Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Chronic Obstructive Pulmonary Disease (COPD), a chronic lung disease that causes breathing difficulties and obstructs airflow from the lungs, has a significant global health burden and affects millions of people worldwide. The use of pharmaceuticals in COPD treatment is aimed to alleviate symptoms, improve lung function, prevent exacerbations, and enhance the overall quality of life for patients. Nanotechnology holds great promise to alleviate the burden of COPD. The main goal of this review is to present the full spectrum of therapeutics based on nanostructures for the treatment and management of COPD, including nanoparticles, polymeric nanoparticles, polymeric micelles, solid-lipid nanoparticles, liposomes, exosomes, nanoemulsions, nanosuspensions, and niosomes. Nanotechnology is just one of the many areas of research that may contribute to the development of more effective and personalized treatment modalities for COPD patients in the future. Future studies may be focused on enhancing the therapeutic effectiveness of nanocarriers by conducting extensive mechanistic investigations to translate current scientific knowledge for the effective management of COPD with little or no adverse effects.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018289883240226113353
2024-03-05
2025-09-25
Loading full text...

Full text loading...

References

  1. AdamsS.G. SmithP.K. AllanP.F. AnzuetoA. PughJ.A. CornellJ.E. Systematic review of the chronic care model in chronic obstructive pulmonary disease prevention and management.Arch. Intern. Med.2007167655156110.1001/archinte.167.6.55117389286
    [Google Scholar]
  2. World Health Organization. Chronic obstructive pulmonary disease.2023Available from: https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd) #:~:text=
  3. YoonJ. OhI.H. SeoH. KimE.J. GongY. OckM. LimD. LeeW.K. LeeY.R. KimD. JoM.W. ParkH. YoonS.J. Disability-adjusted life years for 313 diseases and injuries: the 2012 Korean burden of disease study.J. Korean Med. Sci.201631214615710.3346/jkms.2016.31.S2.S14627775252
    [Google Scholar]
  4. SalviS. BarnesP.J. Is exposure to biomass smoke the biggest risk factor for COPD globally?Chest201013813610.1378/chest.10‑064520605806
    [Google Scholar]
  5. YangF. XiongZ.F. YangC. LiL. QiaoG. WangY. ZhengT. HeH. HuH. Continuity of care to prevent readmissions for patients with chronic obstructive pulmonary disease: A systematic review and meta-analysis.COPD201714225126110.1080/15412555.2016.125638428326901
    [Google Scholar]
  6. BanerjeeER BanerjeeER. Role of integrins α4 and β2 onset and development of chronic allergic asthma in mice.Perspec. infla. biol.20149111010.1007/978‑81‑322‑1578‑3_4
    [Google Scholar]
  7. LopezA.D. ShibuyaK. RaoC. MathersC.D. HansellA.L. HeldL.S. SchmidV. BuistS. Chronic obstructive pulmonary disease: Current burden and future projections.Eur. Respir. J.200627239741210.1183/09031936.06.0002580516452599
    [Google Scholar]
  8. ShamannaB.R. Implementation research for public health and preventive health care in India.Health Psychology1st ed202211710.4324/9781003360858‑5
    [Google Scholar]
  9. JindalS.K. AggarwalA.N. GuptaD. A review of population studies from India to estimate national burden of chronic obstructive pulmonary disease and its association with smoking.Indian J. Chest Dis. Allied Sci.200143313914711529432
    [Google Scholar]
  10. MahalA KaranA EngelgauM. The economic implications of non-communicable disease for India.Globalization and Health20128
    [Google Scholar]
  11. AkazawaM. HalpernR. RiedelA.A. StanfordR.H. DalalA. BlanchetteC.M. Economic burden prior to COPD diagnosis: A matched case-control study in the United States.Respir. Med.2008102121744175210.1016/j.rmed.2008.07.00918760581
    [Google Scholar]
  12. DalalA.A. ShahM. D’SouzaA.O. RaneP. Costs of COPD exacerbations in the emergency department and inpatient setting.Respir. Med.2011105345446010.1016/j.rmed.2010.09.00320869226
    [Google Scholar]
  13. BlanchetteC.M. GrossN.J. AltmanP. Rising costs of COPD and the potential for maintenance therapy to slow the trend.Am. Health Drug Benefits2014729810624991394
    [Google Scholar]
  14. DielemanJ. CampbellM. ChapinA. EldrenkampE. FanV.Y. HaakenstadA. KatesJ. LiuY. MatyaszT. MicahA. ReynoldsA. SadatN. SchneiderM.T. SorensenR. EvansT. EvansD. KurowskiC. TandonA. AbbasK.M. AberaS.F. KiadaliriA.A. AhmedK.Y. AhmedM.B. AlamK. Alizadeh-NavaeiR. AlkerwiA. AminiE. AmmarW. AmrockS.M. AntonioC.A.T. AteyT.M. Avila-BurgosL. AwasthiA. BaracA. BernalO.A. BeyeneA.S. BeyeneT.J. BirungiC. BizuayehuH.M. BreitbordeN.J.K. Cahuana-HurtadoL. CastroR.E. Catalia-LopezF. DalalK. DandonaL. DandonaR. de JagerP. DharmaratneS.D. DubeyM. FarinhaC.S.S. FaroA. FeiglA.B. FischerF. FitchettJ.R.A. FoigtN. GirefA.Z. GuptaR. HamidiS. HarbH.L. HayS.I. HendrieD. HorinoM. JürissonM. JakovljevicM.B. JavanbakhtM. JohnD. JonasJ.B. KarimiS.M. KhangY-H. KhubchandaniJ. KimY.J. KingeJ.M. KrohnK.J. KumarG.A. El RazekH.M.A. El RazekM.M.A. MajeedA. MalekzadehR. MasiyeF. MeierT. MeretojaA. MillerT.R. MirrakhimovE.M. MohammedS. NangiaV. OlgiatiS. OsmanA.S. OwolabiM.O. PatelT. CaicedoA.J.P. PereiraD.M. PerelmanJ. PolinderS. RafayA. Rahimi-MovagharV. RaiR.K. RamU. RanabhatC.L. RobaH.S. SalamaJ. SavicM. SepanlouS.G. ShrimeM.G. TalongwaR.T. AoB.J.T. TediosiF. TesemaA.G. ThomsonA.J. Tobe-GaiR. Topor-MadryR. UndurragaE.A. VasankariT. ViolanteF.S. WerdeckerA. WijeratneT. XuG. YonemotoN. YounisM.Z. YuC. ZaidiZ. El Sayed ZakiM. MurrayC.J.L. Global Burden of Disease Health Financing Collaborator Network Evolution and patterns of global health financing 1995–2014: Development assistance for health, and government, prepaid private, and out-of-pocket health spending in 184 countries.Lancet2017389100831981200410.1016/S0140‑6736(17)30874‑728433256
    [Google Scholar]
  15. StockleyR.A. Neutrophils and the pathogenesis of COPD.Chest20021215151S155S10.1378/chest.121.5_suppl.151S12010844
    [Google Scholar]
  16. TetleyT.D. Macrophages and the pathogenesis of COPD.Chest20021215156S159S10.1378/chest.121.5_suppl.156S12010845
    [Google Scholar]
  17. BarnesP.J. CosioM.G. Characterization of T lymphocytes in chronic obstructive pulmonary disease.PLoS Med.200411e2010.1371/journal.pmed.001002015526047
    [Google Scholar]
  18. CampbellE.J. CampbellM.A. BoukedesS.S. OwenC.A. Quantum proteolysis by neutrophils: Implications for pulmonary emphysema in α(1)-antitrypsin deficiency.Chest20001175303S10.1378/chest.117.5_suppl_1.303S10843966
    [Google Scholar]
  19. GulatiN. ChellappanD.K. MacLoughlinR. DuaK. DurejaH. Inhaled nano-based therapeutics for inflammatory lung diseases: Recent advances and future prospects.Life Sci.202128511996910.1016/j.lfs.2021.11996934547339
    [Google Scholar]
  20. DurhamA.L. CaramoriG. ChungK.F. AdcockI.M. Targeted anti-inflammatory therapeutics in asthma and chronic obstructive lung disease.Transl. Res.2016167119220310.1016/j.trsl.2015.08.00426334389
    [Google Scholar]
  21. BakerK.E. BonviniS.J. DonovanC. FoongR.E. HanB. JhaA. ShaiftaY. SmitM. JohnsonJ.R. MoirL.M. Novel drug targets for asthma and COPD: Lessons learned from in vitro and in vivo models.Pulm. Pharmacol. Ther.201429218119810.1016/j.pupt.2014.05.00824929072
    [Google Scholar]
  22. FujitaY. TakeshitaF. KuwanoK. OchiyaT. RNAi therapeutic platforms for lung diseases.Pharmaceuticals20136222325010.3390/ph602022324275949
    [Google Scholar]
  23. MeyerK.C. Diagnosis and management of interstitial lung disease.Transl. Respir. Med.201421410.1186/2213‑0802‑2‑425505696
    [Google Scholar]
  24. BurhanE. RuesenC. RuslamiR. GinanjarA. MangunnegoroH. AscobatP. DondersR. van CrevelR. AarnoutseR. Isoniazid, rifampin, and pyrazinamide plasma concentrations in relation to treatment response in Indonesian pulmonary tuberculosis patients.Antimicrob. Agents Chemother.20135783614361910.1128/AAC.02468‑1223689725
    [Google Scholar]
  25. CarvalhoT.C. PetersJ.I. WilliamsR.O.III. Influence of particle size on regional lung deposition: What evidence is there?Int. J. Pharm.20114061-211010.1016/j.ijpharm.2010.12.04021232585
    [Google Scholar]
  26. BahadoriM. MohammadiF. Nanomedicine for respiratory diseases.Tanaffos2012114182225191433
    [Google Scholar]
  27. SmolaM. VandammeT. SokolowskiA. Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases.Int. J. Nanomedicine20083111918488412
    [Google Scholar]
  28. Di GioiaS. TrapaniA. CastellaniS. CarboneA. BelgiovineG. CraparoE.F. PuglisiG. CavallaroG. TrapaniG. ConeseM. Nanocomplexes for gene therapy of respiratory diseases: Targeting and overcoming the mucus barrier.Pulm. Pharmacol. Ther.20153482410.1016/j.pupt.2015.07.00326192479
    [Google Scholar]
  29. RatemiE. Sultana ShaikA. Al FarajA. HalwaniR. Alternative approaches for the treatment of airway diseases: Focus on nanoparticle medicine.Clin. Exp. Allergy20164681033104210.1111/cea.1277127404025
    [Google Scholar]
  30. LiuD. YangF. XiongF. GuN. The smart drug delivery system and its clinical potential.Theranostics2016691306132310.7150/thno.1485827375781
    [Google Scholar]
  31. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez- TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotech.20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  32. SultanaA. ZareM. ThomasV. KumarT.S.S. RamakrishnaS. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects.Medicine in Drug Discovery20221510013410.1016/j.medidd.2022.100134
    [Google Scholar]
  33. BeginesB. OrtizT. Pérez-ArandaM. MartínezG. MerineroM. Argüelles-AriasF. AlcudiaA. Polymeric nanoparticles for drug delivery: Recent developments and future prospects.Nanomater.2020107140310.3390/nano1007140332707641
    [Google Scholar]
  34. LombardoD. KiselevM.A. CaccamoM.T. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine.J. Nanomater.2019201912610.1155/2019/3702518
    [Google Scholar]
  35. SinghA. ChokriwalA. SharmaM.M. JainD. SaxenaJ. StephenB.J. Therapeutic role and drug delivery potential of neuroinflammation as a target in neurodegenerative disorders.ACS Chem. Neurosci.2017881645165510.1021/acschemneuro.7b0014428719178
    [Google Scholar]
  36. YavuzB. PehlivanS.B. Vuralİ. ÜnlüN. In vitro/in vivo evaluation of dexamethasone—PAMAM dendrimer complexes for retinal drug delivery.J. Pharm. Sci.2015104113814382310.1002/jps.2458826227825
    [Google Scholar]
  37. YokoyamaM. Polymeric micelles as drug carriers: Their lights and shadows.J. Drug Target.201422757658310.3109/1061186X.2014.93468825012065
    [Google Scholar]
  38. MahapatroA. SinghD.K. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines.J. Nanobiotechnology2011915510.1186/1477‑3155‑9‑5522123084
    [Google Scholar]
  39. Mohammadi-SamaniS. GhasemiyehP. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages.Res. Pharm. Sci.201813428830310.4103/1735‑5362.23515630065762
    [Google Scholar]
  40. JaiswalM DudheR SharmaPK Nanoemulsion: An advanced mode of drug delivery system.3 Biotech20155123127
    [Google Scholar]
  41. KuotsuK. KarimK.M. MandalA.S. BiswasN. GuhaA. ChatterjeeS. BeheraM. Niosome: A future of targeted drug delivery systems.J. Adv. Pharm. Technol. Res.20101437438010.4103/0110‑5558.7643522247876
    [Google Scholar]
  42. HuangH. FengW. ChenY. ShiJ. Inorganic nanoparticles in clinical trials and translations.Nano Today20203510097210.1016/j.nantod.2020.100972
    [Google Scholar]
  43. ShenZ. NiehM.P. LiY. Decorating nanoparticle surface for targeted drug delivery: Opportunities and challenges.Polymers2016838310.3390/polym803008330979183
    [Google Scholar]
  44. QiaoQ. LiuX. YangT. CuiK. KongL. YangC. ZhangZ. Nanomedicine for acute respiratory distress syndrome: The latest application, targeting strategy, and rational design.Acta Pharm. Sin. B202111103060309110.1016/j.apsb.2021.04.02333977080
    [Google Scholar]
  45. SuhJ.H. JooH.S. HongE.B. LeeH.J. LeeJ.M. Therapeutic application of exosomes in inflammatory diseases.Int. J. Mol. Sci.2021223114410.3390/ijms2203114433498928
    [Google Scholar]
  46. JakobssonJ.K.F. AaltonenH.L. NicklassonH. GudmundssonA. RisslerJ. WollmerP. LöndahlJ. Altered deposition of inhaled nanoparticles in subjects with chronic obstructive pulmonary disease.BMC Pulm. Med.201818112910.1186/s12890‑018‑0697‑230081885
    [Google Scholar]
  47. LuoM.X. HuaS. ShangQ.Y. Application of nanotechnology in drug delivery systems for respiratory diseases (Review).Mol. Med. Rep.202123532510.3892/mmr.2021.1196433760125
    [Google Scholar]
  48. AkincA. ZumbuehlA. GoldbergM. LeshchinerE.S. BusiniV. HossainN. BacalladoS.A. NguyenD.N. FullerJ. AlvarezR. BorodovskyA. BorlandT. ConstienR. de FougerollesA. DorkinJ.R. Narayanannair JayaprakashK. JayaramanM. JohnM. KotelianskyV. ManoharanM. NechevL. QinJ. RacieT. RaitchevaD. RajeevK.G. SahD.W.Y. SoutschekJ. ToudjarskaI. VornlocherH.P. ZimmermannT.S. LangerR. AndersonD.G. A combinatorial library of lipid- like materials for delivery of RNAi therapeutics.Nat. Biotechnol.200826556156910.1038/nbt140218438401
    [Google Scholar]
  49. CappellanoG. ComiC. ChiocchettiA. DianzaniU. Exploiting PLGA-based biocompatible nanoparticles for next-generation tolerogenic vaccines against autoimmune disease.Int. J. Mol. Sci.201920120410.3390/ijms2001020430626016
    [Google Scholar]
  50. WangJ. LiS. HanY. GuanJ. ChungS. WangC. LiD. Poly (ethylene glycol)–polylactide micelles for cancer therapy.Front. Pharmacol.2018920210.3389/fphar.2018.0020229662450
    [Google Scholar]
  51. YameenB. ChoiW.I. VilosC. SwamiA. ShiJ. FarokhzadO.C. Insight into nanoparticle cellular uptake and intracellular targeting.J. Control. Release201419048549910.1016/j.jconrel.2014.06.03824984011
    [Google Scholar]
  52. SharifiS. BehzadiS. LaurentS. Laird ForrestM. StroeveP. MahmoudiM. Toxicity of nanomaterials.Chem. Soc. Rev.20124162323234310.1039/C1CS15188F22170510
    [Google Scholar]
  53. SpicerC.D. JumeauxC. GuptaB. StevensM.M. Peptide and protein nanoparticle conjugates: Versatile platforms for biomedical applications.Chem. Soc. Rev.201847103574362010.1039/C7CS00877E29479622
    [Google Scholar]
  54. ZhangW. YangH. KongX. MohapatraS. Juan-VergaraH.S. HellermannG. BeheraS. SingamR. LockeyR.F. MohapatraS.S. Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene.Nat. Med.2005111566210.1038/nm117415619625
    [Google Scholar]
  55. Mora-HuertasC.E. FessiH. ElaissariA. Polymer-based nanocapsules for drug delivery.Int. J. Pharm.20103851-211314210.1016/j.ijpharm.2009.10.01819825408
    [Google Scholar]
  56. KulkarniS.A. FengS.S. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery.Pharm. Res.201330102512252210.1007/s11095‑012‑0958‑323314933
    [Google Scholar]
  57. HuC.M.J. ZhangL. AryalS. CheungC. FangR.H. ZhangL. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform.Proc. Natl. Acad. Sci.201110827109801098510.1073/pnas.110663410821690347
    [Google Scholar]
  58. KamalyN. YameenB. WuJ. FarokhzadO.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release.Chem. Rev.201611642602266310.1021/acs.chemrev.5b0034626854975
    [Google Scholar]
  59. BanikB.L. FattahiP. BrownJ.L. Polymeric nanoparticles: The future of nanomedicine.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20168227129910.1002/wnan.136426314803
    [Google Scholar]
  60. BaoumA. DhillonN. BuchS. BerklandC. Cationic surface modification of PLG nanoparticles offers sustained gene delivery to pulmonary epithelial cells.J. Pharm. Sci.20109952413242210.1002/jps.2199419911425
    [Google Scholar]
  61. MenonJ.U. RavikumarP. PiseA. GyawaliD. HsiaC.C.W. NguyenK.T. Polymeric nanoparticles for pulmonary protein and DNA delivery.Acta Biomater.20141062643265210.1016/j.actbio.2014.01.03324512977
    [Google Scholar]
  62. YooD. GukK. KimH. KhangG. WuD. LeeD. Antioxidant polymeric nanoparticles as novel therapeutics for airway inflammatory diseases.Int. J. Pharm.20134501-2879410.1016/j.ijpharm.2013.04.02823618968
    [Google Scholar]
  63. LengD. ThankiK. FattalE. FogedC. YangM. Engineering of budesonide-loaded lipid-polymer hybrid nanoparticles using a quality-by-design approach.Int. J. Pharm.2018548274074610.1016/j.ijpharm.2017.08.09428847667
    [Google Scholar]
  64. BuhechaM.D. LansleyA.B. SomavarapuS. PannalaA.S. Development and characterization of PLA nanoparticles for pulmonary drug delivery: Co-encapsulation of theophylline and budesonide, a hydrophilic and lipophilic drug.J. Drug Deliv. Sci. Technol.20195310112810.1016/j.jddst.2019.101128
    [Google Scholar]
  65. KedarU. PhutaneP. ShidhayeS. KadamV. Advances in polymeric micelles for drug delivery and tumor targeting.Nanomedicine20106671472910.1016/j.nano.2010.05.00520542144
    [Google Scholar]
  66. MiyataK. ChristieR.J. KataokaK. Polymeric micelles for nano-scale drug delivery.React. Funct. Polym.201171322723410.1016/j.reactfunctpolym.2010.10.009
    [Google Scholar]
  67. TyrrellZ.L. ShenY. RadoszM. Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers.Prog. Polym. Sci.20103591128114310.1016/j.progpolymsci.2010.06.003
    [Google Scholar]
  68. KimG. PiaoC. OhJ. LeeM. Self-assembled polymeric micelles for combined delivery of anti-inflammatory gene and drug to the lungs by inhalation.Nanoscale201810188503851410.1039/C8NR00427G29693671
    [Google Scholar]
  69. A RazakS.A. Mohd GazzaliA. FisolF.A. M AbdulbaqiI. ParumasivamT. MohtarN. A WahabH. A. Razak SA Advances in nanocarriers for effective delivery of docetaxel in the treatment of lung cancer: An overview.Cancers202113340010.3390/cancers1303040033499040
    [Google Scholar]
  70. GaberN.N. DarwisY. PehK.K. TanY.T.F. Characterization of polymeric micelles for pulmonary delivery of beclomethasone dipropionate.J. Nanosci. Nanotechnol.2006693095310110.1166/jnn.2006.42617048523
    [Google Scholar]
  71. FerreiraD.S. LopesS.C.A. FrancoM.S. OliveiraM.C. pH-sensitive liposomes for drug delivery in cancer treatment.Ther. Deliv.2013491099112310.4155/tde.13.8024024511
    [Google Scholar]
  72. PinheiroM. LúcioM. LimaJ.L.F.C. ReisS. Liposomes as drug delivery systems for the treatment of TB.Nanomedicine2011681413142810.2217/nnm.11.12222026379
    [Google Scholar]
  73. GargT. Liposomes: Targeted and controlled delivery system.Drug Deliv. Lett.201441627110.2174/22103031113036660015
    [Google Scholar]
  74. ChonoS. SuzukiH. TogamiK. MorimotoK. Efficient drug delivery to lung epithelial lining fluid by aerosolization of ciprofloxacin incorporated into PEGylated liposomes for treatment of respiratory infections.Drug Dev. Ind. Pharm.201137436737210.3109/03639045.2010.51338920815792
    [Google Scholar]
  75. NaharK. AbsarS. PatelB. AhsanF. Starch-coated magnetic liposomes as an inhalable carrier for accumulation of fasudil in the pulmonary vasculature.Int. J. Pharm.20144641-218519510.1016/j.ijpharm.2014.01.00724463004
    [Google Scholar]
  76. MancaM.L. ManconiM. ValentiD. LaiF. LoyG. MatricardiP. FaddaA.M. Liposomes coated with chitosan-xanthan gum (chitosomes) as potential carriers for pulmonary delivery of rifampicin.J. Pharm. Sci.2012101256657510.1002/jps.2277521997465
    [Google Scholar]
  77. AroraM. PatelK. ChoudharyP. JainP. MalhotraM. TrivediP. Liposome: A novel aerosol carrier of doxophylline in treatment of chronic asthma & chronic obstructive pulmonary disease.J. Mol. Genet. Med.20123351361
    [Google Scholar]
  78. SoutoE.B. BaldimI. OliveiraW.P. RaoR. YadavN. GamaF.M. MahantS. SLN and NLC for topical, dermal, and transdermal drug delivery.Expert Opin. Drug Deliv.202017335737710.1080/17425247.2020.172788332064958
    [Google Scholar]
  79. SonG.H. LeeB.J. ChoC.W. Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles.J. Pharm. Investig.201747428729610.1007/s40005‑017‑0320‑1
    [Google Scholar]
  80. CastellaniS. TrapaniA. Elisiana CarpagnanoG. CotoiaA. LaselvaO. Pia Foschino BarbaroM. CorboF. CinnellaG. De GiglioE. LarobinaD. Di GioiaS. ConeseM. Mucopenetration study of solid lipid nanoparticles containing magneto sensitive iron oxide.Eur. J. Pharm. Biopharm.20221789410410.1016/j.ejpb.2022.07.01735926759
    [Google Scholar]
  81. LiuH. LiY. ZhangX. ShiM. LiD. WangY. Chitosan- coated solid lipid nano-encapsulation improves the therapeutic antiairway inflammation effect of berberine against COPD in cigarette smoke-exposed rats.Can. Respir. J.2022202211310.1155/2022/850939635465190
    [Google Scholar]
  82. KesharwaniP. JainK. JainN.K. Dendrimer as nanocarrier for drug delivery.Prog. Polym. Sci.201439226830710.1016/j.progpolymsci.2013.07.005
    [Google Scholar]
  83. SunM. FanA. WangZ. ZhaoY. Dendrimer-mediated drug delivery to the skin.Soft Matter20128164301430510.1039/c2sm07280g
    [Google Scholar]
  84. ChawlaM. KaushikR.D. MalikM.K. PundirV. SinghJ. RehmaanH. Development and optimization of RofA-PAMAM dendrimer complex materials for sustained drug delivery.Mater. Today Commun.20223310488110.1016/j.mtcomm.2022.104881
    [Google Scholar]
  85. ElsharkasyO.M. NordinJ.Z. HageyD.W. de JongO.G. SchiffelersR.M. AndaloussiS.E.L. VaderP. Extracellular vesicles as drug delivery systems: Why and how?Adv. Drug Deliv. Rev.202015933234310.1016/j.addr.2020.04.00432305351
    [Google Scholar]
  86. BunggulawaE.J. WangW. YinT. WangN. DurkanC. WangY. WangG. Recent advancements in the use of exosomes as drug delivery systems.J. Nanobiotech.20181618110.1186/s12951‑018‑0403‑930326899
    [Google Scholar]
  87. VaderP. MolE.A. PasterkampG. SchiffelersR.M. Extracellular vesicles for drug delivery.Adv. Drug Deliv. Rev.2016106Pt A14815610.1016/j.addr.2016.02.00626928656
    [Google Scholar]
  88. TianD. MiaoY. HaoW. YangN. WangP. GeQ. ZhangC. Tanshinone IIA protects against chronic obstructive pulmonary disease via exosome-shuttled miR-486-5p.Int. J. Mol. Med.20225019710.3892/ijmm.2022.515335621142
    [Google Scholar]
  89. NasrM. NawazS. ElhissiA. Amphotericin B lipid nanoemulsion aerosols for targeting peripheral respiratory airways via nebulization.Int. J. Pharm.20124361-261161610.1016/j.ijpharm.2012.07.02822842623
    [Google Scholar]
  90. SinghS. VirmaniT. KohliK. Nanoemulsion system for improvement of raspberry ketone oral bioavailability.Indo Global J. Pharma. Sci.2020101334210.35652/IGJPS.2020.10105
    [Google Scholar]
  91. De RubisG. PaudelK.R. ManandharB. SinghS.K. GuptaG. MalikR. ShenJ. ChamiA. MacLoughlinR. ChellappanD.K. OliverB.G.G. HansbroP.M. DuaK. Agarwood oil nanoemulsion attenuates cigarette smoke-induced inflammation and oxidative stress markers in BCi-NS1.1 airway epithelial cells.Nutrients2023154101910.3390/nu1504101936839377
    [Google Scholar]
  92. AmaniA. YorkP. ChrystynH. ClarkB.J. Evaluation of a nanoemulsion-based formulation for respiratory delivery of budesonide by nebulizers.AAPS Pharm. Sci. Tech.20101131147115110.1208/s12249‑010‑9486‑920652776
    [Google Scholar]
  93. LaiY. ChiangP.C. BlomJ.D. LiN. ShevlinK. BraymanT.G. HuY. SelboJ.G. HuL. Comparison of in vitro nanoparticles uptake in various cell lines and in vivo pulmonary cellular transport in intratracheally dosed rat model.Nanoscale Res. Lett.20083932132910.1007/s11671‑008‑9160‑2
    [Google Scholar]
  94. ChiangP.C. AlsupJ.W. LaiY. HuY. HeydeB.R. TungD. Evaluation of aerosol delivery of nanosuspension for pre-clinical pulmonary drug delivery.Nanoscale Res. Lett.20094325426110.1007/s11671‑008‑9234‑120596335
    [Google Scholar]
  95. KangS. LeeH. LeeJ. JeongS. ChoiJ. LeeS. KimK. ChangJ. Nanoporous silicified phospholipids and application to controlled glycolic acid release.Nanoscale Res. Lett.200831035536010.1007/s11671‑008‑9165‑x
    [Google Scholar]
  96. SahaB. BhattacharyaJ. MukherjeeA. GhoshA. SantraC. DasguptaA.K. KarmakarP. In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics.Nanoscale Res. Lett.200721261462210.1007/s11671‑007‑9104‑2
    [Google Scholar]
  97. FuT.T. CongZ.Q. ZhaoY. ChenW.Y. LiuC.Y. ZhengY. YangF.F. LiaoY.H. Fluticasone propionate nanosuspensions for sustained nebulization delivery: An in vitro and in vivo evaluation.Int. J. Pharm.201957211883910.1016/j.ijpharm.2019.11883931715359
    [Google Scholar]
  98. BhardwajP. TripathiP. GuptaR. PandeyS. Niosomes: A review on niosomal research in the last decade.J. Drug Deliv. Sci. Technol.20205610158110.1016/j.jddst.2020.101581
    [Google Scholar]
  99. TerzanoC. AllegraL. AlhaiqueF. MarianecciC. CarafaM. Non-phospholipid vesicles for pulmonary glucocorticoid delivery.Eur. J. Pharm. Biopharm.2005591576210.1016/j.ejpb.2004.06.01015567302
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018289883240226113353
Loading
/content/journals/cdd/10.2174/0115672018289883240226113353
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): COPD; drug delivery; nanoparticles; nanostructures; prevalence; respiratory disease
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test