Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Background

The clinical efficiency of photodynamic therapy (PDT) in combination with chemotherapy has proven to be a promising strategy for tumor treatment, yet is restricted by the high glutathione (GSH) concentration at the tumor site and nonspecific drug targeting.

Objective

The goal of the current research was to create a biocompatible GSH-depleting and tumor-targeting nanoparticle (denoted as DOX/CA@PCN-224@HA) for the combined photodynamic and chemo photo-chemo) therapy.

Methods

The nanoparticles were characterized by transmission electron microscopy (TEM). A UV-vis spectrophotometer was used to measure the drug loading efficiency (DE) and encapsulation efficiency (EE). The GSH-depleting ability was measured using Ellman's test. Confocal laser scan microscopy (CLSM) was used to assess the cellular uptake. MTT was adopted to evaluate the cytotoxicity of DOX/CA@PCN-224@HA against 4T1 cells.

Results

The altered PCN-224 showed excellent monodispersing with a dimension of approximately 193 nm ± 2 nm in length and 79 nm ± 3 nm in width. The larger and spindle grid-like structure of PCN-224 obtains better dual-drug loading ability (DOX: 20.58% ± 2.60%, CA: 21.81% ± 1.98%) compared with other spherical PCN-224 nanoparticles. The ultimate cumulative drug release rates with hyaluronidase (HAase) were 74% ± 1% (DOX) and 45% ± 2% (CA) after 72 h. DOX/CA@PCN-224@HA showed GSH-consuming capability, which could improve the PDT effect. The drug-loaded nanoparticles could accurately target 4T1 cells through biological evaluations. Moreover, the released DOX and CA display cooperative effects on 4T1 cells . DOX/CA@PCN-224@HA nanoparticles showed inhibition against 4T1 cells with an IC value of 2.71 μg mL-1.

Conclusion

This nanosystem displays great potential for tumor-targeted enhanced (photo-chemo) therapy.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018286563240223072702
2024-02-27
2025-09-26
Loading full text...

Full text loading...

References

  1. GunaydinG. GedikM.E. AyanS. Photodynamic therapy-current limitations and novel approaches.Front Chem.2021969169710.3389/fchem.2021.69169734178948
    [Google Scholar]
  2. ChoiJ. SunI.C. HwangS.H. YoonY.H. KimK. Light-triggered photodynamic nanomedicines for overcoming localized therapeutic efficacy in cancer treatment.Adv. Drug Deliv. Rev.202218611434410.1016/j.addr.2022.11434435580813
    [Google Scholar]
  3. GustalikJ. AebisherD. AebisherB.D. Photodynamic therapy in breast cancer treatment.J. Appl. Biomed.20222039810510.32725/jab.2022.01336218130
    [Google Scholar]
  4. JiB. WeiM. YangB. Recent advances in nanomedicines for photodynamic therapy (PDT)-driven cancer immunotherapy.Theranostics202212143445810.7150/thno.6730034987658
    [Google Scholar]
  5. ChenD. XuQ. WangW. ShaoJ. HuangW. DongX. Type I photosensitizers revitalizing photodynamic oncotherapy.Small20211731200674210.1002/smll.20200674234038611
    [Google Scholar]
  6. ZhouZ. ZhangL. ZhangZ. LiuZ. Advances in photosensitizer-related design for photodynamic therapy.Asian J. Pharm. Sci.202116666868610.1016/j.ajps.2020.12.00335027948
    [Google Scholar]
  7. KwiatkowskiS. KnapB. PrzystupskiD. SaczkoJ. KędzierskaE. Knap-CzopK. KotlińskaJ. MichelO. KotowskiK. KulbackaJ. Photodynamic therapy – mechanisms, photosensitizers and combinations.Biomed. Pharmacother.20181061098110710.1016/j.biopha.2018.07.04930119176
    [Google Scholar]
  8. YuX.T. SuiS.Y. HeY.X. YuC.H. PengQ. Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy.Biomaterials Advances202213521272510.1016/j.bioadv.2022.21272535929205
    [Google Scholar]
  9. FernandesA.M. CostaB.R. do AmaralR.S. MussagyC.U. EbinumaS.V.C. PrimoF.L. Development of biotechnological photosensitizers for photodynamic therapy: Cancer research and treatment-from benchtop to clinical practice.Molecules20222720684810.3390/molecules2720684836296441
    [Google Scholar]
  10. PhamT.C. NguyenV.N. ChoiY. LeeS. YoonJ. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy.Chem. Rev.202112121134541361910.1021/acs.chemrev.1c0038134582186
    [Google Scholar]
  11. YiM. XiongB. LiY. GuoW. HuangY. LuB. Manipulate tumor hypoxia for improved photodynamic therapy using nanomaterials.Eur. J. Med. Chem.202324711508410.1016/j.ejmech.2022.11508436599230
    [Google Scholar]
  12. FogliettaF. SerpeL. CanaparoR. ROS-generating nanoplatforms as selective and tunable therapeutic weapons against cancer.Discover Nano202318115110.1186/s11671‑023‑03939‑w38078991
    [Google Scholar]
  13. CheungE.C. VousdenK.H. The role of ROS in tumour development and progression.Nat. Rev. Cancer202222528029710.1038/s41568‑021‑00435‑035102280
    [Google Scholar]
  14. KennelK.B. GretenF.R. Immune cell - produced ROS and their impact on tumor growth and metastasis.Redox Biol.20214210189110.1016/j.redox.2021.10189133583736
    [Google Scholar]
  15. UlfoL. CostantiniP.E. Di GiosiaM. DanielliA. CalvaresiM. EGFR-targeted photodynamic therapy.Pharmaceutics202214224110.3390/pharmaceutics1402024135213974
    [Google Scholar]
  16. ZhangP. HanT. XiaH. DongL. ChenL. LeiL. Advances in photodynamic therapy based on nanotechnology and its application in skin cancer.Front. Oncol.20221283639710.3389/fonc.2022.83639735372087
    [Google Scholar]
  17. DobsonJ. de QueirozG.F. GoldingJ.P. Photodynamic therapy and diagnosis: Principles and comparative aspects.Vet. J.201823381810.1016/j.tvjl.2017.11.01229486883
    [Google Scholar]
  18. PanW.L. TanY. MengW. HuangN.H. ZhaoY.B. YuZ.Q. HuangZ. ZhangW.H. SunB. ChenJ.X. Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework.Biomaterials202228312144910.1016/j.biomaterials.2022.12144935247637
    [Google Scholar]
  19. TanP. CaiH. WeiQ. TangX. ZhangQ. KopytynskiM. YangJ. YiY. ZhangH. GongQ. GuZ. ChenR. LuoK. Enhanced chemo-photodynamic therapy of an enzyme-responsive prodrug in bladder cancer patient-derived xenograft models.Biomaterials202127712106110.1016/j.biomaterials.2021.12106134508957
    [Google Scholar]
  20. El-HusseinA. ManotoS.L. LemboumbaO.S. AlrowailiZ.A. KufaM.P. A review of chemotherapy and photodynamic therapy for lung Cancer treatment.Anticancer. Agents Med. Chem.202121214916110.2174/18715206MTA1uNjQp332242788
    [Google Scholar]
  21. SuZ. XiD. ChenY. WangR. ZengX. XiongT. XiaX. RongX. LiuT. LiuW. DuJ. FanJ. PengX. SunW. Carrier-free ATP-activated nanoparticles for combined photodynamic therapy and chemotherapy under near-infrared light.Small20231911220582510.1002/smll.20220582536587982
    [Google Scholar]
  22. ZhouZ. SongJ. NieL. ChenX. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy.Chem. Soc. Rev.201645236597662610.1039/C6CS00271D27722328
    [Google Scholar]
  23. ShiJ. KantoffP.W. WoosterR. FarokhzadO.C. Cancer nanomedicine: Progress, challenges and opportunities.Nat. Rev. Cancer2017171203710.1038/nrc.2016.10827834398
    [Google Scholar]
  24. LiuP. HaoL. LiuM. HuS. Glutathione-responsive and -exhausting metal nanomedicines for robust synergistic cancer therapy.Front. Bioeng. Biotechnol.202311116147210.3389/fbioe.2023.116147236970628
    [Google Scholar]
  25. NiuB. LiaoK. ZhouY. WenT. QuanG. PanX. WuC. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy.Biomaterials202127712111010.1016/j.biomaterials.2021.12111034482088
    [Google Scholar]
  26. LiW. YongJ. XuY. WangY. ZhangY. RenH. LiX. Glutathione depletion and dual-model oxygen balance disruption for photodynamic therapy enhancement.Colloids Surf. B Biointerfaces201918311045310.1016/j.colsurfb.2019.11045331465940
    [Google Scholar]
  27. ZhuJ. XiaoT. ZhangJ. CheH. ShiY. ShiX. van HestJ.C.M. Surface-charge-switchable nanoclusters for magnetic resonance imaging-guided and glutathione depletion-enhanced photodynamic therapy.ACS Nano2020149112251123710.1021/acsnano.0c0308032809803
    [Google Scholar]
  28. ZhangW. LuJ. GaoX. LiP. ZhangW. MaY. WangH. TangB. Enhanced photodynamic therapy by reduced levels of intracellular glutathione obtained by employing a nano-MOF with Cu-II as the active center.Angew. Chem. Int. Ed.201857184891489610.1002/anie.20171080029451722
    [Google Scholar]
  29. YaoW. WangK. GuoY. WeiR. LuoS. TangW. WangN. HeC. WeiX. YangR. YuanY. JiangX. Nitric oxide nano-prodrug platform with synchronous glutathione depletion and hypoxia relief for enhanced photodynamic cancer therapy.Biomater. Advances202213311261610.1016/j.msec.2021.11261635525734
    [Google Scholar]
  30. ChengX. XuH.D. RanH.H. LiangG. WuF.G. Glutathione-depleting nanomedicines for synergistic cancer therapy.ACS Nano20211558039806810.1021/acsnano.1c0049833974797
    [Google Scholar]
  31. ChenM. ZhaoS. ZhuJ. FengE. LvF. ChenW. LvS. WuY. PengX. SongF. Open-source and reduced-expenditure nanosystem with ROS self-amplification and glutathione depletion for simultaneous augmented chemodynamic/photodynamic therapy.ACS Appl. Mater. Interfaces20221418206822069210.1021/acsami.2c0178235500204
    [Google Scholar]
  32. ZhangH. KongZ. WangZ. ChenY. ZhangS. LuoC. Molecularly engineering a dual-drug nanoassembly for self-sensitized photodynamic therapy via thioredoxin impairment and glutathione depletion.Drug Deliv.20222913281329010.1080/10717544.2022.214192036350255
    [Google Scholar]
  33. ZhangL. FanY. YangZ. YangM. WongC.Y. NIR-II-driven and glutathione depletion-enhanced hypoxia-irrelevant free radical nanogenerator for combined cancer therapy.J. Nanobiotechnol.202119126510.1186/s12951‑021‑01003‑234488803
    [Google Scholar]
  34. YangG. JiJ. LiuZ. Multifunctional MnO 2 nanoparticles for tumor microenvironment modulation and cancer therapy.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2021136e172010.1002/wnan.172033908171
    [Google Scholar]
  35. ZhangL. YangZ. HeW. RenJ. WongC.Y. One-pot synthesis of a self-reinforcing cascade bioreactor for combined photodynamic/chemodynamic/starvation therapy.J. Colloid Interface Sci.202159954355510.1016/j.jcis.2021.03.17333964699
    [Google Scholar]
  36. JuE. DongK. ChenZ. LiuZ. LiuC. HuangY. WangZ. PuF. RenJ. QuX. Copper (II)-graphitic carbon nitride triggered synergy: Improved ROS generation and reduced glutathione levels for enhanced photodynamic therapy.Angew. Chem. Int. Ed.20165538114671147110.1002/anie.20160550927504861
    [Google Scholar]
  37. LiK. LinC. LiM. XuK. HeY. MaoY. LuL. GengW. LiX. LuoZ. CaiK. Multienzyme-like reactivity cooperatively impairs glutathione peroxidase 4 and ferroptosis suppressor protein 1 pathways in triple-negative breast cancer for sensitized ferroptosis therapy.ACS Nano20221622381239810.1021/acsnano.1c0866435041395
    [Google Scholar]
  38. HaoY. GaoY. FanY. ZhangC. ZhanM. CaoX. ShiX. GuoR. A tumor microenvironment-responsive poly(amidoamine) dendrimer nanoplatform for hypoxia-responsive chemo/chemodynamic therapy.J. Nanobiotechnology20222014310.1186/s12951‑022‑01247‑635062953
    [Google Scholar]
  39. LeeH.M. KimD.H. LeeH.L. ChaB. KangD.H. JeongY.I.L. Synergistic effect of buthionine sulfoximine on the chlorin e6-based photodynamic treatment of cancer cells.Arch. Pharm. Res.2019421199099910.1007/s12272‑019‑01179‑031482490
    [Google Scholar]
  40. XuJ. ZhangJ. SongJ. LiuY. LiJ. WangX. TangR. Construction of multifunctional mesoporous silicon nano-drug delivery system and study of dual sensitization of chemo-photodynamic therapy in vitro and in vivo. J. Colloid Interface Sci.2022628Pt B27128510.1016/j.jcis.2022.08.100
    [Google Scholar]
  41. ZhuJ. JiaoA. LiQ. LvX. WangX. SongX. LiB. ZhangY. DongX. Mitochondrial Ca2+-overloading by oxygen/glutathione depletion-boosted photodynamic therapy based on a CaCO3 nanoplatform for tumor synergistic therapy.Acta Biomater.202213725226110.1016/j.actbio.2021.10.01634653696
    [Google Scholar]
  42. LiuY. ZhouZ. LiuY. LiY. HuangX. QianC. SunM. H 2 O 2 -activated oxidative stress amplifier capable of GSH scavenging for enhancing tumor photodynamic therapy.Biomater. Sci.20197125359536810.1039/C9BM01354G31621699
    [Google Scholar]
  43. OverchukM. ZhengG. Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics.Biomaterials201815621723710.1016/j.biomaterials.2017.10.02429207323
    [Google Scholar]
  44. QinS.Y. ZhangA.Q. ZhangX.Z. Recent advances in targeted tumor chemotherapy based on smart nanomedicines.Small20181445180241710.1002/smll.20180241730247806
    [Google Scholar]
  45. WeiQ.Y. XuY.M. LauA.T.Y. Recent progress of nanocarrier-based therapy for solid malignancies.Cancers20201210278310.3390/cancers1210278332998391
    [Google Scholar]
  46. CarvalhoF.S. BurgeiroA. GarciaR. MorenoA.J. CarvalhoR.A. OliveiraP.J. Doxorubicin-induced cardiotoxicity: From bioenergetic failure and cell death to cardiomyopathy.Med. Res. Rev.201434110613510.1002/med.2128023494977
    [Google Scholar]
  47. XingY. ZhangJ. ChenF. LiuJ. CaiK. Mesoporous polydopamine nanoparticles with co-delivery function for overcoming multidrug resistance via synergistic chemo-photothermal therapy.Nanoscale20179258781879010.1039/C7NR01857F28621774
    [Google Scholar]
  48. YangY. ZuoS. LiL. KuangX. LiJ. SunB. WangS. HeZ. SunJ. Iron-doxorubicin prodrug loaded liposome nanogenerator programs multimodal ferroptosis for efficient cancer therapy. Asian J. Pharm. Sci.202116678479310.1016/j.ajps.2021.05.00135027953
    [Google Scholar]
  49. KimM. LeeJ.S. KimW. LeeJ.H. JunB.H. KimK.S. KimD.E. Aptamer-conjugated nano-liposome for immunogenic chemotherapy with reversal of immunosuppression.J. Control. Release202234889391010.1016/j.jconrel.2022.06.03935760233
    [Google Scholar]
  50. ZhangM. ZhangZ. SongX. ZhuJ. SngJ.A. LiJ. WenY. Synthesis and characterization of palmitoyl-block-poly(methacryloyloxyethyl phosphorylcholine) polymer micelles for anticancer drug delivery.Biomacromolecules202223114586459610.1021/acs.biomac.2c0083836103674
    [Google Scholar]
  51. YangZ. MaiH. WangD. HeT. ChenF. YangC. Systematic design and study of star-like polymeric prodrug unimolecular micelles β-CD-P[CL-co-(ACL-g-DOX)-SS-MPEG]21 by DPD simulations.ACS Omega2023854963497110.1021/acsomega.2c0737136777574
    [Google Scholar]
  52. FalsafiM. ZahiriM. SaljooghiA.S. AbnousK. TaghdisiS.M. SazgarniaA. RamezaniM. AlibolandiM. Aptamer targeted red blood cell membrane-coated porphyrinic copper-based MOF for guided photochemotherapy against metastatic breast cancer.Microporous Mesoporous Mater.202132511133710.1016/j.micromeso.2021.111337
    [Google Scholar]
  53. ChenZ. SunY. WangJ. ZhouX. KongX. MengJ. ZhangX. Dual-responsive triple-synergistic Fe-MOF for tumor theranostics.ACS Nano202317109003901310.1021/acsnano.2c1031037116070
    [Google Scholar]
  54. JoY.J. GulfamM. JoS.H. GalY.S. OhC.W. ParkS.H. LimK.T. Multi-stimuli responsive hydrogels derived from hyaluronic acid for cancer therapy application.Carbohydr. Polym.202228611930310.1016/j.carbpol.2022.11930335337532
    [Google Scholar]
  55. RongL. LiuY. FanY. XiaoJ. SuY. LuL. PengS. YuanW. ZhanM. Injectable nano-composite hydrogels based on hyaluronic acid-chitosan derivatives for simultaneous photothermal-chemo therapy of cancer with anti-inflammatory capacity.Carbohydr. Polym.202331012072110.1016/j.carbpol.2023.12072136925247
    [Google Scholar]
  56. LawsonH.D. WaltonS.P. ChanC. Metal-organic frameworks for drug delivery: A design perspective.ACS Appl. Mater. Interfaces20211367004702010.1021/acsami.1c0108933554591
    [Google Scholar]
  57. AlvesS.R. CaloriI.R. TedescoA.C. Photosensitizer-based metal-organic frameworks for highly effective photodynamic therapy.Mater. Sci. Eng. C202113111251410.1016/j.msec.2021.11251434857293
    [Google Scholar]
  58. XiaM. YanY. PuH. DuX. LiangJ. SunY. ZhengJ. YuanY. Glutathione responsive nitric oxide release for enhanced photodynamic therapy by a porphyrinic MOF nanosystem.Chem. Eng. J.2022442213629510.1016/j.cej.2022.136295
    [Google Scholar]
  59. ParkJ. JiangQ. FengD. MaoL. ZhouH.C. Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy.J. Am. Chem. Soc.2016138103518352510.1021/jacs.6b0000726894555
    [Google Scholar]
  60. SunX. ChenK. LiuY. ZhangG. ShiM. ShiP. ZhangS. Metal–organic framework combined with CaO 2 nanoparticles for enhanced and targeted photodynamic therapy.Nanoscale Adv.20213236669667710.1039/D1NA00610J36132652
    [Google Scholar]
  61. CaiZ. XinF. WeiZ. WuM. LinX. DuX. ChenG. ZhangD. ZhangZ. LiuX. YaoC. Photodynamic therapy combined with antihypoxic signaling and CpG adjuvant as an in situ tumor vaccine based on metal-organic framework nanoparticles to boost cancer immunotherapy.Adv. Healthc. Mater.202091190099610.1002/adhm.20190099631746153
    [Google Scholar]
  62. DaiH. YanH. DongF. ZhangL. DuN. SunL. LiN. YuG. YangZ. WangY. HuangM. Tumor-targeted biomimetic nanoplatform precisely integrates photodynamic therapy and autophagy inhibition for collaborative treatment of oral cancer.Biomater. Sci.20221061456146910.1039/D1BM01780B35048086
    [Google Scholar]
  63. ZhangY. YeZ. HeR. LiY. XiongB. YiM. ChenY. LiuJ. LuB. Bovine serum albumin-based and dual-responsive targeted hollow mesoporous silica nanoparticles for breast cancer therapy.Colloids Surf. B Biointerfaces202322411320110.1016/j.colsurfb.2023.11320136822117
    [Google Scholar]
  64. WangZ. LiuB. SunQ. FengL. HeF. YangP. GaiS. QuanZ. LinJ. Upconverted metal-organic framework janus architecture for near-infrared and ultrasound co-enhanced high performance tumor therapy.ACS Nano2021157123421235710.1021/acsnano.1c0428034160201
    [Google Scholar]
  65. XieB.X. ShuW. WangH.S. ChenL. XuJ. ZhangF-Z. LinR-G. Folic acid-modified metal-organic framework carries CPT and DOX for cancer treatment.J. Solid State Chem.202230612280310.1016/j.jssc.2021.122803
    [Google Scholar]
  66. ZhangY. WangQ. ChenG. ShiP. DNA-functionalized metal-organic framework: Cell imaging, targeting drug delivery and photodynamic therapy.Inorg. Chem.201958106593659610.1021/acs.inorgchem.9b0073431074268
    [Google Scholar]
  67. KimK. LeeS. JinE. PalanikumarL. LeeJ.H. KimJ.C. NamJ.S. JanaB. KwonT.H. KwakS.K. ChoeW. RyuJ.H. MOF × biopolymer: Collaborative combination of metal-organic framework and biopolymer for advanced anticancer therapy.ACS Appl. Mater. Interfaces20191131275122752010.1021/acsami.9b0573631293157
    [Google Scholar]
  68. BaoY. ChenJ. QiuH. ZhangC. HuangP. MaoZ. TongW. Erythrocyte membrane-camouflaged PCN-224 nanocarriers integrated with platinum nanoparticles and glucose oxidase for enhanced tumor sonodynamic therapy and synergistic starvation therapy.ACS Appl. Mater. Interfaces20211321245322454210.1021/acsami.1c0564434019368
    [Google Scholar]
  69. ChenZ.X. LiuM.D. ZhangM.K. WangS.B. XuL. LiC.X. GaoF. XieB.R. ZhongZ.L. ZhangX.Z. Interfering with lactate-fueled respiration for enhanced photodynamic tumor therapy by a porphyrinic mof nanoplatform.Adv. Funct. Mater.20182836180349810.1002/adfm.201803498
    [Google Scholar]
  70. ZhaoQ. WangS. YangY. LiX. DiD. ZhangC. JiangT. WangS. Hyaluronic acid and carbon dots-gated hollow mesoporous silica for redox and enzyme-triggered targeted drug delivery and bioimaging.Mater. Sci. Eng. C20177847548410.1016/j.msec.2017.04.05928576012
    [Google Scholar]
  71. ChenJ. ChenF. ZhangL. YangZ. DengT. ZhaoY. ZhengT. GanX. ZhongH. GengY. FuX. WangY. YuC. Self-assembling porphyrins as a single therapeutic agent for synergistic cancer therapy: A one stone three birds strategy.ACS Appl. Mater. Interfaces20211324278562786710.1021/acsami.1c0486834110146
    [Google Scholar]
  72. HuangC. DingS. JiangW. WangF.B. Glutathione-depleting nanoplatelets for enhanced sonodynamic cancer therapy.Nanoscale20211384512451810.1039/D0NR08440A33615325
    [Google Scholar]
  73. LiangH. ZhouZ. LuoR. SangM. LiuB. SunM. QuW. FengF. LiuW. Tumor-specific activated photodynamic therapy with an oxidation-regulated strategy for enhancing anti-tumor efficacy.Theranostics20188185059507110.7150/thno.2834430429886
    [Google Scholar]
  74. MoserM. SchneiderR. BehnkeT. SchneiderT. FalkenhagenJ. GengerR.U. Ellman’s and aldrithiol assay as versatile and complementary tools for the quantification of thiol groups and ligands on nanomaterials.Anal. Chem.201688178624863110.1021/acs.analchem.6b0179827373999
    [Google Scholar]
  75. HuangL. LiuJ. GaoF. ChengQ. LuB. ZhengH. XuH. XuP. ZhangX. ZengX. A dual-responsive, hyaluronic acid targeted drug delivery system based on hollow mesoporous silica nanoparticles for cancer therapy.J. Mater. Chem. B Mater. Biol. Med.20186284618462910.1039/C8TB00989A32254406
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018286563240223072702
Loading
/content/journals/cdd/10.2174/0115672018286563240223072702
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test