Skip to content
2000
Volume 22, Issue 8
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Poor solubility of drugs leads to poor bioavailability and therapeutic efficiency. A large proportion of drugs that are not developed and marketed for use by patients are due to their extremely low solubility. Therefore, improving the solubility of poorly water-soluble drugs is one of the most important aspects of the field of drug research. With the continuous development of more and more formulation techniques and excipient applications, the solubility of poorly water-soluble drugs can be improved to a certain extent to obtain better pharmacokinetics and pharmacodynamics, including pH microenvironment regulation technology, inclusion complex, solid dispersion, nanotechnology, and application of surfactants. However, the most widely used among them is the application of surfactants. This technique can reduce the surface tension, improve wettability, and have a remarkable solubilizing ability after forming micelles. However, surfactants have also been found to possess certain limitations in solubilization. In this review, the factors affecting the solubilization of surfactants and limiting their application have been summarized from several aspects. These factors include drugs, additives, and media. Some ideas to solve these application limitations have also been put forward, which can lay a foundation for the wider application of surfactants in the future.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018299592240524074005
2025-05-29
2026-01-14
Loading full text...

Full text loading...

/deliver/fulltext/cdd/22/8/CDD-22-8-02.html?itemId=/content/journals/cdd/10.2174/0115672018299592240524074005&mimeType=html&fmt=ahah

References

  1. KawabataY. WadaK. NakataniM. YamadaS. OnoueS. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications.Int. J. Pharm.2011420111010.1016/j.ijpharm.2011.08.032 21884771
    [Google Scholar]
  2. GuptaA. PaudwalG. DolkarR. LewisS. GuptaP.N. Recent advances in the surfactant and controlled release polymer-based solid dispersion.Curr. Pharm. Des.202228201643165910.2174/1381612828666220223095417 35209818
    [Google Scholar]
  3. HeS. MuH. Microenvironmental pH modification in buccal/sublingual dosage forms for systemic drug delivery.Pharmaceutics202315263710.3390/pharmaceutics15020637 36839959
    [Google Scholar]
  4. BhalaniD.V. NutanB. KumarA. ChandelS.A.K. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics.Biomedicines2022109205510.3390/biomedicines10092055 36140156
    [Google Scholar]
  5. HsiehC.M. YangT.L. PutriA.D. ChenC.T. Application of design of experiments in the development of self-microemulsifying drug delivery systems.Pharmaceuticals202316228310.3390/ph16020283 37259427
    [Google Scholar]
  6. SahaS.K. JoshiA. SinghR. JanaS. DubeyK. An investigation into solubility and dissolution improvement of alectinib hydrochloride as a third-generation amorphous solid dispersion.J. Drug Deliv. Sci. Technol.20238110425910.1016/j.jddst.2023.104259
    [Google Scholar]
  7. RaoM.R.P. SonawaneA.S. SapateS.A. MehtaC.H. NayakU. Molecular modeling and in vitro studies to assess solubility enhancement of nevirapine by solid dispersion technique.J. Mol. Struct.2023127313437310.1016/j.molstruc.2022.134373
    [Google Scholar]
  8. VasoyaJ.M. DesaiH.H. GumasteS.G. TillotsonJ. KelemenD. DalrympleD.M. SerajuddinA.T.M. Development of solid dispersion by hot melt extrusion using mixtures of polyoxylglycerides with polymers as carriers for increasing dissolution rate of a poorly soluble drug model.J. Pharm. Sci.2019108288889610.1016/j.xphs.2018.09.019 30257196
    [Google Scholar]
  9. YuC. ZhangC. GuanX. YuanD. The solid dispersion of resveratrol with enhanced dissolution and good system physical stability.J. Drug Deliv. Sci. Technol.20238410450710.1016/j.jddst.2023.104507
    [Google Scholar]
  10. de MeloC.G. da CostaL.A.G. RabelloM.M. SalesA.W.V. FerreiraA.S. da SilvaP.C.D. NishimuraR.H.V. da SilvaR.M.F. RolimA.L. NetoP.J.R. Enhanced solubility of albendazole in cyclodextrin inclusion complex: A molecular modeling approach and physicochemical evaluation.Curr. Drug Deliv.2022191869210.2174/1567201818666210614104234 34126897
    [Google Scholar]
  11. AytacZ. IpekS. ErolI. DurgunE. UyarT. Fast-dissolving electrospun gelatin nanofibers encapsulating ciprofloxacin/cyclodextrin inclusion complex.Colloids Surf. B Biointerfaces201917812913610.1016/j.colsurfb.2019.02.059 30852264
    [Google Scholar]
  12. SherjeA.P. PatelF. MurahariM. SuvarnaV. PatelK. Study on effect of L-arginine on solubility and dissolution of Zaltoprofen: Preparation and characterization of binary and ternary cyclodextrin inclusion complexes.Chem. Phys. Lett.201869412012810.1016/j.cplett.2018.01.025
    [Google Scholar]
  13. KhanW.H. AsgharS. KhanI.U. IrfanM. AlshammariA. RajokaR.M.S. MunirR. ShahP.A. KhalidI. RazzaqF.A. KhalidS.H. Effect of hydrophilic polymers on the solubility and dissolution enhancement of rivaroxaban/beta-cyclodextrin inclusion complexes.Heliyon202399e1965810.1016/j.heliyon.2023.e19658 37809727
    [Google Scholar]
  14. GeF. DuanS. JiaJ. HongB. ZhouJ. ZhangY. LiM. Assessment of amentoflavone loaded sub-micron particle preparation using supercritical antisolvent for its antitumor activity.Curr. Drug Deliv.2022191414810.2174/1567201818666210810142750 35135460
    [Google Scholar]
  15. AguiarG.P.S. MarconM. MocelinR. HerrmannA.P. ChavesL.M.P.C. PiatoA.L. LanzaM. OliveiraJ.V. Micronization of N -acetylcysteine by supercritical fluid: Evaluation of in vitro and in vivo biological activity.J. Supercrit. Fluids201713028229110.1016/j.supflu.2017.06.010
    [Google Scholar]
  16. AguiarG.P.S. ArcariB.D. ChavesL.M.P.C. MagroC.D. BoschettoD.L. PiatoA.L. LanzaM. OliveiraJ.V. Micronization of trans-resveratrol by supercritical fluid: Dissolution, solubility and in vitro antioxidant activity.Ind. Crops Prod.20181121510.1016/j.indcrop.2017.11.008
    [Google Scholar]
  17. de OliveiraP.V. SanaiottoO. KuhnK.Z. OltramariA. BortoluzziA.J. LanzaM. AguiarG.P.S. SiebelA.M. MüllerL.G. OliveiraJ.V. Micronization of naringenin in supercritical fluid medium: In vitro and in vivo assays.J. Drug Deliv. Sci. Technol.20238210438210.1016/j.jddst.2023.104382
    [Google Scholar]
  18. GaoL. ZhangX.R. ChenY.F. LiaoZ.L. WangY.Q. ZouX.Y. A new febuxostat imidazolium salt hydrate: Synthesis, crystal structure, solubility, and dissolution study.J. Mol. Struct.2019117663364010.1016/j.molstruc.2018.08.098
    [Google Scholar]
  19. WuW. LöbmannK. RadesT. GrohganzH. On the role of salt formation and structural similarity of co-formers in co-amorphous drug delivery systems.Int. J. Pharm.20185351-2869410.1016/j.ijpharm.2017.10.057 29102703
    [Google Scholar]
  20. BagweP.V. ThakurV.P. KharkarP.S. JoshiS.V. Synthesis, characterization, and dissolution properties of Aceclofenac-isobutabolammonium salt.J. Indian Chem. Soc.20231001110109310.1016/j.jics.2023.101093
    [Google Scholar]
  21. FeeneyO.M. CrumM.F. McEvoyC.L. TrevaskisN.L. WilliamsH.D. PoutonC.W. CharmanW.N. BergströmC.A.S. PorterC.J.H. 50 years of oral lipid-based formulations: Provenance, progress and future perspectives.Adv. Drug Deliv. Rev.201610116719410.1016/j.addr.2016.04.007 27089810
    [Google Scholar]
  22. PattniB.S. ChupinV.V. TorchilinV.P. New developments in liposomal drug delivery.Chem. Rev.201511519109381096610.1021/acs.chemrev.5b00046 26010257
    [Google Scholar]
  23. GaggeroA. DukovskiJ.B. RadićI. ŠagudI. ŠkorićI. CinčićD. JugM. Co-grinding with surfactants as a new approach to enhance in vitro dissolution of praziquantel.J. Pharm. Biomed. Anal.202018911349410.1016/j.jpba.2020.113494 32745904
    [Google Scholar]
  24. SotoC.C.E. GaoY. IndulkarA.S. ZhangG.G.Z. TaylorL.S. Role of surfactants in improving release from higher drug loading amorphous solid dispersions.Int. J. Pharm.202262512212010.1016/j.ijpharm.2022.122120 35987321
    [Google Scholar]
  25. KimM-S. HaE-S. BaekI. YooJ-W. JungY. Improving dissolution and oral bioavailability of pranlukast hemihydrate by particle surface modification with surfactants and homogenization.Drug Des. Devel. Ther.201593257326610.2147/DDDT.S87738 26150699
    [Google Scholar]
  26. EldinB.S.M. ElkheshenS.A. GhorabM.M. Improving tadalafil dissolution via surfactant-enriched tablets approach: Statistical optimization, characterization, and pharmacokinetic assessment.J. Drug Deliv. Sci. Technol.20174119720510.1016/j.jddst.2017.07.014
    [Google Scholar]
  27. VinarovZ. DobrevaP. TcholakovaS. Effect of surfactant molecular structure on Progesterone solubilization.J. Drug Deliv. Sci. Technol.201843444910.1016/j.jddst.2017.09.014
    [Google Scholar]
  28. ZhaJ. ZhangQ. LiM. WangJ.R. MeiX. Improving dissolution properties by polymers and surfactants: A case study of celastrol.J. Pharm. Sci.2018107112860286810.1016/j.xphs.2018.07.008 30017890
    [Google Scholar]
  29. FujimoriM. KadotaK. TozukaY. Mixed micelle system produced by interaction between transglycosylated stevia and an ionic surfactant improves dissolution profile of mefenamic acid.J. Pharm. Sci.201710641117112310.1016/j.xphs.2016.12.024 28057544
    [Google Scholar]
  30. NgoH.V. TranP.H.L. LeeB.J. TranT.T.D. The roles of a surfactant in zein-HPMC blend solid dispersions for improving drug delivery.Int. J. Pharm.201956316917310.1016/j.ijpharm.2019.04.009 30954672
    [Google Scholar]
  31. SolankiN.G. LamK. TahsinM. GumasteS.G. ShahA.V. SerajuddinA.T.M. Effects of surfactants on itraconazole-HPMCAS solid dispersion prepared by hot-melt extrusion I: Miscibility and drug release.J. Pharm. Sci.201910841453146510.1016/j.xphs.2018.10.058 30395834
    [Google Scholar]
  32. RashidR. KimD.W. DinF. MustaphaO. YousafA.M. ParkJ.H. KimJ.O. YongC.S. ChoiH.G. Effect of hydroxypropylcellulose and Tween 80 on physicochemical properties and bioavailability of ezetimibe-loaded solid dispersion.Carbohydr. Polym.2015130263110.1016/j.carbpol.2015.04.071 26076597
    [Google Scholar]
  33. MahP.T. PeltonenL. NovakovicD. RadesT. StrachanC.J. LaaksonenT. The effect of surfactants on the dissolution behavior of amorphous formulations.Eur. J. Pharm. Biopharm.2016103132210.1016/j.ejpb.2016.03.007 26955750
    [Google Scholar]
  34. SotthiviratS. McKelveyC. MoserJ. RegeB. XuW. ZhangD. Development of amorphous solid dispersion formulations of a poorly water-soluble drug, MK-0364.Int. J. Pharm.20134521-2738110.1016/j.ijpharm.2013.04.037 23651642
    [Google Scholar]
  35. LangB. McGinityJ.W. WilliamsR.O. III Dissolution enhancement of itraconazole by hot-melt extrusion alone and the combination of hot-melt extrusion and rapid freezing--effect of formulation and processing variables.Mol. Pharm.201411118619610.1021/mp4003706 24283890
    [Google Scholar]
  36. JungH.J. AhnH.I. ParkJ.Y. HoM.J. LeeD.R. ChoH.R. ParkJ.S. ChoiY.S. KangM.J. Improved oral absorption of tacrolimus by a solid dispersion with hypromellose and sodium lauryl sulfate.Int. J. Biol. Macromol.20168328228710.1016/j.ijbiomac.2015.11.063 26642839
    [Google Scholar]
  37. LiB. KoneckeS. HarichK. WegielL. TaylorL.S. EdgarK.J. Solid dispersion of quercetin in cellulose derivative matrices influences both solubility and stability.Carbohydr. Polym.20139222033204010.1016/j.carbpol.2012.11.073 23399255
    [Google Scholar]
  38. GhebremeskelA.N. VemavarapuC. LodayaM. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: Selection of polymer–surfactant combinations using solubility parameters and testing the processability.Int. J. Pharm.2007328211912910.1016/j.ijpharm.2006.08.010 16968659
    [Google Scholar]
  39. HussainA. SmithG. KhanK.A. BukhariN.I. PedgeN.I. ErmolinaI. Solubility and dissolution rate enhancement of ibuprofen by co-milling with polymeric excipients.Eur. J. Pharm. Sci.201812339540310.1016/j.ejps.2018.08.001 30076953
    [Google Scholar]
  40. JiaX. ChenJ. ChengH. PanX. KeY. FuT. QiaoH. CuiX. LiW. ZouL. ChengJ. LiJ. Use of surfactant-based amorphous solid dispersions for BDDCS class II drugs to enhance oral bioavailability: A case report of resveratrol.Int. J. Pharm.202364112305910.1016/j.ijpharm.2023.123059 37196879
    [Google Scholar]
  41. ReisF.A.M.Y. RêgoA.R.I. RochaB.P. GuedesG.G. RamalhoM.Í.M. CavalcantiM.A.L. GuimarãesG.P. DamascenoL.B.P.G. A general approach on surfactants use and properties in drug delivery systems.Curr. Pharm. Des.202127424300431410.2174/1381612827666210526091825 34042031
    [Google Scholar]
  42. MasratR. MajidK. Solubilization of pyrene by mixed polymer-cationic/nonionic surfactant systems: Effect of polymer concentration.Colloids Surf. A Physicochem. Eng. Asp.202265312997410.1016/j.colsurfa.2022.129974
    [Google Scholar]
  43. KumarD. RubA.M. Effect of sodium taurocholate on aggregation behavior of amphiphilic drug solution.Tenside Surf. Deterg.201552646447210.3139/113.110398
    [Google Scholar]
  44. AzumN. RubA.M. AsiriA.M. Micellization and interfacial behavior of the sodium salt of ibuprofen–BRIJ-58 in aqueous/brine solutions.J. Solution Chem.20164579180310.1007/s10953‑016‑0463‑0
    [Google Scholar]
  45. SchreierS. MalheirosS.V.P. de PaulaE. Surface active drugs: Self-association and interaction with membranes and surfactants. Physicochemical and biological aspects.Biochim. Biophys. Acta Biomembr.200015081-221023410.1016/S0304‑4157(00)00012‑5 11090827
    [Google Scholar]
  46. WilliamsH. TrevaskisN. CharmanS. ShankerR. CharmanN.W. PoutonC. PorterC. Strategies to address low drug solubility in discovery and development.Pharmacol. Rev.201365131549910.1124/pr.112.005660
    [Google Scholar]
  47. YaguiR.C.O. PessoaA.Jr TavaresL.C. Micellar solubilization of drugs.J. Pharm. Pharm. Sci.200582147165 16124926
    [Google Scholar]
  48. ChaudhariS.P. DugarR.P. Application of surfactants in solid dispersion technology for improving solubility of poorly water soluble drugs.J. Drug Deliv. Sci. Technol.201741687710.1016/j.jddst.2017.06.010
    [Google Scholar]
  49. DominguezA. FernandezA. GonzalezN. IglesiasE. MontenegroL. Determination of critical micelle concentration of some surfactants by three techniques.J. Chem. Educ.19977410122710.1021/ed074p1227
    [Google Scholar]
  50. DasD. DeyJ. ChandraA.K. ThapaU. IsmailK. Aggregation behavior of sodium dioctylsulfosuccinate in aqueous ethylene glycol medium. A case of hydrogen bonding between surfactant and solvent and its manifestation in the surface tension isotherm.Langmuir20122845157621576910.1021/la302876z 23072621
    [Google Scholar]
  51. YaguiR.C.O. HsuH.W.L. JrP.A. TavaresL.C. Micellar solubilization of ibuprofen: Influence of surfactant head groups on the extent of solubilization. Brazilian. J. Pharmaceutical Sci.200541238246
    [Google Scholar]
  52. KumarH. KatalA. RawatP. FT-IR spectroscopic and micellization studies of cetyltrimethylammonium bromide in aqueous and aqueous solution of ionic liquid (1-butyl-3-methylimidazolium bromide) at different temperatures.J. Mol. Liq.201824922723210.1016/j.molliq.2017.11.032
    [Google Scholar]
  53. KlimondaA. KowalskaI. Separation of cationic biocide by means of ultrafiltration process. E3S Web Conf.,> 44 6810.1051/e3sconf/201844000682018
    [Google Scholar]
  54. MayE.M.D.A.F.A-K. Effect of temperature changes on critical micelle concentration for tween series surfactant.Glob. J. Sci. Front. Res.2013134-B17
    [Google Scholar]
  55. PengH. AliA. LananM. HughesE. WiltbergerK. GuanB. PrajapatiS. HuW. Mechanism investigation for poloxamer 188 raw material variation in cell culture.Biotechnol. Prog.201632376777510.1002/btpr.2268 27038070
    [Google Scholar]
  56. DalgakiranE.A. ErginA.D. KacarG. Properties of Pluronic F68 and F127 micelles interacting furosemide from coarse-grained molecular simulations as validated by experiments.Colloids Surf. A Physicochem. Eng. Asp.202366613135210.1016/j.colsurfa.2023.131352
    [Google Scholar]
  57. DarwichM. MohylyukV. KolterK. BodmeierR. DashevskiyA. Enhancement of itraconazole solubility and release by hot-melt extrusion with Soluplus®.J. Drug Deliv. Sci. Technol.20238110428010.1016/j.jddst.2023.104280
    [Google Scholar]
  58. ShahabM.S. RizwanullahM. ImamS.S. Formulation, optimization and evaluation of vitamin E TPGS emulsified dorzolamide solid lipid nanoparticles.J. Drug Deliv. Sci. Technol.20226810306210.1016/j.jddst.2021.103062
    [Google Scholar]
  59. JinG. NgoH.V. WangJ. CuiJ.H. CaoQ.R. ParkC. LeeB.J. Electrostatic molecular effect of differently charged surfactants on the solubilization capacity and physicochemical properties of salt-caged nanosuspensions containing pH-dependent and poorly water-soluble rebamipide.Int. J. Pharm.202261912168610.1016/j.ijpharm.2022.121686 35314274
    [Google Scholar]
  60. GuoY. WangC. DunJ. DuL. HawleyM. SunC.C. Mechanism for the reduced dissolution of ritonavir tablets by sodium lauryl sulfate.J. Pharm. Sci.2019108151652410.1016/j.xphs.2018.10.047 30389564
    [Google Scholar]
  61. HuangZ. ParikhS. FishW.P. Interactions between a poorly soluble cationic drug and sodium dodecyl sulfate in dissolution medium and their impact on in vitro dissolution behavior.Int. J. Pharm.20185351-235035910.1016/j.ijpharm.2017.10.063 29104060
    [Google Scholar]
  62. BhattacharS.N. RisleyD.S. WerawatganoneP. AburubA. Weak bases and formation of a less soluble lauryl sulfate salt/complex in sodium lauryl sulfate (SLS) containing media.Int. J. Pharm.20114121-2959810.1016/j.ijpharm.2011.04.018 21527324
    [Google Scholar]
  63. NokhodchiA. Norouzi-SaniS. ShadbadS.M.R. LotfipoorF. SaeediM. The effect of various surfactants on the release rate of propranolol hydrochloride from hydroxypropylmethylcellulose (HPMC)-Eudragit matrices.Eur. J. Pharm. Biopharm.200254334935610.1016/S0939‑6411(02)00120‑0 12445567
    [Google Scholar]
  64. DesaiD. WongB. HuangY. YeQ. TangD. GuoH. HuangM. TimminsP. Surfactant-mediated dissolution of metformin hydrochloride tablets: Wetting effects versus ion pairs diffusivity.J. Pharm. Sci.2014103392092610.1002/jps.23852 24549733
    [Google Scholar]
  65. AzumN. RubA.M. AsiriA.M. MarwaniH.M. AkramM. Synergistic interaction between anti-allergic drug and cationic/anionic surfactants–Experimental and theoretical analysis.J. Saudi Chem. Soc.202024968369210.1016/j.jscs.2020.07.007
    [Google Scholar]
  66. YanS. LiA. ZhengH. LuoM. XingX. Effects of ionic surfactants on bacterial luciferase and α-amylase.Chin. J. Chem. Eng.200917582983410.1016/S1004‑9541(08)60283‑9
    [Google Scholar]
  67. RahmanM. HoqueM.A. KhanM.A. RubM.A. AsiriA.M. Effect of different additives on the phase separation behavior and thermodynamics of p - tert -alkylphenoxy poly (oxyethylene) ether in absence and presence of drug.Chin. J. Chem. Eng.20182651110111810.1016/j.cjche.2017.10.011
    [Google Scholar]
  68. SrinivasanV. BlankschteinD. Effect of counterion binding on micellar solution behavior: 2. Prediction of micellar solution properties of ionic surfactant−electrolyte systems.Langmuir200319239946996110.1021/la030070u
    [Google Scholar]
  69. RubA.M. AzumN. AsiriA.M. Binary mixtures of sodium salt of ibuprofen and selected bile salts: Interface, micellar, thermodynamic, and spectroscopic study.J. Chem. Eng. Data201762103216322810.1021/acs.jced.7b00298
    [Google Scholar]
  70. RubM.A. AzumN. KhanF. AsiriA.M. Aggregation of sodium salt of ibuprofen and sodium taurocholate mixture in different media: A tensiometry and fluorometry study.J. Chem. Thermodyn.201812119921010.1016/j.jct.2018.02.019
    [Google Scholar]
  71. KumarD. AzumN. RubM.A. AsiriA.M. Aggregation behavior of sodium salt of ibuprofen with conventional and gemini surfactant.J. Mol. Liq.2018262869610.1016/j.molliq.2018.04.053
    [Google Scholar]
  72. RubM.A. AzumN. AsiriA.M. Interaction of cationic amphiphilic drug nortriptyline hydrochloride with TX-100 in aqueous and urea solutions and the studies of physicochemical parameters of the mixed micelles.J. Mol. Liq.201621859560310.1016/j.molliq.2016.02.049
    [Google Scholar]
  73. KhanF. RubM.A. AzumN. AsiriA.M. Mixtures of antidepressant amphiphilic drug imipramine hydrochloride and anionic surfactant: Micellar and thermodynamic investigation.J. Phys. Org. Chem.2018316e381210.1002/poc.3812
    [Google Scholar]
  74. SchottH. Surfactant systems: Their chemistry, pharmacy and biology.J. Pharm. Sci.198574101140114110.1002/jps.2600741040
    [Google Scholar]
  75. KumarD. RubM.A. Synthesis and characterization of dicationic gemini surfactant micelles and their effect on the rate of ninhydrin–copper-peptide complex reaction.Tenside Surfactants Deterg.2018551788410.3139/113.110535
    [Google Scholar]
  76. PariaS. ManoharC. KhilarK.C. Kinetics of adsorption of anionic, cationic, and nonionic surfactants.Ind. Eng. Chem. Res.20054493091309810.1021/ie049471a
    [Google Scholar]
  77. KhanF. SheikhM.S. RubM.A. AzumN. AsiriA.M. Antidepressant drug amitriptyline hydrochloride (AMT) interaction with anionic surfactant sodium dodecyl sulfate in aqueous/brine/urea solutions at different temperatures.J. Mol. Liq.20162221020103010.1016/j.molliq.2016.07.104
    [Google Scholar]
  78. KumarD. RubM.A. Aggregation behavior of amphiphilic drug promazine hydrochloride and sodium dodecylbenzenesulfonate mixtures under the influence of NaCl/urea at various concentration and temperatures.J. Phys. Org. Chem.201629839440510.1002/poc.3546
    [Google Scholar]
  79. NevesA.C.S. ValenteA.J.M. BurrowsH.D. RibeiroA.C.F. LoboV.M.M. Effect of terbium(III) chloride on the micellization properties of sodium decyl- and dodecyl-sulfate solutions.J. Colloid Interface Sci.2007306116617410.1016/j.jcis.2006.10.061 17107684
    [Google Scholar]
  80. StagnoliS. LunaM.A. VillaC.C. AlustizaF. NiebylskiA. MoyanoF. CorreaN.M. FalconeR.D. Unique catanionic vesicles as a potential “Nano-Taxi” for drug delivery systems. In vitro and in vivo biocompatibility evaluation.RSC Advances2017795372538010.1039/C6RA27020D
    [Google Scholar]
  81. FuguetE. RàfolsC. RosésM. BoschE. Critical micelle concentration of surfactants in aqueous buffered and unbuffered systems.Anal. Chim. Acta20055481-29510010.1016/j.aca.2005.05.069
    [Google Scholar]
  82. JainA. RanY. YalkowskyS.H. Effect of pH-sodium lauryl sulfate combination on solubilization of PG-300995 (an Anti-HIV agent): A technical note.AAPS PharmSciTech200453656710.1208/pt050345 15760078
    [Google Scholar]
  83. JON, I.D. Interactions between an amine functional polymer and an anionic surfactant.J. Soc. Cosmet. Chem.1990414213225
    [Google Scholar]
  84. BaekN. OhG.H. ParkC. TranT.T.T. ParkY.J. OhE. LeH. TranT.T.D. ParkJ.B. LeeB.J. Reprecipitation of poorly water-soluble cilostazol crystals using adsorbing carriers for enhanced dissolution and physicochemical modification.J. Drug Deliv. Sci. Technol.20184347748610.1016/j.jddst.2017.11.006
    [Google Scholar]
  85. MallS. BucktonG. RawlinsD.A. Slower dissolution rates of sulphamerazine in aqueous sodium dodecyl sulphate solutions than in water.Int. J. Pharm.19961311414610.1016/0378‑5173(95)04302‑0
    [Google Scholar]
  86. ParikhV. GumasteS.G. PhadkeS. Effect of the interaction between an ionic surfactant and polymer on the dissolution of a poorly soluble drug.AAPS PharmSciTech20181973040304710.1208/s12249‑018‑1125‑x 30084069
    [Google Scholar]
  87. TungN.T. TranC.S. NguyenT.L. PhamT.M.H. ChiS.C. NguyenH.A. BuiQ.D. BuiD.N. TranT.Q. Effect of surfactant on the in vitro dissolution and the oral bioavailability of a weakly basic drug from an amorphous solid dispersion.Eur. J. Pharm. Sci.202116210583610.1016/j.ejps.2021.105836 33852972
    [Google Scholar]
  88. PillaiS.A. SharmaA.K. DesaiS.M. ShethU. BahadurA. RayD. AswalV.K. KumarS. Characterization and application of mixed micellar assemblies of PEO-PPO star block copolymers for solubilization of hydrophobic anticancer drug and in vitro release.J. Mol. Liq.202031311354310.1016/j.molliq.2020.113543
    [Google Scholar]
  89. WengT. WangL. LiuY. ZhangX. WuY. ZhangY. HanJ. LiuM. Interaction of bisdemethoxycurcumin with sodium dodecyl sarcosine + Tween 20/Tween 60 mixed surfactants: Insights from multispectral analysis and solubilization effect.Colloids Surf. A Physicochem. Eng. Asp.202264512892810.1016/j.colsurfa.2022.128928
    [Google Scholar]
  90. KaurJ. SinglaP. KaurI. Labrasol mediated enhanced solubilization of natural hydrophobic drugs in Pluronic micelles: Physicochemical and in vitro release studies.J. Mol. Liq.202236111959610.1016/j.molliq.2022.119596
    [Google Scholar]
  91. KumarM. ElahiD. BhardwajA. SharmaS. KhushiK. SinghE. SinghN. SrivastavaA. Physiochemical investigation of the excipients mixed micelles for improvement of encapsulation and controlled release of antihistamine drugs.J. Mol. Liq.202236411997110.1016/j.molliq.2022.119971
    [Google Scholar]
  92. ParmarA. ChavdaS. BahadurP. Pluronic–cationic surfactant mixed micelles: Solubilization and release of the drug hydrochlorothiazide.Colloids Surf. A Physicochem. Eng. Asp.201444138939710.1016/j.colsurfa.2013.09.018
    [Google Scholar]
  93. LalthlenglianiJ. GurungJ. PulikkalA.K. Solubilization of aqueous-insoluble phenothiazine drug in TX-100 micellar solution and interactions of cationic/anionic surfactants with phenothiazine–TX-100 system.J. Mol. Liq.202235411882310.1016/j.molliq.2022.118823
    [Google Scholar]
  94. PiazziniV. LanducciE. UrruM. ChiarugiA. GiampietroP.D.E. BiliaA.R. BergonziM.C. Enhanced dissolution, permeation and oral bioavailability of aripiprazole mixed micelles: In vitro and in vivo evaluation.Int. J. Pharm.202058311936110.1016/j.ijpharm.2020.119361 32334067
    [Google Scholar]
  95. SenthilkumarM. SheelaraniB. JoshiR.G. DashS. Solubilization and interaction of ciprofloxacin with pluronics and their mixed micelles.New J. Chem.20194342165301653710.1039/C9NJ03383A
    [Google Scholar]
  96. SultanA.A. El-GizawyS.A. OsmanM.A. MaghrabyE.G.M. Self dispersing mixed micelles forming systems for enhanced dissolution and intestinal permeability of hydrochlorothiazide.Colloids Surf. B Biointerfaces201714920621610.1016/j.colsurfb.2016.10.028 27768910
    [Google Scholar]
  97. GargS. PeetersM. MahajanR.K. SinglaP. Loading of hydrophobic drug silymarin in pluronic and reverse pluronic mixed micelles.J. Drug Deliv. Sci. Technol.20227510369910.1016/j.jddst.2022.103699
    [Google Scholar]
  98. SaidE.H.S. LalatsaA. MahallawiA.A.M. LeithyS.E.E. GhorabD.M. Vilazodone-phospholipid mixed micelles for enhancing oral bioavailability and reducing pharmacokinetic variability between fed and fasted states.Int. J. Pharm.202262512208010.1016/j.ijpharm.2022.122080 35932929
    [Google Scholar]
  99. ÖztürkK. ArslanF.B. ÖztürkS.C. ÇalışS. Mixed micelles formulation for carvedilol delivery: In-vitro characterization and in-vivo evaluation.Int. J. Pharm.202261112129410.1016/j.ijpharm.2021.121294 34793934
    [Google Scholar]
  100. SinglaP. GargS. BhattiR. PeetersM. SinghO. MahajanR.K. Solubilization of hydrophobic drugs clozapine and oxcarbazepine in the lower and higher molecular weight pluronic mixed micelles-a physicochemical, In vitro release and In vitro anti-oxidant study.J. Mol. Liq.202031711381610.1016/j.molliq.2020.113816
    [Google Scholar]
  101. JinG. NgoH.V. CuiJ.H. WangJ. ParkC. LeeB.J. Role of surfactant micellization for enhanced dissolution of poorly water-soluble cilostazol using poloxamer 407-based solid dispersion via the anti-solvent method.Pharmaceutics202113566210.3390/pharmaceutics13050662 34063136
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018299592240524074005
Loading
/content/journals/cdd/10.2174/0115672018299592240524074005
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test