Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

The eye is the most delicate organ protected by several complex biological barriers that are static and dynamic. The presence of these ocular barriers retards drug absorption from topically applied dosage forms at the conjunctival sac. The efficient topical delivery of the drug into the globe is more difficult to achieve, and there is a need to develop a topical formulation that may reduce the use of injections and increase patient compliance with decreased frequency of administration. With the advancements of research in nanotechnology, nanoemulsions can be used as biocompatible carriers to deliver the drug to the ocular cavity. The lipophilic globules can increase the solubility of hydrophobic cargos, which provide increased permeation ability and ocular bioavailability, which can sustain drug release and corneal retention. Because of their small size, these formulations do not cause blurring of vision. Over the past decade, Nanoemulsions (NEs) have been used to treat several ocular diseases in the anterior eye segment. This review contains the global economic burden of ocular diseases, challenges in formulating ocular formulations, and recent advances of these NEs as effective carriers for ocular drug delivery, highlighting their performance in pre-clinical studies.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018286288240705064730
2024-07-15
2025-09-25
Loading full text...

Full text loading...

References

  1. AliM. ByrneM.E. Challenges and solutions in topical ocular drug-delivery systems.Expert Rev. Clin. Pharmacol.20081114516110.1586/17512433.1.1.14524410518
    [Google Scholar]
  2. CraigJ.P. CruzatA. CheungI.M.Y. WattersG.A. WangM.T.M. Randomized masked trial of the clinical efficacy of MGO Manuka Honey microemulsion eye cream for the treatment of blepharitis.Ocul Surf.202018117017710.1016/j.jtos.2019.11.009
    [Google Scholar]
  3. TofighiaP. SoltaniS. MontazamS.H. MontazamS.A. JelvehgariM. Formulation of tolmetin ocuserts as carriers for ocular drug delivery system.Iran. J. Pharm. Res.201716243244128979298
    [Google Scholar]
  4. HolgadoM.A. Anguiano-DomínguezA. Martín-BanderasL. Contact lenses as drug-delivery systems: A promising therapeutic tool.Arch. Spanish Soc. Ophthalmol.2020951243310.1016/j.oftale.2019.07.00731420118
    [Google Scholar]
  5. AgbanY. LianJ. PrabakarS. SeyfoddinA. RupenthalI.D. Nanoparticle cross-linked collagen shields for sustained delivery of pilocarpine hydrochloride.Int. J. Pharm.20165011-29610110.1016/j.ijpharm.2016.01.06926828672
    [Google Scholar]
  6. McDonaldM. D’AversaG. PerryH.D. WittpennJ.R. NelinsonD.S. Correlating patient-reported response to hydroxypropyl cellulose ophthalmic insert (LACRISERT®) therapy with clinical outcomes: Tools for predicting response.Curr. Eye Res.2010351088088710.3109/02713683.2010.49581120858108
    [Google Scholar]
  7. ThakurR.R.S. TekkoI.A. Al-ShammariF. AliA.A. McCarthyH. DonnellyR.F. Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery.Drug Deliv. Transl. Res.20166680081510.1007/s13346‑016‑0332‑927709355
    [Google Scholar]
  8. BishtR. JaiswalJ.K. ChenY.S. JinJ. RupenthalI.D. Light-responsive in situ forming injectable implants for effective drug delivery to the posterior segment of the eye.Expert Opin. Drug Deliv.201613795396210.1517/17425247.2016.116333426967153
    [Google Scholar]
  9. EmilianoBY. CarloDI. AugustinAJ. The role of surgery in managing severe complications of neovascular AMD.2018Available from: https://retinatoday.com/articles/2018-sept/the-role-of-surgery-in-managing-severe-complications-of-neovascular-amd(accessed on 7-6-2024)
  10. CoutinhoF.P. GreenC.R. RupenthalI.D. Intracellular oligonucleotide delivery using the cell penetrating peptide Xentry.Sci. Rep.2018811125610.1038/s41598‑018‑29556‑730050146
    [Google Scholar]
  11. SahooS. DilnawazF. KrishnakumarS. Nanotechnology in ocular drug delivery.Drug Discov. Today2008133-414415110.1016/j.drudis.2007.10.02118275912
    [Google Scholar]
  12. SoutoE.B. Dias-FerreiraJ. López-MachadoA. EttchetoM. CanoA. Camins EspunyA. EspinaM. GarciaM.L. Sánchez-LópezE. Advanced formulation approaches for ocular drug delivery: State-of-the-art and recent patents.Pharmaceutics201911946010.3390/pharmaceutics1109046031500106
    [Google Scholar]
  13. GholizadehS. WangZ. ChenX. DanaR. AnnabiN. Advanced nanodelivery platforms for topical ophthalmic drug delivery.Drug Discov. Today20212661437144910.1016/j.drudis.2021.02.02733689858
    [Google Scholar]
  14. RathinamS.R. KrishnadasR. RamakrishnanR. ThulasirajR.D. TielschJ.M. KatzJ. RobinA.L. KempenJ.H. Population-based prevalence of uveitis in Southern India.Br. J. Ophthalmol.201195446346710.1136/bjo.2010.18231120693551
    [Google Scholar]
  15. MustafaM. MuthusamyP. HussainS. ShimmiS. SeinM. Uveitis: Pathogenesis, clinical presentations and treatment.IOSR J. Pharm.2014412424710.9790/3013‑0401201042047
    [Google Scholar]
  16. WolkoffP. NøjgaardJ.K. TroianoP. PiccoliB. Eye complaints in the office environment: Precorneal tear film integrity influenced by eye blinking efficiency.Occup. Environ. Med.200562141210.1136/oem.2004.01603015613602
    [Google Scholar]
  17. McDonaldM. PatelD.A. KeithM.S. SnedecorS.J. Economic and humanistic burden of dry eye disease in Europe, North America, and Asia: A systematic literature review.Ocul. Surf.201614214416710.1016/j.jtos.2015.11.00226733111
    [Google Scholar]
  18. YangW. LuoY. WuS. NiuX. YanY. QiaoC. MingW. ZhangY. WangH. ChenD. QiM. KeL. WangY. LiL. LiS. ZengQ. Estimated annual economic burden of dry eye disease based on a multi-center analysis in China: A retrospective Study.Front. Med.202181277135210.3389/fmed.2021.77135234926513
    [Google Scholar]
  19. QuigleyH.A. Number of people with glaucoma worldwide.Br. J. Ophthalmol.199680538939310.1136/bjo.80.5.3898695555
    [Google Scholar]
  20. KongL. FryM. Al-SamarraieM. GilbertC. SteinkullerP.G. An update on progress and the changing epidemiology of causes of childhood blindness worldwide.J. AAPOS201216650150710.1016/j.jaapos.2012.09.00423237744
    [Google Scholar]
  21. LiuD. HuangL. MukkamalaL. KhouriA.S. The economic burden of childhood glaucoma.J. Glaucoma2016251079079710.1097/IJG.000000000000041226950576
    [Google Scholar]
  22. MurthyG.V.S. GuptaS. JohnN. VashistP. Current status of cataract blindness and Vision 2020: The right to sight initiative in India.Indian J. Ophthalmol.200856648949410.4103/0301‑4738.4277418974520
    [Google Scholar]
  23. BresslerN.M. WenickA.S. Diabetic macular edema: Current and emerging therapies.Middle East Afr. J. Ophthalmol.201219141210.4103/0974‑9233.9211022346109
    [Google Scholar]
  24. GadkariS. MaskatiQ. NayakB. Prevalence of diabetic retinopathy in India: The all India ophthalmological society diabetic retinopathy eye screening study 2014.Indian J. Ophthalmol.2016641384410.4103/0301‑4738.17814426953022
    [Google Scholar]
  25. XuX. WuJ. YuX. TangY. TangX. ShentuX. Regional differences in the global burden of age-related macular degeneration.BMC Public Health202020141010.1186/s12889‑020‑8445‑y32228540
    [Google Scholar]
  26. WongW.L. SuX. LiX. CheungC.M.G. KleinR. ChengC.Y. WongT.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis.Lancet Glob. Health201422e106e11610.1016/S2214‑109X(13)70145‑125104651
    [Google Scholar]
  27. PascoliniD. MariottiS.P. Global estimates of visual impairment: 2010.Br. J. Ophthalmol.201296561461810.1136/bjophthalmol‑2011‑30053922133988
    [Google Scholar]
  28. LikharN. MotheR.K. KanukulaR. ShahC. DangA. The prevalence of age-related macular degeneration in Indian population: A systematic review.Value Health2015183A18010.1016/j.jval.2015.03.1041
    [Google Scholar]
  29. ShastriD.H. ShelatP.K. ShuklaA.K. PatelP.B. Ophthalmic drug delivery system: Challenges and approaches.Sys. Rev. Pharm.20101211312010.4103/0975‑8453.75042
    [Google Scholar]
  30. MoiseevR.V. MorrisonP.W.J. SteeleF. KhutoryanskiyV.V. Penetration enhancers in ocular drug delivery.Pharmaceutics201911732110.3390/pharmaceutics1107032131324063
    [Google Scholar]
  31. Pal KaurI. KanwarM. Ocular preparations: The formulation approach.Drug Dev. Ind. Pharm.200228547349310.1081/DDC‑12000344512098838
    [Google Scholar]
  32. ColzatoL.S. van den WildenbergW.P.M. van WouweN.C. PannebakkerM.M. HommelB. Dopamine and inhibitory action control: Evidence from spontaneous eye blink rates.Exp. Brain Res.2009196346747410.1007/s00221‑009‑1862‑x19484465
    [Google Scholar]
  33. YokoiN. KomuroA. Non-invasive methods of assessing the tear film.Exp. Eye Res.200478339940710.1016/j.exer.2003.09.02015106919
    [Google Scholar]
  34. RuponenM. UrttiA. Undefined role of mucus as a barrier in ocular drug delivery.Eur. J. Pharm. Biopharm.201596March44244610.1016/j.ejpb.2015.02.03225770770
    [Google Scholar]
  35. DelMonteD.W. KimT. Anatomy and physiology of the cornea.J. Cataract Refract. Surg.201137358859810.1016/j.jcrs.2010.12.03721333881
    [Google Scholar]
  36. RenY. DuS. ZhengD. ShiY. PanL. YanH. Intraoperative intravitreal triamcinolone acetonide injection for prevention of postoperative inflammation and complications after phacoemulsification in patients with uveitic cataract.BMC Ophthalmol.202121124510.1186/s12886‑021‑02017‑y34088282
    [Google Scholar]
  37. DarttD.A. Regulation of mucin and fluid secretion by conjunctival epithelial cells.Prog. Retin. Eye Res.200221655557610.1016/S1350‑9462(02)00038‑112433377
    [Google Scholar]
  38. BishtR. MandalA. JaiswalJ.K. RupenthalI.D. Nanocarrier mediated retinal drug delivery: overcoming ocular barriers to treat posterior eye diseases.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2018102e147310.1002/wnan.147328425224
    [Google Scholar]
  39. BeuermanR.W. PedrozaL. Ultrastructure of the human cornea.Microsc. Res. Tech.199633432033510.1002/(SICI)1097‑0029(19960301)33:4<320::AID‑JEMT3>3.0.CO;2‑T8652889
    [Google Scholar]
  40. BooteC. DennisS. NewtonR.H. PuriH. MeekK.M. Collagen fibrils appear more closely packed in the prepupillary cornea: Optical and biomechanical implications.Invest. Ophthalmol. Vis. Sci.20034472941294810.1167/iovs.03‑013112824235
    [Google Scholar]
  41. UrttiA. Challenges and obstacles of ocular pharmacokinetics and drug delivery.Adv. Drug Deliv. Rev.200658111131113510.1016/j.addr.2006.07.02717097758
    [Google Scholar]
  42. GovindarajanB. GipsonI.K. Membrane-tethered mucins have multiple functions on the ocular surface.Exp. Eye Res.201090665566310.1016/j.exer.2010.02.01420223235
    [Google Scholar]
  43. VellonenK.S. HellinenL. MannermaaE. RuponenM. UrttiA. KidronH. Expression, activity and pharmacokinetic impact of ocular transporters.Adv. Drug Deliv. Rev.201812632210.1016/j.addr.2017.12.00929248478
    [Google Scholar]
  44. ChenP. ChenH. ZangX. ChenM. JiangH. HanS. WuX. Expression of efflux transporters in human ocular tissues.Drug Metab. Dispos.201341111934194810.1124/dmd.113.05270423979916
    [Google Scholar]
  45. JiaoJ. Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery.Adv. Drug Deliv. Rev.200860151663167310.1016/j.addr.2008.09.00218845195
    [Google Scholar]
  46. KhievD. MohamedZ.A. VichareR. PaulsonR. BhatiaS. MohapatraS. LoboG.P. ValapalaM. KerurN. PassagliaC.L. MohapatraS.S. BiswalM.R. Emerging nano-formulations and nanomedicines applications for ocular drug delivery.Nanomaterials202111117310.3390/nano1101017333445545
    [Google Scholar]
  47. AlghananimA. ÖzalpY. MesutB. SerakinciN. ÖzsoyY. GüngörS. A solid ultra fine self-nanoemulsifying drug delivery system (S-snedds) of deferasirox for improved solubility: Optimization, characterization, and in vitro cytotoxicity studies.Pharmaceuticals202013816210.3390/ph1308016232722238
    [Google Scholar]
  48. DaullP. AmraneM. GarrigueJ.S. Novasorb® cationic nanoemulsion and latanoprost: The ideal combination for glaucoma management?J. Eye Dis. Disord.201721110.35248/2684‑1622.17.2.107
    [Google Scholar]
  49. LallemandF. DaullP. BenitaS. BuggageR. GarrigueJ.S. Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb.J. Drug Deliv.2012201211610.1155/2012/60420422506123
    [Google Scholar]
  50. AlanyR.G. RadesT. NicollJ. TuckerI.G. DaviesN.M. W/O microemulsions for ocular delivery: Evaluation of ocular irritation and precorneal retention.J. Control. Release20061111-214515210.1016/j.jconrel.2005.11.02016426694
    [Google Scholar]
  51. BachuR. ChowdhuryP. Al-SaediZ. KarlaP. BodduS. Ocular drug delivery barriers—Role of nanocarriers in the treatment of anterior segment ocular diseases.Pharmaceutics20181012810.3390/pharmaceutics1001002829495528
    [Google Scholar]
  52. BasitA.W. PodczeckF. NewtonJ.M. WaddingtonW.A. EllP.J. LaceyL.F. Influence of polyethylene glycol 400 on the gastrointestinal absorption of ranitidine.Pharm. Res.20021991368137410.1023/A:102031522823712403075
    [Google Scholar]
  53. Bazán HenostrozaM.A. Curo MeloK.J. Nishitani YukuyamaM. LöbenbergR. Araci Bou-ChacraN. Cationic rifampicin nanoemulsion for the treatment of ocular tuberculosis.Colloids Surf. A Physicochem. Eng. Asp.202059712475510.1016/j.colsurfa.2020.124755
    [Google Scholar]
  54. MorsiN. IbrahimM. RefaiH. El SorogyH. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide.Eur. J. Pharm. Sci.201710430231410.1016/j.ejps.2017.04.01328433750
    [Google Scholar]
  55. DashR.N. MohammedH. HumairaT. RameshD. Design, optimization and evaluation of glipizide solid self-nanoemulsifying drug delivery for enhanced solubility and dissolution.Saudi Pharm. J.201523552854010.1016/j.jsps.2015.01.02426594119
    [Google Scholar]
  56. AkhterS. AnwarM. SiddiquiM.A. AhmadI. AhmadJ. AhmadM.Z. BhatnagarA. AhmadF.J. Improving the topical ocular pharmacokinetics of an immunosuppressant agent with mucoadhesive nanoemulsions: Formulation development, in-vitro and in-vivo studies.Colloids Surf. B Biointerfaces2016148192910.1016/j.colsurfb.2016.08.04827591567
    [Google Scholar]
  57. CalvoP. Vila-JatoJ.L. AlonsoM.J. Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules, and nanoemulsions, as ocular drug carriers.J. Pharm. Sci.199685553053610.1021/js950474+8742946
    [Google Scholar]
  58. LechugaM. Fernández-SerranoM. JuradoE. Núñez-OleaJ. RíosF. Acute toxicity of anionic and non-ionic surfactants to aquatic organisms.Ecotoxicol. Environ. Saf.20161251810.1016/j.ecoenv.2015.11.02726650419
    [Google Scholar]
  59. GorantlaS. RapalliV.K. WaghuleT. SinghP.P. DubeyS.K. SahaR.N. SinghviG. Nanocarriers for ocular drug delivery: Current status and translational opportunity.RSC Advances20201046278352785510.1039/D0RA04971A35516960
    [Google Scholar]
  60. ZhangJ. LiuZ. TaoC. LinX. ZhangM. ZengL. ChenX. SongH. Cationic nanoemulsions with prolonged retention time as promising carriers for ophthalmic delivery of tacrolimus.Eur. J. Pharm. Sci.202014410522910.1016/j.ejps.2020.10522931958581
    [Google Scholar]
  61. JafariS.M. AssadpoorE. HeY. BhandariB. Re-coalescence of emulsion droplets during high-energy emulsification.Food Hydrocoll.20082271191120210.1016/j.foodhyd.2007.09.006
    [Google Scholar]
  62. TayelS.A. El-NabarawiM.A. TadrosM.I. Abd-ElsalamW.H. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: Design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits.Int. J. Pharm.20134431-229330510.1016/j.ijpharm.2012.12.04923333217
    [Google Scholar]
  63. Kadukkattil RamanunnyA. SinghS.K. WadhwaS. GulatiM. KapoorB. KhursheedR. KuppusamyG. DuaK. DurejaH. ChellappanD.K. JhaN.K. GuptaP.K. VishwasS. Overcoming hydrolytic degradation challenges in topical delivery: Non-aqueous nano-emulsions.Expert Opin. Drug Deliv.2022191234510.1080/17425247.2022.201921834913772
    [Google Scholar]
  64. GeorgievG. YokoiN. NenchevaY. PeevN. DaullP. Surface chemistry interactions of cationorm with films by human meibum and tear film compounds.Int. J. Mol. Sci.2017187155810.3390/ijms1807155828718823
    [Google Scholar]
  65. GeY. ZhangA. SunR. XuJ. YinT. HeH. GouJ. KongJ. ZhangY. TangX. Penetratin-modified lutein nanoemulsion in-situ gel for the treatment of age-related macular degeneration.Expert Opin. Drug Deliv.202017460361910.1080/17425247.2020.173534832105151
    [Google Scholar]
  66. MajumdarD.K. MohantyB. MishraS.K. Effect of formulation factors on in vitro transcorneal permeation of voriconazole from aqueous drops.J. Adv. Pharm. Technol. Res.20134421021610.4103/2231‑4040.12141624350052
    [Google Scholar]
  67. ShahJ. NairA.B. JacobS. PatelR.K. ShahH. ShehataT.M. MorsyM.A. Nanoemulsion based vehicle for effective ocular delivery of moxifloxacin using experimental design and pharmacokinetic study in rabbits.Pharmaceutics201911523010.3390/pharmaceutics1105023031083593
    [Google Scholar]
  68. CohenS. LobelE. TrevgodaA. PeledY. A novel in situ-forming ophthalmic drug delivery system from alginates undergoing gelation in the eye.J. Control. Release1997442-320120810.1016/S0168‑3659(96)01523‑4
    [Google Scholar]
  69. MahboobianM.M. MohammadiM. MansouriZ. Development of thermosensitive in situ gel nanoemulsions for ocular delivery of acyclovir.J. Drug Deliv. Sci. Technol.20205510140010.1016/j.jddst.2019.101400
    [Google Scholar]
  70. TomlinsonA. KhanalS. RamaeshK. DiaperC. McFadyenA. Tear film osmolarity: Determination of a referent for dry eye diagnosis.Invest. Ophthalmol. Vis. Sci.200647104309431510.1167/iovs.05‑150417003420
    [Google Scholar]
  71. LiX. MüllerR.H. KeckC.M. Bou-ChacraN.A. Mucoadhesive dexamethasone acetate-polymyxin B sulfate cationic ocular nanoemulsion--novel combinatorial formulation concept.Pharmazie201671632733327455551
    [Google Scholar]
  72. PathakM.K. ChhabraG. PathakK. Design and development of a novel pH triggered nanoemulsified in-situ ophthalmic gel of fluconazole: Ex-vivo transcorneal permeation, corneal toxicity and irritation testing.Drug Dev. Ind. Pharm.201339578079010.3109/03639045.2012.70720322873799
    [Google Scholar]
  73. PatelN. NakraniH. RavalM. ShethN. Development of loteprednol etabonate-loaded cationic nanoemulsified in-situ ophthalmic gel for sustained delivery and enhanced ocular bioavailability.Drug Deliv.20162393712372310.1080/10717544.2016.122322527689408
    [Google Scholar]
  74. Cunha-VazJ.G. The blood–retinal barriers system. Basic concepts and clinical evaluation.Exp. Eye Res.200478371572110.1016/S0014‑4835(03)00213‑615106951
    [Google Scholar]
  75. OuslerG.III DevriesD. KarpeckiP. CiolinoJ.B. An evaluation of Retaine™ ophthalmic emulsion in the management of tear film stability and ocular surface staining in patients diagnosed with dry eye.Clin. Ophthalmol.2015923524310.2147/OPTH.S7529725709384
    [Google Scholar]
  76. IsmailA. NasrM. SammourO. Nanoemulsion as a feasible and biocompatible carrier for ocular delivery of travoprost: Improved pharmacokinetic/pharmacodynamic properties.Int. J. Pharm.202058311940210.1016/j.ijpharm.2020.11940232387308
    [Google Scholar]
  77. LyA. YeeP. VesseyK.A. PhippsJ.A. JoblingA.I. FletcherE.L. Early inner retinal astrocyte dysfunction during diabetes and development of hypoxia, retinal stress, and neuronal functional loss.Invest. Ophthalmol. Vis. Sci.201152139316932610.1167/iovs.11‑787922110070
    [Google Scholar]
  78. HornofM. ToropainenE. UrttiA. Cell culture models of the ocular barriers.Eur. J. Pharm. Biopharm.200560220722510.1016/j.ejpb.2005.01.00915939234
    [Google Scholar]
  79. BhaleraoH. KoteshwaraK.B. ChandranS. Design, optimisation and evaluation of in situ gelling nanoemulsion formulations of brinzolamide.Drug Deliv. Transl. Res.202010252954710.1007/s13346‑019‑00697‑031820300
    [Google Scholar]
  80. MandalA. PalD. AgrahariV. TrinhH.M. JosephM. MitraA.K. Ocular delivery of proteins and peptides: Challenges and novel formulation approaches.Adv. Drug Deliv. Rev.2018126679510.1016/j.addr.2018.01.00829339145
    [Google Scholar]
  81. MandalA. BishtR. RupenthalI.D. MitraA.K. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies.J. Control. Release20172489611610.1016/j.jconrel.2017.01.01228087407
    [Google Scholar]
  82. AmmarH.O. SalamaH.A. GhorabM. MahmoudA.A. Development of dorzolamide hydrochloride in situ gel nanoemulsion for ocular delivery.Drug Dev. Ind. Pharm.201036111330133910.3109/0363904100380188520545523
    [Google Scholar]
  83. FialhoS.L. Da Silva-CunhaA. New vehicle based on a microemulsion for topical ocular administration of dexamethasone.Clin. Exp. Ophthalmol.200432662663210.1111/j.1442‑9071.2004.00914.x15575833
    [Google Scholar]
  84. VadnereM. AmidonG. LindenbaumS. HaslamJ. Thermodynamic studies on the gel-sol transition of some pluronic polyols.Int. J. Pharm.1984222-320721810.1016/0378‑5173(84)90022‑X
    [Google Scholar]
  85. ChhonkerY.S. PrasadY.D. ChandasanaH. VishvkarmaA. MitraK. ShuklaP.K. BhattaR.S. Amphotericin-B entrapped lecithin/chitosan nanoparticles for prolonged ocular application.Int. J. Biol. Macromol.2015721451145810.1016/j.ijbiomac.2014.10.01425453292
    [Google Scholar]
  86. YuanY. LiS. MoF. ZhongD. Investigation of microemulsion system for transdermal delivery of meloxicam.Int. J. Pharm.20063211-211712310.1016/j.ijpharm.2006.06.02116876972
    [Google Scholar]
  87. QiH. ChenW. HuangC. LiL. ChenC. LiW. WuC. Development of a poloxamer analogs/carbopol-based in situ gelling and mucoadhesive ophthalmic delivery system for puerarin.Int. J. Pharm.20073371-217818710.1016/j.ijpharm.2006.12.03817254725
    [Google Scholar]
  88. Lusiana Müller-GoymannC.C. Preparation, characterization, and in vitro permeation study of terbinafine HCl in poloxamer 407-based thermogelling formulation for topical application.AAPS PharmSciTech201112249650610.1208/s12249‑011‑9611‑421479748
    [Google Scholar]
  89. CarlforsJ. EdsmanK. PeterssonR. JörnvingK. Rheological evaluation of Gelrite® in situ gels for ophthalmic use.Eur. J. Pharm. Sci.19986211311910.1016/S0928‑0987(97)00074‑29795027
    [Google Scholar]
  90. MahboobianM.M. SeyfoddinA. RupenthalI.D. AboofazeliR. ForoutanS.M. Formulation development and evaluation of the therapeutic efficacy of brinzolamide containing nanoemulsions.Iran. J. Pharm. Res.201716384785729201076
    [Google Scholar]
  91. MahboobianM.M. SeyfoddinA. AboofazeliR. ForoutanS.M. RupenthalI.D. Brinzolamide–loaded nanoemulsions: Ex vivo transcorneal permeation, cell viability and ocular irritation tests.Pharm. Dev. Technol.201924560060610.1080/10837450.2018.154774830472913
    [Google Scholar]
  92. GallarateM. ChirioD. BussanoR. PeiraE. BattagliaL. BarattaF. TrottaM. Development of O/W nanoemulsions for ophthalmic administration of timolol.Int. J. Pharm.2013440212613410.1016/j.ijpharm.2012.10.01523078859
    [Google Scholar]
  93. HagigitT. NassarT. BeharcohenF. LambertG. BenitaS. The influence of cationic lipid type on in-vitro release kinetic profiles of antisense oligonucleotide from cationic nanoemulsions.Eur. J. Pharm. Biopharm.200870124825910.1016/j.ejpb.2008.03.00518450437
    [Google Scholar]
  94. HagigitT. AbdulrazikM. ValamaneshF. Behar-CohenF. BenitaS. Ocular antisense oligonucleotide delivery by cationic nanoemulsion for improved treatment of ocular neovascularization: An in-vivo study in rats and mice.J. Control. Release2012160222523110.1016/j.jconrel.2011.11.02222138070
    [Google Scholar]
  95. HagigitT. AbdulrazikM. OrucovF. ValamaneshF. LambertM. LambertG. Behar-CohenF. BenitaS. Topical and intravitreous administration of cationic nanoemulsions to deliver antisense oligonucleotides directed towards VEGF KDR receptors to the eye.J. Control. Release2010145329730510.1016/j.jconrel.2010.04.01320420865
    [Google Scholar]
  96. Jurišić DukovskiB. JuretićM. BračkoD. RandjelovićD. SavićS. Crespo MoralM. Functional ibuprofen-loaded cationic nanoemulsion: Development and optimization for dry eye disease treatment.Int J Pharm.2020576118979
    [Google Scholar]
  97. PanatieriL.F. BrazilN.T. FaberK. Medeiros-NevesB. von PoserG.L. RottM.B. ZorziG.K. TeixeiraH.F. Nanoemulsions containing a coumarin-rich extract from Pterocaulon balansae (Asteraceae) for the treatment of ocular acanthamoeba keratitis.AAPS PharmSciTech201718372172810.1208/s12249‑016‑0550‑y27225384
    [Google Scholar]
  98. KoutsovitiM. SiamidiA. PavlouP. VlachouM. Recent advances in the excipients used for modified ocular drug delivery.Materials20211415429010.3390/ma1415429034361483
    [Google Scholar]
  99. TresslerC.S. BeattyR. LempM.A. Preservative use in topical glaucoma medications.Ocul. Surf.20119314015810.1016/S1542‑0124(11)70024‑621791189
    [Google Scholar]
  100. YounisH.S. ShawerM. PalacioK. GukasyanH.J. StevensG.J. EveringW. An assessment of the ocular safety of inactive excipients following sub-tenon injection in rabbits.J. Ocul. Pharmacol. Ther.200824220621610.1089/jop.2007.009918345993
    [Google Scholar]
  101. GrassiriB. ZambitoY. Bernkop-SchnürchA. Strategies to prolong the residence time of drug delivery systems on ocular surface.Adv. Colloid Interface Sci.202128810234210.1016/j.cis.2020.10234233444845
    [Google Scholar]
  102. Üstündağ OkurN. ÇağlarE.Ş. SiafakaP.I. Novel ocular drug delivery systems: An update on microemulsions.J. Ocul. Pharmacol. Ther.202036634235410.1089/jop.2019.013532255728
    [Google Scholar]
  103. AlmeidaH. AmaralM.H. LobãoP. Sousa LoboJ.M. Applications of poloxamers in ophthalmic pharmaceutical formulations: An overview.Expert Opin. Drug Deliv.20131091223123710.1517/17425247.2013.79636023688342
    [Google Scholar]
  104. YounesI. RinaudoM. Chitin and chitosan preparation from marine sources. Structure, properties and applications.Mar. Drugs20151331133117410.3390/md1303113325738328
    [Google Scholar]
  105. PanagiotouT. FisherR. Production of nanoemulsions at relevant industrial rates: Innovative scale-up strategies.TechConnect Briefs.2019
    [Google Scholar]
  106. MitriK. VauthierC. HuangN. MenasA. Ringard-LefebvreC. AnselmiC. StambouliM. RosilioV. VachonJ.J. BouchemalK. Scale-up of nanoemulsion produced by emulsification and solvent diffusion.J. Pharm. Sci.2012101114240424710.1002/jps.2329122886515
    [Google Scholar]
  107. RossC. SyedB. PakJ. JhanjiV. YamakiJ. SharmaA. Stability evaluation of extemporaneously compounded vancomycin ophthalmic drops: Effect of solvents and storage conditions.Pharmaceutics202113228910.3390/pharmaceutics1302028933672310
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018286288240705064730
Loading
/content/journals/cdd/10.2174/0115672018286288240705064730
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test