÖktemO. RizzoS. RundoL. SalaE. SchönliebC-B. Vasquez OsorioE. WoitekR. ZuckerK. JenaR. Crispin-OrtuzarM. Position statement on clinical evaluation of imaging AI.Lancet Digit. Health202357e400e40210.1016/S2589‑7500(23)00090‑037391263
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018302321240620072039
Loading
/content/journals/cdd/10.2174/0115672018302321240620072039
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test