Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

The intricate anatomical and physiological barriers that prohibit pharmaceuticals from entering the brain continue to provide a noteworthy hurdle to the efficient distribution of medications to brain tissues. These barriers prevent the movement of active therapeutic agents into the brain. The present manuscript aims to describe the various aspects of brain-targeted drug delivery through the nasal route. The primary transport mechanism for drug absorption from the nose to the brain is the paracellular/extracellular mechanism, which allows for rapid drug transfer. The transcellular/intracellular pathway involves the transfer across a lipoidal channel, which regulates the entry or exit of anions, organic cations, and peptides. Spectroscopy and PET (positron emission tomography) are two common methods used for assessing drug distribution. MRI (Magnetic resonance imaging) is another imaging method used to assess the efficacy of aerosol drug delivery from nose to brain. It can identify emphysema, drug-induced harm, mucus discharge, oedema, and vascular remodeling. The olfactory epithelium's position in the nasal cavity makes it difficult for drugs to reach the desired target. Bi-directional aerosol systems and tools like the “OptiNose” can help decrease extranasal particle deposition and increase particle deposition efficiency in the primary nasal pathway. Direct medicine administration from N-T-B, however, can reduce the dose administered and make it easier to attain an effective concentration at the site of activity, and it has the potential to be commercialized.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018285350240227073607
2024-03-05
2025-09-26
Loading full text...

Full text loading...

References

  1. AzarmiS. RoaW.H. LöbenbergR. Targeted delivery of nanoparticles for the treatment of lung diseases.Adv. Drug Deliv. Rev.200860886387510.1016/j.addr.2007.11.00618308418
    [Google Scholar]
  2. ElyL. RoaW. FinlayW.H. LöbenbergR. Effervescent dry powder for respiratory drug delivery.Eur. J. Pharm. Biopharm.200765334635310.1016/j.ejpb.2006.10.02117156987
    [Google Scholar]
  3. BenattiaA. CavaillonP. GachelinE. DevillierP. VecellioL. WilliamsG. DubusJ.C. Inhaled treatments: Device selection criteria, systemic absorption of inhaled drugs and pulmonary bitterness receptors.Rev. Mal. Respir.201532879179910.1016/j.rmr.2014.06.03226480888
    [Google Scholar]
  4. NewhouseM.T. DolovichM.B. Control of asthma by aerosols.N. Engl. J. Med.19863151487087410.1056/NEJM1986100231514062875391
    [Google Scholar]
  5. SmaldoneG.C. Advances in aerosols: Adult respiratory disease.J. Aerosol Med.2006191364610.1089/jam.2006.19.3616551213
    [Google Scholar]
  6. HeyderJ. Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery.Proc. Am. Thorac. Soc.20041431532010.1513/pats.200409‑046TA16113452
    [Google Scholar]
  7. FreyW.H. LiuJ. ChenX. ThorneR.G. FawcettJ.R. AlaT.A. RahmanY.E. Delivery of 125 I-NGF to the brain via the olfactory route.Drug Deliv.199742879210.3109/10717549709051878
    [Google Scholar]
  8. MistryA. StolnikS. IllumL. Nose-to-brain delivery: Investigation of the transport of nanoparticles with different surface characteristics and sizes in excised porcine olfactory epithelium.Mol. Pharm.20151282755276610.1021/acs.molpharmaceut.5b0008825997083
    [Google Scholar]
  9. KhanA.R. YangX. FuM. ZhaiG. Recent progress of drug nanoformulations targeting to brain.J. Control. Release2018291376410.1016/j.jconrel.2018.10.00430308256
    [Google Scholar]
  10. IllumL. Nasal drug delivery—Possibilities, problems and solutions.J. Control. Release2003871-318719810.1016/S0168‑3659(02)00363‑212618035
    [Google Scholar]
  11. BonferoniM. RossiS. SandriG. FerrariF. GaviniE. RassuG. GiunchediP. Nanoemulsions for “nose-to-brain” drug delivery.Pharmaceutics20191128410.3390/pharmaceutics1102008430781585
    [Google Scholar]
  12. PetersonA. BansalA. HofmanF. ChenT.C. ZadaG. A systematic review of inhaled intranasal therapy for central nervous system neoplasms: An emerging therapeutic option.J. Neurooncol.2014116343744610.1007/s11060‑013‑1346‑524398618
    [Google Scholar]
  13. ErdőF. BorsL.A. FarkasD. BajzaÁ. GizurarsonS. Evaluation of intranasal delivery route of drug administration for brain targeting.Brain Res. Bull.201814315517010.1016/j.brainresbull.2018.10.00930449731
    [Google Scholar]
  14. MaitiS. SenK.K. Introductory chapter: Drug delivery concepts.Advanced Technology for Delivering Therapeutics. MaitiS.K. SenK.K. IntechOpen201710.5772/65245
    [Google Scholar]
  15. LukasM. NeumannI.D. Nasal application of neuropeptide S reduces anxiety and prolongs memory in rats: Social versus non-social effects.Neuropharmacology201262139840510.1016/j.neuropharm.2011.08.01621871467
    [Google Scholar]
  16. CraftS. BakerL.D. MontineT.J. MinoshimaS. WatsonG.S. ClaxtonA. ArbuckleM. CallaghanM. TsaiE. PlymateS.R. GreenP.S. LeverenzJ. CrossD. GertonB. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: A pilot clinical trial.Arch. Neurol.2012691293810.1001/archneurol.2011.23321911655
    [Google Scholar]
  17. PatelH.P. ChaudhariP.S. GandhiP.A. DesaiB.V. DesaiD.T. DedhiyaP.P. VyasB.A. MaulviF.A. Nose to brain delivery of tailored clozapine nanosuspension stabilized using (+)-alpha-tocopherol polyethylene glycol 1000 succinate: Optimization and in vivo pharmacokinetic studies.Int. J. Pharm.202160012047410.1016/j.ijpharm.2021.12047433737093
    [Google Scholar]
  18. VyasT.K. BabbarA.K. SharmaR.K. SinghS. MisraA. Intranasal mucoadhesive microemulsions of clonazepam: Preliminary studies on brain targeting.J. Pharm. Sci.200695357058010.1002/jps.2048016419051
    [Google Scholar]
  19. VyasT.K. BabbarA.K. SharmaR.K. SinghS. MisraA. Preliminary brain-targeting studies on intranasal mucoadhesive microemulsions of sumatriptan.AAPS PharmSciTech200671E49E5710.1208/pt07010828290023
    [Google Scholar]
  20. Jayachandra BabuR. DayalP.P. PawarK. SinghM. Nose- to-brain transport of melatonin from polymer gel suspensions: A microdialysis study in rats.J. Drug Target.201119973174010.3109/1061186X.2011.55809021428693
    [Google Scholar]
  21. JeongS.H. JangJ.H. LeeY.B. Drug delivery to the brain via the nasal route of administration: Exploration of key targets and major consideration factors.J. Pharm. Investig.202353111915210.1007/s40005‑022‑00589‑535910081
    [Google Scholar]
  22. WearleyL.L. Recent progress in protein and peptide delivery by noninvasive routes.Crit. Rev. Ther. Drug Carrier Syst.1991843313941769066
    [Google Scholar]
  23. LiuX.F. FawcettJ.R. ThorneR.G. DeForT.A. FreyW.H.II. Intranasal administration of insulin-like growth factor-I bypasses the blood–brain barrier and protects against focal cerebral ischemic damage.J. Neurol. Sci.20011871-2919710.1016/S0022‑510X(01)00532‑911440750
    [Google Scholar]
  24. DanielyanL. SchäferR. von MayerhoferA.A. BuadzeM. GeislerJ. KlopferT. BurkhardtU. ProkschB. VerleysdonkS. AyturanM. BuniatianG.H. GleiterC.H. FreyW.H.II. Intranasal delivery of cells to the brain.Eur. J. Cell Biol.200988631532410.1016/j.ejcb.2009.02.00119324456
    [Google Scholar]
  25. FonsecaC.O.D. TeixeiraR.M. RaminaR. KovaleskiG. SilvaJ.T. NagelJ. Quirico-SantosT. Case of advanced recurrent glioblastoma successfully treated with monoterpene perillyl alcohol by intranasal administration.J. Cancer Ther.201121162110.4236/jct.2011.21003
    [Google Scholar]
  26. PatilJ. SarasijaS. Pulmonary drug delivery strategies: A concise, systematic review.Lung India20122014449
    [Google Scholar]
  27. CourrierH. ButzN. VandammeT.F. Pulmonary drug delivery systems: Recent developments and prospects.Crit Rev Ther Drug Carrier Syst2002194-5425498
    [Google Scholar]
  28. PalecandaG. KobzikL. Receptors for unopsonized particles: The role of alveolar macrophage scavenger receptors.Curr. Mol. Med.20011558959510.2174/156652401336338411899233
    [Google Scholar]
  29. AgarwalV. MishraB. Recent trends in drug delivery systems: Intranasal drug delivery.Indian J. Exp. Biol.199937161610355359
    [Google Scholar]
  30. AuroraJ. Development of nasal delivery systems: A review.Drug Deliv. Technol.20022718
    [Google Scholar]
  31. JonesN.S. QuraishiS. MasonJ.D.T. The nasal delivery of systemic drugs.Int. J. Clin. Pract.199751530831110.1111/j.1742‑1241.1997.tb11466.x9489091
    [Google Scholar]
  32. BehlC.R. PimplaskarH.K. SilenoA.P. deMeirelesJ. RomeoV.D. Effects of physicochemical properties and other factors on systemic nasal drug delivery.Adv. Drug Deliv. Rev.1998291-28911610.1016/S0169‑409X(97)00063‑X10837582
    [Google Scholar]
  33. TalegaonkarS. MishraP.R. Intranasal delivery: An approach to bypass the blood brain barrier.Indian J. Pharmacol.2004363140147
    [Google Scholar]
  34. MatoL.Y. Nasal route for vaccine and drug delivery: Features and current opportunities.Int. J. Pharm.201957211881310.1016/j.ijpharm.2019.11881331678521
    [Google Scholar]
  35. McGonigleP. Peptide therapeutics for CNS indications.Biochem. Pharmacol.201283555956610.1016/j.bcp.2011.10.01422051078
    [Google Scholar]
  36. ParrasiaS. SzabòI. ZorattiM. BiasuttoL. Peptides as pharmacological carriers to the brain: Promises, shortcomings and challenges.Mol. Pharm.202219113700372910.1021/acs.molpharmaceut.2c0052336174227
    [Google Scholar]
  37. WangZ. XiongG. TsangW.C. SchätzleinA.G. UchegbuI.F. Nose-to-brain delivery.J. Pharmacol. Exp. Ther.2019370359360110.1124/jpet.119.25815231126978
    [Google Scholar]
  38. BahadurS. PathakK. Physicochemical and physiological considerations for efficient nose-to-brain targeting.Expert Opin. Drug Deliv.201291193110.1517/17425247.2012.63680122171740
    [Google Scholar]
  39. BelurL.R. RomeroM. LeeJ. PedersenP.K.M. NanZ. RiedlM.S. VulchanovaL. KittoK.F. FairbanksC.A. KozarskyK.F. OrchardP.J. FreyW.H.II LowW.C. McIvorR.S. Comparative effectiveness of intracerebroventricular, intrathecal, and intranasal routes of AAV9 vector administration for genetic therapy of neurologic disease in murine mucopolysaccharidosis type I.Front. Mol. Neurosci.20211461836010.3389/fnmol.2021.61836034040503
    [Google Scholar]
  40. RabinowitzJ.D. LloydP.M. MunzarP. MyersD.J. CrossS. DamaniR. QuintanaR. SpykerD.A. SoniP. CassellaJ.V. Ultra-fast absorption of amorphous pure drug aerosols via deep lung inhalation.J. Pharm. Sci.200695112438245110.1002/jps.2069416886198
    [Google Scholar]
  41. AbdouE.M. KandilS.M. MorsiA. SleemM.W. In-vitro and in-vivo respiratory deposition of a developed metered dose inhaler formulation of an anti-migraine drug.Drug Deliv.201926168969910.1080/10717544.2019.161841931274014
    [Google Scholar]
  42. GrossetK.A. MalekN. MorganF. GrossetD.G. Inhaled dry powder apomorphine (VR040) for ‘off ’ periods in Parkinson’s disease: an in-clinic double-blind dose ranging study.Acta Neurol. Scand.2013128316617110.1111/ane.1210723527823
    [Google Scholar]
  43. ThompsonJ.P. ThompsonD.F. Nebulized fentanyl in acute pain.Ann. Pharmacother.2016501088289110.1177/106002801665907727413071
    [Google Scholar]
  44. TrevinoJ.T. QuispeR.C. KhanF. NovakV. Non-invasive strategies for nose-to-brain drug delivery.J. Clin. Trials202010743933505777
    [Google Scholar]
  45. BharadwajV.N. TzabazisA.Z. KlukinovM. ManeringN.A. YeomansD.C. Intranasal administration for pain: Oxytocin and other polypeptides.Pharmaceutics2021137108810.3390/pharmaceutics1307108834371778
    [Google Scholar]
  46. BahadurS. PardhiD.M. RautioJ. RosenholmJ.M. PathakK. Intranasal nanoemulsions for direct nose-to-brain delivery of actives for CNS disorders.Pharmaceutics20201212123010.3390/pharmaceutics1212123033352959
    [Google Scholar]
  47. XuJ. TaoJ. WangJ. Design and application in delivery system of intranasal antidepressants.Front. Bioeng. Biotechnol.2020862688210.3389/fbioe.2020.62688233409272
    [Google Scholar]
  48. AlabsiW. EedaraB.B. BasurtoE.D. PoltR. MansourH.M. Nose-to-brain delivery of therapeutic peptides as nasal aerosols.Pharmaceutics2022149187010.3390/pharmaceutics1409187036145618
    [Google Scholar]
  49. MerkusF.W.H.M. van den BergM.P. Can nasal drug delivery bypass the blood-brain barrier?: Questioning the direct transport theory.Drugs R D.20078313314410.2165/00126839‑200708030‑0000117472409
    [Google Scholar]
  50. CaunaN. Blood and nerve supply of the nasal lining.The Nose: Upper Airway Physiology and the Atmospheric Environment ProctorD.F. AndersenI. Elsevier Biomedical Press19824569
    [Google Scholar]
  51. DeSessoJ.M. The relevance to humans of animal models for inhalation studies of cancer in the nose and upper airways.Qual. Assur.1993232132318137082
    [Google Scholar]
  52. SharmaM. WaghelaS. MhatreR. SaraogiG.K. A recent update on intranasal delivery of high molecular weight proteins, peptides, and hormones.Curr. Pharm. Des.202127424279429910.2174/138161282766621082010072334414869
    [Google Scholar]
  53. FortunaA. AlvesG. SerralheiroA. SousaJ. FalcãoA. Intranasal delivery of systemic-acting drugs: Small-molecules and biomacromolecules.Eur. J. Pharm. Biopharm.201488182710.1016/j.ejpb.2014.03.00424681294
    [Google Scholar]
  54. GängerS. SchindowskiK. Tailoring formulations for intranasal nose-to-brain delivery: A review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa.Pharmaceutics201810311610.3390/pharmaceutics1003011630081536
    [Google Scholar]
  55. KashyapK. ShuklaR. Drug delivery and targeting to the brain through nasal route: Mechanisms, applications and challenges.Curr. Drug Deliv.2019161088790110.2174/156720181666619102912274031660815
    [Google Scholar]
  56. DeyS. MahantiB. MazumderB. MalgopeA. DasguptaS. Nasal drug delivery: An approach of drug delivery through nasal.Route. Pharm. Sin.201114494106
    [Google Scholar]
  57. SiX.A. XiJ. KimJ. ZhouY. ZhongH. Modeling of release position and ventilation effects on olfactory aerosol drug delivery.Respir. Physiol. Neurobiol.20131861223210.1016/j.resp.2012.12.00523313127
    [Google Scholar]
  58. SoaneR.J. FrierM. PerkinsA.C. JonesN.S. DavisS.S. IllumL. Evaluation of the clearance characteristics of bioadhesive systems in humans.Int. J. Pharm.19991781556510.1016/S0378‑5173(98)00367‑610205625
    [Google Scholar]
  59. MarttinE. SchipperN.G.M. VerhoefJ.C. MerkusF.W.H.M. Nasal mucociliary clearance as a factor in nasal drug delivery.Adv. Drug Deliv. Rev.1998291-2133810.1016/S0169‑409X(97)00059‑810837578
    [Google Scholar]
  60. TrenkelM. ScherließR. Nasal powder formulations: In-vitro characterisation of the impact of powders on nasal residence time and sensory effects.Pharmaceutics202113338510.3390/pharmaceutics1303038533805779
    [Google Scholar]
  61. SamaridouE. AlonsoM.J. Nose-to-brain peptide delivery – The potential of nanotechnology.Bioorg. Med. Chem.201826102888290510.1016/j.bmc.2017.11.00129170026
    [Google Scholar]
  62. SumanJ.D. LaubeB.L. DalbyR. Validity of in vitro tests on aqueous spray pumps as surrogates for nasal deposition, absorption, and biologic response.J. Aerosol Med.200619451052110.1089/jam.2006.19.51017196079
    [Google Scholar]
  63. LiX.T. SuJ. KamalZ. GuoP. WuX. LuL. WuH. QiuM. Odorranalectin modified PEG-PLGA/PEG-PBLG curcumin-loaded nanoparticle for intranasal administration.Drug Dev. Ind. Pharm.2020466899909
    [Google Scholar]
  64. LalatsaA. SchatzleinA.G. UchegbuI.F. Strategies to deliver peptide drugs to the brain.Mol. Pharm.20141141081109310.1021/mp400680d24601686
    [Google Scholar]
  65. DjupeslandP.G. SkrettingA. Nasal deposition and clearance in man: comparison of a bidirectional powder device and a traditional liquid spray pump.J. Aerosol Med. Pulm. Drug Deliv.201225528028910.1089/jamp.2011.092422251061
    [Google Scholar]
  66. WarnkenZ.N. SmythH.D.C. WattsA.B. WeitmanS. KuhnJ.G. WilliamsR.O.III Formulation and device design to increase nose to brain drug delivery.J. Drug Deliv. Sci. Technol.20163521322210.1016/j.jddst.2016.05.003
    [Google Scholar]
  67. MisraA. KherG. Drug delivery systems from nose to brain.Curr. Pharm. Biotechnol.201213122355237910.2174/13892011280334175223016642
    [Google Scholar]
  68. LeeD. MinkoT. Nanotherapeutics for nose-to-brain drug delivery: An approach to bypass the blood brain barrier.Pharmaceutics20211312204910.3390/pharmaceutics1312204934959331
    [Google Scholar]
  69. DuvvuriS. MajumdarS. MitraA.K. Drug delivery to the retina: Challenges and opportunities.Expert Opin. Biol. Ther.200331455610.1517/14712598.3.1.4512718730
    [Google Scholar]
  70. CroweT.P. GreenleeM.H.W. KanthasamyA.G. HsuW.H. Mechanism of intranasal drug delivery directly to the brain.Life Sci.2018195445210.1016/j.lfs.2017.12.02529277310
    [Google Scholar]
  71. CasettariL. IllumL. Chitosan in nasal delivery systems for therapeutic drugs.J. Control. Release201419018920010.1016/j.jconrel.2014.05.00324818769
    [Google Scholar]
  72. VyasT. ShahiwalaA. MaratheS. MisraA. Intranasal drug delivery for brain targeting.Curr. Drug Deliv.20052216517510.2174/156720105358604716305417
    [Google Scholar]
  73. DhuriaS.V. HansonL.R. FreyW.H.II Intranasal delivery to the central nervous system: Mechanisms and experimental considerations.J. Pharm. Sci.20109941654167310.1002/jps.2192419877171
    [Google Scholar]
  74. IllumL. Transport of drugs from the nasal cavity to the central nervous system.Eur. J. Pharm. Sci.200011111810.1016/S0928‑0987(00)00087‑710913748
    [Google Scholar]
  75. CroweT.P. HsuW.H. Evaluation of recent intranasal drug delivery systems to the central nervous system.Pharmaceutics202214362910.3390/pharmaceutics1403062935336004
    [Google Scholar]
  76. ThorneR.G. HansonL.R. RossT.M. TungD. FreyW.H.II Delivery of interferon-β to the monkey nervous system following intranasal administration.Neuroscience2008152378579710.1016/j.neuroscience.2008.01.01318304744
    [Google Scholar]
  77. SchmidV. KullmannS. GfrörerW. HundV. HallschmidM. LippH.P. HäringH.U. PreisslH. FritscheA. HeniM. Safety of intranasal human insulin: A review.Diabetes Obes. Metab.20182071563157710.1111/dom.1327929508509
    [Google Scholar]
  78. MaazA. BlagbroughI.S. De BankP.A. In vitro evaluation of nasal aerosol depositions: An insight for direct nose to brain drug delivery.Pharmaceutics2021137107910.3390/pharmaceutics1307107934371770
    [Google Scholar]
  79. BradburyM.W. WestropR.J. Factors influencing exit of substances from cerebrospinal fluid into deep cervical lymph of the rabbit.J. Physiol.1983339151953410.1113/jphysiol.1983.sp0147316411905
    [Google Scholar]
  80. JohnstonM. ZakharovA. PapaiconomouC. SalmasiG. ArmstrongD. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species.Cerebrospinal Fluid Res.200411210.1186/1743‑8454‑1‑215679948
    [Google Scholar]
  81. KidaS. PantazisA. WellerR.O. CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance.Neuropathol. Appl. Neurobiol.199319648048810.1111/j.1365‑2990.1993.tb00476.x7510047
    [Google Scholar]
  82. WalterB.A. ValeraV.A. TakahashiS. UshikiT. The olfactory route for cerebrospinal fluid drainage into the peripheral lymphatic system.Neuropathol. Appl. Neurobiol.200632438839610.1111/j.1365‑2990.2006.00737.x16866984
    [Google Scholar]
  83. DhandaD.S. FreyW.H.II LeopoldD. KompellaU.B. Approaches for drug deposition in the human olfactory epithelium.Drug Deliv. Technol.200556472
    [Google Scholar]
  84. BornJ. LangeT. KernW. McGregorG.P. BickelU. FehmH.L. Sniffing neuropeptides: A transnasal approach to the human brain.Nat. Neurosci.20025651451610.1038/nn0602‑84911992114
    [Google Scholar]
  85. SakaneT. AkizukiM. YamashitaS. SezakiH. NadaiT. Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: The relation to the dissociation of the drug.J. Pharm. Pharmacol.201146537837910.1111/j.2042‑7158.1994.tb03817.x8083811
    [Google Scholar]
  86. WangQ. ChenG. ZengS. Pharmacokinetics of Gastrodin in rat plasma and CSF after I.N. and I.V.Int. J. Pharm.20073411-2202510.1016/j.ijpharm.2007.03.04117482780
    [Google Scholar]
  87. PapaiconomouC. SosicB.R. ZakharovA. JohnstonM. Does neonatal cerebrospinal fluid absorption occur via arachnoid projections or extracranial lymphatics?Am. J. Physiol. Regul. Integr. Comp. Physiol.20022834R869R87610.1152/ajpregu.00173.200212228056
    [Google Scholar]
  88. FilippidisA. FountasK.N. Nasal lymphatics as a novel invasion and dissemination route of bacterial meningitis.Med. Hypotheses200972669469710.1016/j.mehy.2008.10.03119243893
    [Google Scholar]
  89. CorcoranT.E. Imaging in aerosol medicine.Respir. Care201560685085710.4187/respcare.0353726070579
    [Google Scholar]
  90. EhrmannS. SchmidO. DarquenneC. Rothen-RutishauserB. SznitmanJ. YangL. BarosovaH. VecellioL. MitchellJ. Heuze-Vourc’hN. Innovative preclinical models for pulmonary drug delivery research.Expert Opin. Drug Deliv.202017446347810.1080/17425247.2020.173080732057260
    [Google Scholar]
  91. RobertsonH.T. BuxtonR.B. Imaging for lung physiology: What do we wish we could measure?J. Appl. Physiol.2012113231732710.1152/japplphysiol.00146.2012
    [Google Scholar]
  92. FourasA. DubskyS. The role of functional lung imaging in the improvement of pulmonary drug delivery.Pulm. Drug Deliv. NokhodchiA. MartinG.P. John Wiley & Sons, Ltd2015193410.1002/9781118799536.ch2
    [Google Scholar]
  93. WolfW. Imaging can be much more than pretty pictures.Pharm. Res.199512121821182210.1023/A:10162589318568786952
    [Google Scholar]
  94. FischmanA.J. AlpertN.M. RubinR.H. Pharmacokinetic imaging.Clin. Pharmacokinet.200241858160210.2165/00003088‑200241080‑0000312102642
    [Google Scholar]
  95. LockeL.W. MyerburgM.M. WeinerD.J. MarkovetzM.R. ParkerR.S. MuthukrishnanA. WeberL. CzachowskiM.R. LacyR.T. PilewskiJ.M. CorcoranT.E. Pseudomonas infection and mucociliary and absorptive clearance in the cystic fibrosis lung.Eur. Respir. J.20164751392140110.1183/13993003.01880‑201527009167
    [Google Scholar]
  96. CorcoranT.E. HuberA.S. HillS.L. LockeL.W. WeberL. MuthukrishnanA. HeidrichE.M. WenzelS. MyerburgM.M. Mucociliary clearance differs in mild asthma by levels of type 2 inflammation.Chest202116051604161310.1016/j.chest.2021.05.01334029561
    [Google Scholar]
  97. Mougin-DegraefM. BourdeauC. JestinE. Saï-MaurelC. BourgeoisM. SaëcP.R.L. ThédrezP. GestinJ.F. BarbetJ. ChauvetF.A. Doubly radiolabeled liposomes for pretargeted radioimmunotherapy.Int. J. Pharm.20073441-211011710.1016/j.ijpharm.2007.05.02417592745
    [Google Scholar]
  98. WollmerP. PrideN.B. RhodesC.G. SandersA. PikeV.W. PalmerA.J. SilvesterD.J. LissR.H. Measurement of pulmonary erythromycin concentration in patients with lobar pneumonia by means of positron tomography.Lancet198232083121361136410.1016/S0140‑6736(82)91269‑76129462
    [Google Scholar]
  99. BajcM. NeillyJ.B. MiniatiM. SchuemichenC. MeignanM. JonsonB. EANM guidelines for ventilation/perfusion scintigraphy.Eur. J. Nucl. Med. Mol. Imaging20093681356137010.1007/s00259‑009‑1170‑519562336
    [Google Scholar]
  100. McPeckM. AshrafS. CucciaA.D. SmaldoneG.C. Factors determining continuous infusion aerosol delivery during mechanical ventilation.Respir. Care202166457358110.4187/respcare.0771532967932
    [Google Scholar]
  101. GregoryT.J. IrshadH. ChandR. KuehlP.J. Deposition of aerosolized lucinactant in non-human primates.J. Aerosol Med. Pulm. Drug Deliv.2020331213310.1089/jamp.2018.150531436493
    [Google Scholar]
  102. IsraelS. KumarA. DeAngelisK. AurivilliusM. DorinskyP. RocheN. UsmaniO.S. Pulmonary deposition of budesonide/glycopyrronium/formoterol fumarate dihydrate metered dose inhaler formulated using co-suspension delivery technology in healthy male subjects.Eur. J. Pharm. Sci.202015310547210.1016/j.ejps.2020.10547232682074
    [Google Scholar]
  103. KappelerD. SommererK. KietzigC. HuberB. WoodwardJ. LomaxM. DalviP. Pulmonary deposition of fluticasone propionate/formoterol in healthy volunteers, asthmatics and COPD patients with a novel breath-triggered.Inhaler. Respir. Med.2018138107114
    [Google Scholar]
  104. BiedererJ. BeerM. HirschW. WildJ. FabelM. PuderbachM. Van BeekE.J.R. MRI of the lung (2/3). Why … when … how?Insights Imaging20123435537110.1007/s13244‑011‑0146‑822695944
    [Google Scholar]
  105. FoxM.S. GaudetJ.M. FosterP.J. Fluorine-19 mri contrast agents for cell tracking and lung imaging.Magn. Reson. Insights.20158S1536710.4137/MRI.S23559
    [Google Scholar]
  106. GholizadehH. ChengS. PozzoliM. MesserottiE. TrainiD. YoungP. KourmatzisA. OngH.X. Smart thermosensitive chitosan hydrogel for nasal delivery of ibuprofen to treat neurological disorders.Expert Opin. Drug Deliv.201916445346610.1080/17425247.2019.159705130884987
    [Google Scholar]
  107. GholizadehH. MesserottiE. PozzoliM. ChengS. TrainiD. YoungP. KourmatzisA. CaramellaC. OngH.X. Application of a thermosensitive in situ gel of chitosan-based nasal spray loaded with tranexamic acid for localised treatment of nasal wounds.AAPS PharmSciTech201920729910.1208/s12249‑019‑1517‑631482286
    [Google Scholar]
  108. ChenJ.Z. FinlayW.H. MartinA. In vitro regional deposition of nasal sprays in an idealized nasal inlet: Comparison with in vivo gamma scintigraphy.Pharm. Res.202239113021302810.1007/s11095‑022‑03388‑736109462
    [Google Scholar]
  109. SeifelnasrA. SiX.A. XiJ. Visualization and estimation of nasal spray delivery to olfactory mucosa in an image-based transparent nasal model.Pharmaceutics2023156165710.3390/pharmaceutics1506165737376105
    [Google Scholar]
  110. LawL.H. HuangJ. XiaoP. LiuY. ChenZ. LaiJ.H.C. HanX. ChengG.W.Y. TseK.H. ChanK.W.Y. Multiple CEST contrast imaging of nose-to-brain drug delivery using iohexol liposomes at 3T MRI.J. Control. Release202335420822010.1016/j.jconrel.2023.01.01136623695
    [Google Scholar]
  111. DanY. MurakamiH. KoyabuN. OhtaniH. SawadaY. Distribution of domperidone into the rat brain is increased by brain ischaemia or treatment with the P-glycoprotein inhibitor verapamil.J. Pharm. Pharmacol.201054572973310.1211/002235702177888012005368
    [Google Scholar]
  112. MizutaniA. KobayashiM. OhuchiM. SasakiK. MuranakaY. TorikaiY. FukakusaS. SuzukiC. NishiiR. HarutaS. MagataY. KawaiK. Indirect SPECT imaging evaluation for possible nose-to-brain drug delivery using a compound with poor blood–brain barrier permeability in mice.Pharmaceutics2022145102610.3390/pharmaceutics1405102635631611
    [Google Scholar]
  113. BorsL.A. BajzaÁ. MándokiM. TasiB.J. CsereyG. ImreT. SzabóP. ErdőF. Modulation of nose-to-brain delivery of a P-glycoprotein (MDR1) substrate model drug (quinidine) in rats.Brain Res. Bull.2020160657310.1016/j.brainresbull.2020.04.01232344126
    [Google Scholar]
  114. PépinA. DaoukJ. BaillyP. HapdeyS. MeyerM.E. Management of respiratory motion in PET/computed tomography.Nucl. Med. Commun.201435211312210.1097/MNM.000000000000004824352107
    [Google Scholar]
  115. AfaqA. FaulD. ChebroluV.V. WanS. HopeT.A. HaibachP.V. BomanjiJ. Pitfalls on PET/MRI.Semin. Nucl. Med.202151552953910.1053/j.semnuclmed.2021.04.00334020770
    [Google Scholar]
  116. TorresL. KammermanJ. HahnA.D. ZhaW. NagleS. K. JohnsonK. SandboN. MeyerK. SchieblerM. FainS. B. Structure-function imaging of lung disease using ultrashort echo time MRI.Acad. Radiol.201926343144110.1016/j.acra.2018.12.007
    [Google Scholar]
  117. BachertC. El-AkkadT. Patient preferences and sensory comparisons of three intranasal corticosteroids for the treatment of allergic rhinitis.Ann. Allergy Asthma Immunol.200289329229710.1016/S1081‑1206(10)61957‑612269650
    [Google Scholar]
  118. StormsW.W. Introduction: Patient preference of inhaled nasal corticosteroids.Allergy Asthma Proc.2001226S1S311775398
    [Google Scholar]
  119. BenningerM.S. HadleyJ.A. OsguthorpeJ.D. MarpleB.F. LeopoldD.A. Derebery MJ. HannleyM. Techniques of intranasal steroid use.Otolaryngol. Head Neck Surg.2004130152410.1016/j.otohns.2003.10.00714726906
    [Google Scholar]
  120. KundoorV. DalbyR.N. Effect of formulation- and administration-related variables on deposition pattern of nasal spray pumps evaluated using a nasal cast.Pharm. Res.20112881895190410.1007/s11095‑011‑0417‑621499839
    [Google Scholar]
  121. KhawajaU.A. RizviS.A. GongB. YeungW. GonzalezS.M.A. FerrerG. Development and patient experience evaluation of a gentle atomizer for nasal drug delivery.Research Square202110.21203/rs.3.rs‑381105/v1
    [Google Scholar]
  122. DetynieckiK. Van EssP.J. SequeiraD.J. WhelessJ.W. MengT.C. PullmanW.E. Safety and efficacy of midazolam nasal spray in the outpatient treatment of patients with seizure clusters—A randomized, double-blind, placebo-controlled trial.Epilepsia20196091797180810.1111/epi.1515931140596
    [Google Scholar]
  123. ChhabraR. GuptaR. GuptaL.K. Intranasal midazolam versus intravenous/rectal benzodiazepines for acute seizure control in children: A systematic review and meta-analysis.Epilepsy Behav.202112510839010.1016/j.yebeh.2021.10839034740090
    [Google Scholar]
  124. CramerJ.A. FaughtE. DavisC. MisraS.N. CarrazanaE. RabinowiczA.L. Quality-of-life results in adults with epilepsy using diazepam nasal spray for seizure clusters from a long-term, open-label safety study.Epilepsy Behav.202213410881110.1016/j.yebeh.2022.10881135816831
    [Google Scholar]
  125. TarquinioD. DlugosD. WhelessJ.W. DesaiJ. CarrazanaE. RabinowiczA.L. Safety of diazepam nasal spray in children and adolescents with epilepsy: Results from a long-term phase 3 safety study.Pediatr. Neurol.2022132505510.1016/j.pediatrneurol.2022.04.01135636283
    [Google Scholar]
  126. TanN.C. DrillingA.J. JardelezaC. WormaldP.J. Is nasal steroid spray bottle contamination a potential issue in chronic rhinosinusitis?J. Laryngol. Otol.2014128S1S28S3310.1017/S0022215113001229
    [Google Scholar]
  127. AhsanuddinS. PovolotskiyR. TayyabR. NasserW. BarinskyG.L. GrubeJ.G. PaskhoverB. Adverse events associated with intranasal sprays: An analysis of the food and drug administration database and literature review.Ann. Otol. Rhinol. Laryngol.2021130111292130110.1177/0003489421100722233813873
    [Google Scholar]
  128. LoftsA. Abu-HijlehF. RiggN. MishraR.K. HoareT. Using the intranasal route to administer drugs to treat neurological and psychiatric illnesses: Rationale, successes, and future needs.CNS Drugs202236773977010.1007/s40263‑022‑00930‑435759210
    [Google Scholar]
  129. Di ScalaC. ArmstrongN. ChahinianH. ChabrièreE. FantiniJ. YahiN. AmyP53, a therapeutic peptide candidate for the treatment of Alzheimer’s and Parkinson’s disease: Safety, stability, pharmacokinetics parameters and nose-to brain delivery.Int. J. Mol. Sci.202223211338310.3390/ijms23211338336362170
    [Google Scholar]
  130. UmedaT. TanakaA. SakaiA. YamamotoA. SakaneT. TomiyamaT. Intranasal rifampicin for Alzheimer’s disease prevention.Alzheimers Dement.20184130431310.1016/j.trci.2018.06.01230094330
    [Google Scholar]
  131. StevensJ. PloegerB.A. van der GraafP.H. DanhofM. de LangeE.C.M. Systemic and direct nose-to-brain transport pharmacokinetic model for remoxipride after intravenous and intranasal administration.Drug Metab. Dispos.201139122275228210.1124/dmd.111.04078221903866
    [Google Scholar]
  132. AgrawalM. SarafS. SarafS. AntimisiarisS.G. ChouguleM.B. ShoyeleS.A. AlexanderA. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs.J. Control. Release201828113917710.1016/j.jconrel.2018.05.01129772289
    [Google Scholar]
  133. BickerJ. FortunaA. AlvesG. FalcãoA. Nose-to-brain delivery of natural compounds for the treatment of central nervous system disorders.Curr. Pharm. Des.202026559461910.2174/138161282666620011510154431939728
    [Google Scholar]
  134. SiskindD. KiselyS. Balancing body and mind: Selecting the optimal antipsychotic.Lancet20193941020290090210.1016/S0140‑6736(19)32096‑331526722
    [Google Scholar]
  135. MittalD. AliA. MdS. BabootaS. SahniJ.K. AliJ. Insights into direct nose to brain delivery: Current status and future perspective.Drug Deliv.2014212758610.3109/10717544.2013.83871324102636
    [Google Scholar]
  136. DjupeslandP.G. MessinaJ.C. MahmoudR.A. The nasal approach to delivering treatment for brain diseases: An anatomic, physiologic, and delivery technology overview.Ther. Deliv.20145670973310.4155/tde.14.4125090283
    [Google Scholar]
  137. JawaharN. HingarhP.K. ArunR. SelvarajJ. AnbarasanA. SS. GN. Enhanced oral bioavailability of an antipsychotic drug through nanostructured lipid carriers.Int. J. Biol. Macromol.201811026927510.1016/j.ijbiomac.2018.01.12129402457
    [Google Scholar]
  138. MistryA. StolnikS. IllumL. Nanoparticles for direct nose-to-brain delivery of drugs.Int. J. Pharm.2009379114615710.1016/j.ijpharm.2009.06.01919555750
    [Google Scholar]
  139. OngW.Y. ShaliniS.M. CostantinoL. Nose-to-brain drug delivery by nanoparticles in the treatment of neurological disorders.Curr. Med. Chem.201421374247425610.2174/092986732166614071610313025039773
    [Google Scholar]
  140. BantzC. KoshkinaO. LangT. GallaH.J. KirkpatrickC.J. StauberR.H. MaskosM. The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions.Beilstein J. Nanotechnol.2014511774178610.3762/bjnano.5.18825383289
    [Google Scholar]
  141. PuthetiR. PatilM.C. ObireO. Nasal drug delivery in pharmaceutical and biotechnology: Present and future.J. Sci. Technol.20094121
    [Google Scholar]
  142. WuH. HuK. JiangX. From nose to brain: Understanding transport capacity and transport rate of drugs.Expert Opin. Drug Deliv.20085101159116810.1517/17425247.5.10.115918817519
    [Google Scholar]
  143. MatsuyamaT. MoritaT. HorikiriY. YamaharaH. YoshinoH. Enhancement of nasal absorption of large molecular weight compounds by combination of mucolytic agent and nonionic surfactant.J. Control. Release2016110234735210.1016/j.jconrel.2005.09.047
    [Google Scholar]
  144. ShahB.M. MisraM. ShishooC.J. PadhH. Nose to brain microemulsion-based drug delivery system of rivastigmine: Formulation and ex-vivo characterization.Drug Deliv.201522791893010.3109/10717544.2013.87885724467601
    [Google Scholar]
  145. ColomboG. BortolottiF. ChiapponiV. ButtiniF. SonvicoF. InvernizziR. QuagliaF. DanesinoC. PagellaF. RussoP. BettiniR. ColomboP. RossiA. Nasal powders of thalidomide for local treatment of nose bleeding in persons affected by hereditary hemorrhagic telangiectasia.Int. J. Pharm.2016514122923710.1016/j.ijpharm.2016.07.00227863666
    [Google Scholar]
  146. a EmirzeogluM. SahinB. CelebiM. UzunA. BilgicS. TontusH.O. Estimation of nasal cavity and conchae volumes by stereological method.Folia Morphol.2012712105108
    [Google Scholar]
  147. b BhiseS. B. YadavA. V. AvachatA. M. MalayandiR. Bioavailability of intranasal drug delivery system.Asian J. Pharm.20082420121510.4103/0973‑8398.45032
    [Google Scholar]
  148. HansonL.R. FreyW.H.II Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease.BMC Neurosci.20089S3S510.1186/1471‑2202‑9‑S3‑S519091002
    [Google Scholar]
  149. PaliwalR. BabuR.J. PalakurthiS. Nanomedicine scale-up technologies: Feasibilities and challenges.AAPS PharmSciTech20141561527153410.1208/s12249‑014‑0177‑925047256
    [Google Scholar]
  150. AsadiS. GholamiM.S. SiassiF. QorbaniM. SotoudehG. Beneficial effects of nano-curcumin supplement on depression and anxiety in diabetic patients with peripheral neuropathy: A randomized, double-blind, placebo-controlled clinical trial.Phytother. Res.202034489690310.1002/ptr.657131788880
    [Google Scholar]
  151. BoboD. RobinsonK.J. IslamJ. ThurechtK.J. CorrieS.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date.Pharm. Res.201633102373238710.1007/s11095‑016‑1958‑527299311
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018285350240227073607
Loading
/content/journals/cdd/10.2174/0115672018285350240227073607
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test