Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Managing bacterial pathogens in the central nervous system is an immense issue for researchers all around the globe. The problem of these infections remains throughout the population, regardless of the discovery of several possible medicines. The major obstacle to drug delivery is the BBB, but only a few medicines that fulfill demanding requirements can penetrate it. Considering inadequate antibiotic alternatives and the increasing development of resistance, it is more important than ever to find new approaches to address this worldwide problem. Medical nanotechnology has evolved as a cutting-edge and effective means of treating many of the most difficult CNS illnesses, including bacterial meningitis. Various metallic nanoparticles, such as gold, silver, and titanium oxide, have shown bactericidal potential. Gold nanoparticles have gotten a great deal of interest due to their excellent biocompatibility, simplicity of surface modification, and optical qualities. The current study described AuNP-based detection and therapy options against meningitis-causing bacteria, including bacterial pathogens' mechanisms for crossing BBB and AuNPs' mode of Action against those bacteria. The current study looked into green synthesized bactericidal gold nanoparticles-based therapy techniques for diagnosing and intervening in bacterial meningitis. Nevertheless, more research is needed before these laboratory findings can be translated into therapeutic trials. Nonetheless, we can confidently assert that the knowledge acquired and addressed in this study will benefit neuro-nanotechnology researchers.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018278607240405060054
2024-04-16
2025-09-26
Loading full text...

Full text loading...

References

  1. DashtiS.A. AlizadehS. KarimiA. KhalifehM. ShojaS.A. Diagnostic value of lactate, procalcitonin, ferritin, serum-C-reactive protein, and other biomarkers in bacterial and viral meningitis.Medicine20179635e763710.1097/MD.000000000000763728858084
    [Google Scholar]
  2. Oordt-SpeetsA.M. BolijnR. van HoornR.C. BhavsarA. KyawM.H. Global etiology of bacterial meningitis: A systematic review and meta-analysis.PLoS One2018136e019877210.1371/journal.pone.019877229889859
    [Google Scholar]
  3. van de BeekD. CabellosC. DzupovaO. EspositoS. KleinM. KloekA.T. LeibS.L. MourvillierB. OstergaardC. PaglianoP. PfisterH.W. ReadR.C. SipahiO.R. BrouwerM.C. ESCMID guideline: Diagnosis and treatment of acute bacterial meningitis.Clin. Microbiol. Infect.201622S3S37S6210.1016/j.cmi.2016.01.00727062097
    [Google Scholar]
  4. FotakopoulosG. MakrisD. ChatziM. TsimitreaE. ZakynthinosE. FountasK. Outcomes in meningitis/ventriculitis treated with intravenous or intraventricular plus intravenous colistin.Acta Neurochir.2016158360361010.1007/s00701‑016‑2702‑y26801512
    [Google Scholar]
  5. KimK.S. Pathogenesis of bacterial meningitis: From bacteraemia to neuronal injury.Nat. Rev. Neurosci.20034537638510.1038/nrn110312728265
    [Google Scholar]
  6. PissuwanD. NiidomeT. CortieM.B. The forthcoming applications of gold nanoparticles in drug and gene delivery systems.J. Control. Release20111491657110.1016/j.jconrel.2009.12.00620004222
    [Google Scholar]
  7. BlaberM.G. ArnoldM.D. HarrisN. FordM.J. CortieM.B. Plasmon absorption in nanospheres: A comparison of sodium, potassium, aluminium, silver and gold.Physica B2007394218418710.1016/j.physb.2006.12.011
    [Google Scholar]
  8. ZhangY. DasariS.T. Antimicrobial activity of gold nanoparticles and ionic gold.J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev.201533328632710.1080/10590501.2015.1055161
    [Google Scholar]
  9. ConnorE.E. MwamukaJ. GoleA. MurphyC.J. WyattM.D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity.Small20051332532710.1002/smll.20040009317193451
    [Google Scholar]
  10. ShuklaR. BansalV. ChaudharyM. BasuA. BhondeR.R. SastryM. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview.Langmuir20052123106441065410.1021/la051371216262332
    [Google Scholar]
  11. KumarD. SainiN. JainN. SareenR. PanditV. Gold nanoparticles: An era in bionanotechnology.Expert Opin. Drug Deliv.201310339740910.1517/17425247.2013.74985423289421
    [Google Scholar]
  12. ChithraniB.D. ChanW.C.W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes.Nano Lett.2007761542155010.1021/nl070363y17465586
    [Google Scholar]
  13. ChithraniD.B. Optimization of bio-nano interface using gold nanostructures as a model nanoparticle system.Insciences J.20111311513510.5640/insc.0103115
    [Google Scholar]
  14. ZhaoY. TianY. CuiY. LiuW. MaW. JiangX. Small molecule-capped gold nanoparticles as potent antibacterial agents that target Gram-negative bacteria.J. Am. Chem. Soc.201013235123491235610.1021/ja102884320707350
    [Google Scholar]
  15. CuiY. ZhaoY. TianY. ZhangW. LüX. JiangX. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli.Biomaterials20123372327233310.1016/j.biomaterials.2011.11.05722182745
    [Google Scholar]
  16. LuZ. ZhangJ. YuZ. LiuX. ZhangZ. WangW. WangX. WangY. WangD. Vancomycin-hybrid bimetallic Au/Ag composite nanoparticles: Preparation of the nanoparticles and characterization of the antibacterial activity.New J. Chem.201741135276527910.1039/C7NJ01660C
    [Google Scholar]
  17. BenitezO.E.A. MoralesC.M. GuadarramaV.N. ArmasF.J. TrejoO.J.J. Inclusion bodies and pH lowering: As an effect of gold nanoparticles in Streptococcus pneumoniae.Metallomics2015771173117910.1039/c5mt00044k25966022
    [Google Scholar]
  18. GoyalD. SainiA. SainiG.S.S. KumarR. Green synthesis of anisotropic gold nanoparticles using cinnamon with superior antibacterial activity.Mater. Res. Express20196707504310.1088/2053‑1591/ab15a6
    [Google Scholar]
  19. BenítezO.E.A. GuadarramaV.N. FigueroaD.N.V. QuezadaH. TrejoV.J.J. Antibacterial mechanism of gold nanoparticles on Streptococcus pneumoniae.Metallomics20191171265127610.1039/c9mt00084d31173034
    [Google Scholar]
  20. ShahM. BadwaikV. KherdeY. WaghwaniH.K. ModiT. AguilarZ.P. RodgersH. HamiltonW. MarutharajT. WebbC. LawrenzM.B. DakshinamurthyR. Gold nanoparticles: Various methods of synthesis and antibacterial applications.Front. Biosci.20141981320134410.2741/428424896353
    [Google Scholar]
  21. ZhouY. KongY. KunduS. CirilloJ.D. LiangH. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus calmette-guérin.J. Nanobiotechnology20121011910.1186/1477‑3155‑10‑1922559747
    [Google Scholar]
  22. ThodukaS.G. Optical methods for the detection of Neisseria meningitidis-specific DNA.Doctoral dissertation, RMIT University2009
    [Google Scholar]
  23. ReddyS.B. MainwaringD.E. Al KobaisiM. ZeephongsekulP. FecondoJ.V. Acoustic wave immunosensing of a meningococcal antigen using gold nanoparticle-enhanced mass sensitivity.Biosens. Bioelectron.201231138238710.1016/j.bios.2011.10.05122104649
    [Google Scholar]
  24. PatelM.K. SolankiP.R. SethS. GuptaS. KhareS. KumarA. MalhotraB.D. CtrA gene based electrochemical DNA sensor for detection of meningitis.Electrochem. Commun.200911596997310.1016/j.elecom.2009.02.037
    [Google Scholar]
  25. FuZ. ZhouX. XingD. Rapid colorimetric gene-sensing of food pathogenic bacteria using biomodification-free gold nanoparticle.Sens. Actuators B Chem.2013a18263364110.1016/j.snb.2013.03.033
    [Google Scholar]
  26. FuZ. ZhouX. XingD. Sensitive colorimetric detection of Listeria monocytogenes based on isothermal gene amplification and unmodified gold nanoparticles.Methods2013b64326026610.1016/j.ymeth.2013.08.00323948710
    [Google Scholar]
  27. YanR. ShouZ. ChenJ. WuH. ZhaoY. QiuL. JiangP. MouX.Z. WangJ. LiY.Q. On-off-on gold nanocluster-based fluorescent probe for rapid Escherichia coli differentiation, detection and bactericide screening.ACS Sustain. Chem.& Eng.2018644504450910.1021/acssuschemeng.8b00112
    [Google Scholar]
  28. JyotiA. PandeyP. SinghS.P. JainS.K. ShankerR. Colorimetric detection of nucleic acid signature of shiga toxin producing Escherichia coli using gold nanoparticles.J. Nanosci. Nanotechnol.20101074154415810.1166/jnn.2010.264921128394
    [Google Scholar]
  29. Giorgi-CollS. MarínM.J. SuleO. HutchinsonP.J. CarpenterK.L.H. Aptamer-modified gold nanoparticles for rapid aggregation-based detection of inflammation: An optical assay for interleukin-6.Mikrochim. Acta202018711310.1007/s00604‑019‑3975‑731802241
    [Google Scholar]
  30. ChanP.H. ChenY.C. Human serum albumin stabilized gold nanoclusters as selective luminescent probes for Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. Anal. Chem.201284218952895610.1021/ac302417k23088348
    [Google Scholar]
  31. LaiH.Z. WangS.G. WuC.Y. ChenY.C. Detection of Staphylococcus aureus by functional gold nanoparticle-based affinity surface-assisted laser desorption/ionization mass spectrometry.Anal. Chem.20158742114212010.1021/ac503097v25587929
    [Google Scholar]
  32. SierraH.J.F. RuizF. PenaC.D.C. GutiérrezM.F. MartínezA.E. de GuillénJ.P.A. PérezT.H. CastañónM.G. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold.Nanomedicine20084323724010.1016/j.nano.2008.04.00518565800
    [Google Scholar]
  33. MukhaI. EremenkoА. KorchakG. MichienkovaА. Antibacterial Action and physicochemical properties of stabilized silver and gold nanostructures on the surface of disperse silica.J. Water Resource Prot.20102213113610.4236/jwarp.2010.22015
    [Google Scholar]
  34. BodaS.K. BrodaJ. SchieferF. HeynemannW.J. HossM. SimonU. BasuB. DechentJ.W. Cytotoxicity of ultrasmall gold nanoparticles on planktonic and biofilm encapsulated Gram-positive staphylococci.Small201511263183319310.1002/smll.20140301425712910
    [Google Scholar]
  35. SahaB. BhattacharyaJ. MukherjeeA. GhoshA. SantraC. DasguptaA.K. KarmakarP. In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics.Nanoscale Res. Lett.200721261462210.1007/s11671‑007‑9104‑2
    [Google Scholar]
  36. GuH. HoP.L. TongE. WangL. XuB. Presenting vancomycin on nanoparticles to enhance antimicrobial activities.Nano Lett.2003391261126310.1021/nl034396z
    [Google Scholar]
  37. RosemaryM.J. MacLarenI. PradeepT. Investigations of the antibacterial properties of ciprofloxacin@SiO2.Langmuir20062224101251012910.1021/la061411h17107009
    [Google Scholar]
  38. AhangariA. SaloutiM. HeidariZ. KazemizadehA.R. SafariA.A. Development of gentamicin-gold nanospheres for antimicrobial drug delivery to Staphylococcal infected foci.Drug Deliv.2013201343910.3109/10717544.2012.74640223311651
    [Google Scholar]
  39. FullerM. WhileyH. KöperI. Antibiotic delivery using gold nanoparticles.SN Applied Sciences202026102210.1007/s42452‑020‑2835‑8
    [Google Scholar]
  40. ZhengY. LiuW. ChenY. LiC. JiangH. WangX. Conjugating gold nanoclusters and antimicrobial peptides: From aggregation-induced emission to antibacterial synergy.J. Colloid Interface Sci.201954611010.1016/j.jcis.2019.03.05230901687
    [Google Scholar]
  41. KalitaS. KandimallaR. BhowalA.C. KotokyJ. KunduS. Functionalization of β-lactam antibiotic on lysozyme capped gold nanoclusters retrogress MRSA and its persisters following awakening.Sci. Rep.201881577810.1038/s41598‑018‑22736‑529636496
    [Google Scholar]
  42. SetyawatiM.I. KuttyR.V. TayC.Y. YuanX. XieJ. LeongD.T. Novel theranostic DNA nanoscaffolds for the simultaneous detection and killing of Escherichia coli and Staphylococcus aureus.ACS Appl. Mater. Interfaces2014624218222183110.1021/am502591c24941440
    [Google Scholar]
  43. BrownA.N. SmithK. SamuelsT.A. LuJ. ObareS.O. ScottM.E. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl. Environ. Microbiol.20127882768277410.1128/AEM.06513‑1122286985
    [Google Scholar]
  44. ChavanC. KambleS. MurthyA.V.R. KaleS.N. Ampicillin-mediated functionalized gold nanoparticles against ampicillin- resistant bacteria: Strategy, preparation and interaction studies.Nanotechnology2020312121560410.1088/1361‑6528/ab72b432018229
    [Google Scholar]
  45. MitraP. ChakrabortyP.K. SahaP. RayP. BasuS. Antibacterial efficacy of acridine derivatives conjugated with gold nanoparticles.Int. J. Pharm.20144731-263664310.1016/j.ijpharm.2014.07.05125087507
    [Google Scholar]
  46. InbarajB.S. ChenB.Y. LiaoC.W. ChenB.H. Green synthesis, characterization and evaluation of catalytic and antibacterial activities of chitosan, glycol chitosan and poly(γ-glutamic acid) capped gold nanoparticles.Int. J. Biol. Macromol.20201611484149510.1016/j.ijbiomac.2020.07.24432771509
    [Google Scholar]
  47. MillenbaughN. BaskinJ. DeSilvaM. ElliottW.R. GlickmanR. Photothermal killing of Staphylococcus aureus using antibody-targeted gold nanoparticles.Int. J. Nanomedicine2015101953196010.2147/IJN.S7615025834427
    [Google Scholar]
  48. YangX. ZhangL. JiangX. Aminosaccharide–gold nanoparticle assemblies as narrow-spectrum antibiotics against methicillin-resistant Staphylococcus aureus.Nano Res.201811126237624310.1007/s12274‑018‑2143‑4
    [Google Scholar]
  49. PendersJ. StolzoffM. HickeyD.J. AnderssonM. WebsterT.J. Shape-dependent antibacterial effects of non-cytotoxic gold nanoparticles.Int. J. Nanomedicine2017122457246810.2147/IJN.S12444228408817
    [Google Scholar]
  50. LorenteL.A.I. CárdenasS. SánchezG.Z.I. Effect of synthesis, purification and growth determination methods on the antibacterial and antifungal activity of gold nanoparticles.Mater Sci Eng C Mater Biol Appl2019103109805
    [Google Scholar]
  51. BadwaikV.D. VangalaL.M. PenderD.S. WillisC.B. AguilarZ.P. GonzalezM.S. ParipellyR. DakshinamurthyR. Size-dependent antimicrobial properties of sugar-encapsulated gold nanoparticles synthesized by a green method.Nanoscale Res. Lett.20127162310.1186/1556‑276X‑7‑62323146145
    [Google Scholar]
  52. ZhengK. SetyawatiM.I. LeongD.T. XieJ. Antimicrobial gold nanoclusters.ACS Nano20171176904691010.1021/acsnano.7b0203528595000
    [Google Scholar]
  53. WangL. LiS. YinJ. YangJ. LiQ. ZhengW. LiuS. JiangX. The density of surface coating can contribute to different antibacterial activities of gold nanoparticles.Nano Lett.2020b2075036504210.1021/acs.nanolett.0c0119632463246
    [Google Scholar]
  54. LanhL.T. HoaT.T. CuongN.D. KhieuD.Q. QuangD.T. Van DuyN. HoaN.D. Van HieuN. Shape and size controlled synthesis of Au nanorods: H2S gas-sensing characterizations and antibacterial application.J. Alloys Compd.201563526527110.1016/j.jallcom.2015.02.146
    [Google Scholar]
  55. MubarakAliD. ThajuddinN. JeganathanK. GunasekaranM. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens.Colloids Surf. B Biointerfaces201185236036510.1016/j.colsurfb.2011.03.00921466948
    [Google Scholar]
  56. HusseinM.M.A. BañosF.G.D. GrinholcM. Abo DenaA.S. El-SherbinyI.M. MegahedM. Exploring the physicochemical and antimicrobial properties of gold-chitosan hybrid nanoparticles composed of varying chitosan amounts.Int. J. Biol. Macromol.20201621760176910.1016/j.ijbiomac.2020.08.04632784029
    [Google Scholar]
  57. GovindarajuS. RamasamyM. BaskaranR. AhnS.J. YunK. Ultraviolet light and laser irradiation enhances the antibacterial activity of glucosamine-functionalized gold nanoparticles.Int. J. Nanomedicine201510677826345521
    [Google Scholar]
  58. HamelianM. VarmiraK. VeisiH. Green synthesis and characterizations of gold nanoparticles using Thyme and survey cytotoxic effect, antibacterial and antioxidant potential.J. Photochem. Photobiol. B2018184717910.1016/j.jphotobiol.2018.05.01629842987
    [Google Scholar]
  59. BoomiP. GanesanR. PooraniP.G. JegatheeswaranS. BalakumarC. PrabuG.H. AnandK. PrabhuM.N. JeyakanthanJ. SaravananM. Phyto-engineered gold nanoparticles (AuNPs) with potential antibacterial, antioxidant, and wound healing activities under in vitro and in vivo conditions.Int. J. Nanomedicine2020157553756810.2147/IJN.S25749933116487
    [Google Scholar]
  60. RoccaD.M. Silvero CM.J. AiassaV. BecerraC.M. Rapid and effective photodynamic treatment of biofilm infections using low doses of amoxicillin-coated gold nanoparticles.Photodiagn. Photodyn. Ther.20203110181110.1016/j.pdpdt.2020.10181132439578
    [Google Scholar]
  61. Silvero CM.J. RoccaD.M. de la VillarmoisE.A. FournierK. LanternaA.E. PérezM.F. BecerraM.C. ScaianoJ.C. Selective photoinduced antibacterial activity of amoxicillin-coated gold nanoparticles: from one-step synthesis to in vivo cytocompatibility.ACS Omega2018311220123010.1021/acsomega.7b0177930023798
    [Google Scholar]
  62. LeeB. LeeD.G. Synergistic antibacterial activity of gold nanoparticles caused by apoptosis‐like death.J. Appl. Microbiol.2019127370171210.1111/jam.1435731216601
    [Google Scholar]
  63. NaveenaB.E. PrakashS. Biological synthesis of gold nanoparticles using marine algae graciliria corticata and its application as a potent antimicrobial and antioxidant agent.Asian J. Pharm. Clin. Res.200362179182
    [Google Scholar]
  64. BalasubramanianK. Antibacterial application of polyvinylalcohol-nanogold composite membranes.Colloids Surf.201455174178
    [Google Scholar]
  65. BalagurunathanR. RadhakrishnanM. RajendranR.B. VelmuruganD. Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10.Indian J. Biochem. Biophys.201148533133522165291
    [Google Scholar]
  66. AnnamalaiA. ChristinaV.L.P. SudhaD. KalpanaM. LakshmiP.T.V. Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract.Colloids Surf. B Biointerfaces2013108606510.1016/j.colsurfb.2013.02.01223528605
    [Google Scholar]
  67. GeethalakshmiR. SaradaD.V. Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization, and antimicrobial properties.Int. J. Nanomedicine201275375538410.2147/IJN.S3651623091381
    [Google Scholar]
  68. LokinaS. SureshR. GiribabuK. StephenA. SundaramL.R. NarayananV. Spectroscopic investigations, antimicrobial, and cytotoxic activity of green synthesized gold nanoparticles.Spectrochim. Acta A Mol. Biomol. Spectrosc.201412948449010.1016/j.saa.2014.03.10024755638
    [Google Scholar]
  69. SureshA.K. PelletierD.A. WangW. BroichM.L. MoonJ.W. GuB. AllisonD.P. JoyD.C. PhelpsT.J. DoktyczM.J. Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis.Acta Biomater.2011752148215210.1016/j.actbio.2011.01.02321241833
    [Google Scholar]
  70. NazariZ.E. BanoeeM. SepahiA.A. RafiiF. ShahverdiA.R. The combination effects of trivalent gold ions and gold nanoparticles with different antibiotics against resistant Pseudomonas aeruginosa.Gold Bull.2012452535910.1007/s13404‑012‑0048‑7
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018278607240405060054
Loading
/content/journals/cdd/10.2174/0115672018278607240405060054
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test