Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Introduction

The P2X7 receptor (P2X7R), which mediates inflammation, is implicated in an extensive variety of diseases, including cardiovascular dysfunction. Recently, studies focusing on the role of P2X7R in cardiovascular disorders have garnered significant attention. However, a bibliometric evaluation within this area has yet to be carried out.

Methods

A bibliometric analysis was performed by searching for research related to P2X7R and cardiovascular diseases in the Web of Science Core Collection (WoSCC) database from 2005 to 2024. The tools CiteSpace and VOSviewer were utilized to analyze data and create visual representations of various elements, including countries, institutions, authors, journals and keywords.

Results

Over the past two decades, 371 articles in English were obtained in the last 20 years. The People's Republic of China, Nanchang University, the journal 'Purinergic Signalling,' and author Shandong Liang had the highest productivity in their respective categories. The top 4 keywords were “activation',' “p2x7 receptor',' “ATP',' and “inflammation”. Burst keyword analysis indicated that “purinergic signaling” and “oxidative stress” are emerging key areas worthy of further investigation. These topics, seeing a surge in interest, are predicted to remain prominent in research.

Discussion

This is the first bibliometric analysis of P2X7R in cardiovascular disorders, which reports the hot spots and emerging trends. The interaction between “purinergic signaling”, “inflammation”, and “oxidative stress” are considered to be the current research priorities, suggesting that these topics are likely to remain central in future research.

Conclusion

This study underscores the growing importance of P2X7R in cardiovascular research and offers valuable insights to guide future investigations.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X376830250619055153
2025-06-25
2026-01-28
Loading full text...

Full text loading...

/deliver/fulltext/ccr/22/2/CCR-22-2-03.html?itemId=/content/journals/ccr/10.2174/011573403X376830250619055153&mimeType=html&fmt=ahah

References

  1. RobertsL.B. KapoorP. HowardJ.K. ShahA.M. LordG.M. An update on the roles of immune system-derived microRNAs in cardiovascular diseases.Cardiovasc. Res.2021117122434244910.1093/cvr/cvab007 33483751
    [Google Scholar]
  2. ZhangY. MurugesanP. HuangK. CaiH. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets.Nat. Rev. Cardiol.202017317019410.1038/s41569‑019‑0260‑8 31591535
    [Google Scholar]
  3. HuangK. BaoH. YanZ.Q. MicroRNA-33 protects against neointimal hyperplasia induced by arterial mechanical stretch in the grafted vein.Cardiovasc. Res.20171135cvw25710.1093/cvr/cvw257 28137944
    [Google Scholar]
  4. HuangK. NarumiT. ZhangY. Targeting microRNA-192-5p, a downstream effector of NOXs (NADPH Oxidases), reverses endothelial DHFR (Dihydrofolate Reductase) deficiency to attenuate abdominal aortic aneurysm formation.Hypertension202178228229310.1161/HYPERTENSIONAHA.120.15070 34176283
    [Google Scholar]
  5. HuangK. WangY. SiuK.L. ZhangY. CaiH. Targeting feed-forward signaling of TGFβ/NOX4/DHFR/eNOS uncoupling/TGFβ axis with anti-TGFβ and folic acid attenuates formation of aortic aneurysms: Novel mechanisms and therapeutics.Redox Biol.20213810175710.1016/j.redox.2020.101757 33126053
    [Google Scholar]
  6. RenH. HuW. JiangT. YaoQ. QiY. HuangK. Mechanical stress induced mitochondrial dysfunction in cardiovascular diseases: Novel mechanisms and therapeutic targets.Biomed. Pharmacother.202417411654510.1016/j.biopha.2024.116545 38603884
    [Google Scholar]
  7. HuangK. WuY. ZhangY. YounJ.Y. CaiH. Combination of folic acid with nifedipine is completely effective in attenuating aortic aneurysm formation as a novel oral medication.Redox Biol.20225810252110.1016/j.redox.2022.102521 36459715
    [Google Scholar]
  8. QiY.X. YaoQ.P. HuangK. Nuclear envelope proteins modulate proliferation of vascular smooth muscle cells during cyclic stretch application.Proc. Natl. Acad. Sci. USA2016113195293529810.1073/pnas.1604569113 27114541
    [Google Scholar]
  9. HanY. HuangK. YaoQ.P. JiangZ.L. Mechanobiology in vascular remodeling.Natl. Sci. Rev.20185693394610.1093/nsr/nwx153
    [Google Scholar]
  10. BaoH. LiH.P. ShiQ. Lamin A/C negatively regulated by miR‐124‐3p modulates apoptosis of vascular smooth muscle cells during cyclic stretch application in rats.Acta Physiol.20202283e1337410.1111/apha.13374 31495066
    [Google Scholar]
  11. BaoH. ChenY.X. HuangK. Platelet‐derived microparticles promote endothelial cell proliferation in hypertension via miR‐142–3p.FASEB J.20183273912392310.1096/fj.201701073R 29481306
    [Google Scholar]
  12. WangL. BaoH. WangK.X. Secreted miR-27a induced by cyclic stretch modulates the proliferation of endothelial cells in hypertension via GRK6.Sci. Rep.2017714105810.1038/srep41058 28106155
    [Google Scholar]
  13. TamargoJ. AgewallS. BorghiC. New pharmacological agents and novel cardiovascular pharmacotherapy strategies in 2023.Eur. Heart J. Cardiovasc. Pharmacother.202410321924410.1093/ehjcvp/pvae013 38379024
    [Google Scholar]
  14. SoliniA. NovakI. Role of the P2X7 receptor in the pathogenesis of type 2 diabetes and its microvascular complications.Curr. Opin. Pharmacol.201947758110.1016/j.coph.2019.02.009 30954933
    [Google Scholar]
  15. GenetzakisE. GilchristJ. KassiouM. FigtreeG.A. Development and clinical translation of P2X7 receptor antagonists: A potential therapeutic target in coronary artery disease?Pharmacol. Ther.202223710822810.1016/j.pharmthera.2022.108228 35716953
    [Google Scholar]
  16. AiY. WangH. LiuL. Purine and purinergic receptors in health and disease.MedComm202345e35910.1002/mco2.359
    [Google Scholar]
  17. Anastacio Furtado PachecoP. Gomes Braga FerreiraL. Anastacio AlvesL. Xavier FariaR. Modulation of P2 receptors on pancreatic β-cells by agonists and antagonists: A molecular target for type 2 diabetes treatment.Curr. Diabetes Rev.20139322823610.2174/1573399811309030004 23506378
    [Google Scholar]
  18. PachecoP.A.F. DantasL.P. FerreiraL.G.B. FariaR.X. Purinergic receptors and neglected tropical diseases: Why ignore purinergic signaling in the search for new molecular targets?J. Bioenerg. Biomembr.201850430731310.1007/s10863‑018‑9761‑0 29882206
    [Google Scholar]
  19. TeixeiraG.P. FariaR.X. Influence of purinergic signaling on glucose transporters: A possible mechanism against insulin resistance?Eur. J. Pharmacol.202189217374310.1016/j.ejphar.2020.173743 33220279
    [Google Scholar]
  20. BurnstockG. Introduction: P2 receptors.Curr. Top. Med. Chem.20044879380310.2174/1568026043451014 15078211
    [Google Scholar]
  21. ShokoplesB.G. ParadisP. SchiffrinE.L. P2X7 receptors.Arterioscler. Thromb. Vasc. Biol.202141118619910.1161/ATVBAHA.120.315116 32998520
    [Google Scholar]
  22. AlvesL. BezerraR. FariaR. FerreiraL. Da Silva FrutuosoV. Physiological roles and potential therapeutic applications of the P2X7 receptor in inflammation and pain.Molecules2013189109531097210.3390/molecules180910953 24013409
    [Google Scholar]
  23. MafraJ.C.M. BoechatN. TeixeiraG.P. FariaR.X. Synthetic molecules as P2X7 receptor antagonists: A medicinal chemistry update focusing the therapy of inflammatory diseases.Eur. J. Pharmacol.202395717599910.1016/j.ejphar.2023.175999 37619787
    [Google Scholar]
  24. AlvesL.A. FerreiraL.B. PachecoP.F. MendivelsoE.A.C. TeixeiraP.C.N. FariaR.X. Pore forming channels as a drug delivery system for photodynamic therapy in cancer associated with nanoscintillators.Oncotarget2018938253422535410.18632/oncotarget.25150 29861876
    [Google Scholar]
  25. PachecoP.A.F. DiogoR.T. MagalhãesB.Q. FariaR.X. Plant natural products as source of new P2 receptors ligands.Fitoterapia202014610470910.1016/j.fitote.2020.104709 32829014
    [Google Scholar]
  26. NinkovA. FrankJ.R. MaggioL.A. Bibliometrics: Methods for studying academic publishing.Perspect. Med. Educ.202111317317610.1007/S40037‑021‑00695‑4 34914027
    [Google Scholar]
  27. KimM.C. NamS. WangF. ZhuY. Mapping scientific landscapes in UMLS research: A scientometric review.J. Am. Med. Inform. Assoc.202027101612162410.1093/jamia/ocaa107 33059367
    [Google Scholar]
  28. ChenC. SongM. Visualizing a field of research: A methodology of systematic scientometric reviews.PLoS One20191410e022399410.1371/journal.pone.0223994 31671124
    [Google Scholar]
  29. ZouL. TuG. XieW. LncRNA NONRATT021972 involved the pathophysiologic processes mediated by P2X7 receptors in stellate ganglia after myocardial ischemic injury.Purinergic Signal.201612112713710.1007/s11302‑015‑9486‑z 26630943
    [Google Scholar]
  30. ZhuangY. YuM. LuS. Purinergic signaling in myocardial ischemia–reperfusion injury.Purinergic Signal.202319122924310.1007/s11302‑022‑09856‑4 35254594
    [Google Scholar]
  31. GongC. LiuX. DingL. A non-synonymous polymorphism in purinergic P2X7 receptor gene confers reduced susceptibility to essential hypertension in Chinese postmenopausal women.Clin. Exp. Hypertens.201941655856310.1080/10641963.2018.1523914 30359160
    [Google Scholar]
  32. Di VirgilioF. Dal BenD. SartiA.C. GiulianiA.L. FalzoniS. The P2X7 receptor in infection and inflammation.Immunity2017471153110.1016/j.immuni.2017.06.020 28723547
    [Google Scholar]
  33. BockstiegelJ. EngelhardtJ. WeindlG. P2X7 receptor activation leads to NLRP3-independent IL-1β release by human macrophages.Cell Commun. Signal.202321133510.1186/s12964‑023‑01356‑1 37996864
    [Google Scholar]
  34. YanQ. LiuS. SunY. Targeting oxidative stress as a preventive and therapeutic approach for cardiovascular disease.J. Transl. Med.202321151910.1186/s12967‑023‑04361‑7 37533007
    [Google Scholar]
  35. ShenL. WangS. DaiW. ZhangZ. Detecting the interdisciplinary nature and topic hotspots of robotics in surgery: Social network analysis and bibliometric study.J. Med. Internet Res.2019213e1262510.2196/12625 30912752
    [Google Scholar]
  36. NewboltA. StoopR. VirginioC. Membrane topology of an ATP-gated ion channel (P2X receptor).J. Biol. Chem.199827324151771518210.1074/jbc.273.24.15177 9614131
    [Google Scholar]
  37. ZhouJ. ZhouZ. LiuX. YinH.Y. TangY. CaoX. P2X7 receptor–mediated inflammation in cardiovascular disease.Front. Pharmacol.20211265442510.3389/fphar.2021.654425 33995071
    [Google Scholar]
  38. ZouY. YangR. LiL. XuX. LiangS. Purinergic signaling: A potential therapeutic target for depression and chronic pain.Purinergic Signal.202319116317210.1007/s11302‑021‑09801‑x 34338957
    [Google Scholar]
  39. LiuJ. LiG. PengH. Sensory–sympathetic coupling in superior cervical ganglia after myocardial ischemic injury facilitates sympathoexcitatory action via P2X7 receptor.Purinergic Signal.20139346347910.1007/s11302‑013‑9367‑2 23754120
    [Google Scholar]
  40. LiangS. XuC. LiG. GaoY. P2X receptors and modulation of pain transmission: Focus on effects of drugs and compounds used in traditional Chinese medicine.Neurochem. Int.201057770571210.1016/j.neuint.2010.09.004 20863868
    [Google Scholar]
  41. YangR. ShiL. SiH. Gallic acid improves comorbid chronic pain and depression behaviors by inhibiting P2X7 receptor-mediated ferroptosis in the spinal cord of rats.ACS Chem. Neurosci.202314466767610.1021/acschemneuro.2c00532 36719132
    [Google Scholar]
  42. YangR. LiZ. ZouY. Gallic acid alleviates neuropathic pain behaviors in rats by inhibiting P2X7 receptor-mediated NF-κB/STAT3 signaling pathway.Front. Pharmacol.20211268013910.3389/fphar.2021.680139 34512324
    [Google Scholar]
  43. BurnstockG. Pathophysiology and therapeutic potential of purinergic signaling.Pharmacol. Rev.2006581588610.1124/pr.58.1.5 16507883
    [Google Scholar]
  44. BurnstockG. KennedyC. Is there a basis for distinguishing two types of P2-purinoceptor?Gen. Pharmacol.198516543344010.1016/0306‑3623(85)90001‑1 2996968
    [Google Scholar]
  45. SuwaraJ. Radzikowska-CieciuraE. ChworosA. PawlowskaR. The ATP-dependent pathways and human diseases.Curr. Med. Chem.202330111232125510.2174/0929867329666220322104552 35319356
    [Google Scholar]
  46. Di VirgilioF. SartiA.C. FalzoniS. De MarchiE. AdinolfiE. Extracellular ATP and P2 purinergic signalling in the tumour microenvironment.Nat. Rev. Cancer2018181060161810.1038/s41568‑018‑0037‑0 30006588
    [Google Scholar]
  47. Di VirgilioF. SchmalzingG. MarkwardtF. The elusive P2X7 macropore.Trends Cell Biol.201828539240410.1016/j.tcb.2018.01.005 29439897
    [Google Scholar]
  48. SperlághB. IllesP. P2X7 receptor: An emerging target in central nervous system diseases.Trends Pharmacol. Sci.2014351053754710.1016/j.tips.2014.08.002 25223574
    [Google Scholar]
  49. IllesP. P2X7 receptors amplify cns damage in neurodegenerative diseases.Int. J. Mol. Sci.20202117599610.3390/ijms21175996 32825423
    [Google Scholar]
  50. IrelandM.F. NoakesP.G. BellinghamM.C. P2X7-like receptor subunits enhance excitatory synaptic transmission at central synapses by presynaptic mechanisms.Neuroscience2004128226928010.1016/j.neuroscience.2004.06.014 15350640
    [Google Scholar]
  51. LaloU. PankratovY. ATP-mediated signalling in the central synapses.Neuropharmacology202322910947710.1016/j.neuropharm.2023.109477 36841527
    [Google Scholar]
  52. FanX. ZhangJ. DaiY. ShanK. XuJ. Blockage of P2X7R suppresses Th1/Th17-mediated immune responses and corneal allograft rejection via inhibiting NLRP3 inflammasome activation.Exp. Eye Res.202121210879210.1016/j.exer.2021.108792 34656546
    [Google Scholar]
  53. ArulkumaranN. UnwinR.J. TamF.W.K. A potential therapeutic role for P2X7 receptor (P2X7R) antagonists in the treatment of inflammatory diseases.Expert Opin. Investig. Drugs201120789791510.1517/13543784.2011.578068 21510825
    [Google Scholar]
  54. ZefferinoR. PiccoliC. Di GioiaS. CapitanioN. ConeseM. How cells communicate with each other in the tumor microenvironment: Suggestions to design novel therapeutic strategies in cancer disease.Int. J. Mol. Sci.2021225255010.3390/ijms22052550 33806300
    [Google Scholar]
  55. ZhuX. LiQ. SongW. PengX. ZhaoR. P2X7 receptor: A critical regulator and potential target for breast cancer.J. Mol. Med. (Berl.)202199334935810.1007/s00109‑021‑02041‑x 33486566
    [Google Scholar]
  56. LiQ. ZhuX. SongW. PengX. ZhaoR. The P2X7 purinergic receptor: A potential therapeutic target for lung cancer.J. Cancer Res. Clin. Oncol.2020146112731274110.1007/s00432‑020‑03379‑4 32892231
    [Google Scholar]
  57. GoliaM.T. GabrielliM. VerderioC. P2X7 Receptor and extracellular vesicle release.Int. J. Mol. Sci.20232412980510.3390/ijms24129805 37372953
    [Google Scholar]
  58. SunS. GongD. LiuR. Puerarin inhibits NLRP3-caspase-1-GSDMD-mediated pyroptosis via P2X7 receptor in cardiomyocytes and macrophages.Int. J. Mol. Sci.202324171316910.3390/ijms241713169 37685976
    [Google Scholar]
  59. ToldoS. MezzaromaE. BuckleyL.F. Targeting the NLRP3 inflammasome in cardiovascular diseases.Pharmacol. Ther.202223610805310.1016/j.pharmthera.2021.108053 34906598
    [Google Scholar]
  60. ToldoS. AbbateA. The role of the NLRP3 inflammasome and pyroptosis in cardiovascular diseases.Nat. Rev. Cardiol.202421421923710.1038/s41569‑023‑00946‑3 37923829
    [Google Scholar]
  61. GrebeA. HossF. LatzE. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis.Circ. Res.2018122121722174010.1161/CIRCRESAHA.118.311362 29880500
    [Google Scholar]
  62. ZhangQL WangW LuZJ Down-regulated miR-187 promotes oxidative stress-induced retinal cell apoptosis through P2X7 receptor. Int J Biol Macromol2018120Pt A80181010.1016/j.ijbiomac.2018.08.16630170060
    [Google Scholar]
  63. KongH. ZhaoH. ChenT. SongY. CuiY. Targeted P2X7/NLRP3 signaling pathway against inflammation, apoptosis and pyroptosis of retinal endothelial cells in diabetic retinopathy.Cell Death Dis.202213433610.1038/s41419‑022‑04786‑w 35410316
    [Google Scholar]
  64. PelegrinP. P2X7 receptor and the NLRP3 inflammasome: Partners in crime.Biochem. Pharmacol.202118711438510.1016/j.bcp.2020.114385 33359010
    [Google Scholar]
  65. ZhengH. LiuQ. ZhouS. LuoH. ZhangW. Role and therapeutic targets of P2X7 receptors in neurodegenerative diseases.Front. Immunol.202415134562510.3389/fimmu.2024.1345625 38370420
    [Google Scholar]
  66. ZahidA. LiB. KombeA.J.K. JinT. TaoJ. Pharmacological inhibitors of the NLRP3 inflammasome.Front. Immunol.201910253810.3389/fimmu.2019.02538 31749805
    [Google Scholar]
  67. HigashikuniY. LiuW. NumataG. NLRP3 inflammasome activation through heart-brain interaction initiates cardiac inflammation and hypertrophy during pressure overload.Circulation2023147433835510.1161/CIRCULATIONAHA.122.060860 36440584
    [Google Scholar]
  68. YeT. ZhouY. YangJ. P2X7 receptor inhibition prevents atrial fibrillation in rodent models of depression.Europace2024262euae02210.1093/europace/euae022 38261756
    [Google Scholar]
  69. SiesH. Oxidative stress: A concept in redox biology and medicine.Redox Biol.2015418018310.1016/j.redox.2015.01.002 25588755
    [Google Scholar]
  70. GiordanoF.J. Oxygen, oxidative stress, hypoxia and heart failure.J. Clin. Invest.2005115350050810.1172/JCI200524408 15765131
    [Google Scholar]
  71. JiangJ. HuangK. XuS. GarciaJ.G.N. WangC. CaiH. Targeting NOX4 alleviates sepsis-induced acute lung injury via attenuation of redox-sensitive activation of CaMKII/ERK1/2/MLCK and endothelial cell barrier dysfunction.Redox Biol.20203610163810.1016/j.redox.2020.101638 32863203
    [Google Scholar]
  72. ZhangY. YounJ.Y. HuangK. ZhangY. CaiH. Alleviation of accelerated diabetic atherogenesis in STZ-treated apoE/NOX1 DKO mice, apoE−/−/tg-EC-DHFR mice and by folic acid.Redox Biol.20258210357010.1016/j.redox.2025.103570 40184644
    [Google Scholar]
  73. YounJ.Y. MiddlekauffH.R. ReudiseuliI. HuangK. CaiH. Endothelial damage in young adult e-cigarette users.Redox Biol.20236210268810.1016/j.redox.2023.102688 37018969
    [Google Scholar]
  74. ZongN.C. HuangK. YangX. CaiH. Expand the success of screening to reduce aortic aneurysm mortality: Progress interpretation and new fronts.Trends Cardiovasc. Med.2024 39675687
    [Google Scholar]
  75. YounJ.Y. WangJ. LiQ. HuangK. CaiH. Robust therapeutic effects on COVID-19 of novel small molecules: Alleviation of SARS-CoV-2 S protein induction of ACE2/TMPRSS2, NOX2/ROS and MCP-1.Front. Cardiovasc. Med.2022995734010.3389/fcvm.2022.957340 36187008
    [Google Scholar]
  76. JiangT. ZhangY. GuoZ. Mechanical stress induced NOX2 promotes endothelial dysfunction in ventilator‐induced lung injury: Potential treatment with quercetin.Adv. Sci.2025250263910.1002/advs.202502639 40391857
    [Google Scholar]
  77. TirapelliC.R. Oxidative stress and vascular disease.Curr. Hypertens. Rev.202116316210.2174/157340211603201127142401 33475055
    [Google Scholar]
  78. FörstermannU. XiaN. LiH. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis.Circ. Res.2017120471373510.1161/CIRCRESAHA.116.309326 28209797
    [Google Scholar]
  79. LibbyP. RidkerP.M. HanssonG.K. Inflammation in atherosclerosis.J. Am. Coll. Cardiol.200954232129213810.1016/j.jacc.2009.09.009 19942084
    [Google Scholar]
  80. TousoulisD. KampoliA.M. Tentolouris Nikolaos PapageorgiouC. StefanadisC. StefanadisC. The role of nitric oxide on endothelial function.Curr. Vasc. Pharmacol.201210141810.2174/157016112798829760 22112350
    [Google Scholar]
  81. NewbyA. Matrix metalloproteinases regulate migration, proliferation and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates.Cardiovasc. Res.200669361462410.1016/j.cardiores.2005.08.002 16266693
    [Google Scholar]
  82. van der PolA. van GilstW.H. VoorsA.A. van der MeerP. Treating oxidative stress in heart failure: Past, present and future.Eur. J. Heart Fail.201921442543510.1002/ejhf.1320 30338885
    [Google Scholar]
  83. BrownD.I. GriendlingK.K. Regulation of signal transduction by reactive oxygen species in the cardiovascular system.Circ. Res.2015116353154910.1161/CIRCRESAHA.116.303584 25634975
    [Google Scholar]
  84. Téllez GarciaJ.M. SteenvoordenT. BemelmanF. HilhorstM. TammaroA. VogtL. Purinoreceptor P2X7 in extracellular ATP-mediated inflammation through the spectrum of kidney diseases and kidney transplantation.J. Am. Soc. Nephrol.202510.1681/ASN.0000000711 40152923
    [Google Scholar]
  85. ZhangJ.J. ZhongJ.T. WangW.L. Embelin improves alcoholic steatohepatitis in alcohol-associated liver disease via ATF6-mediated P2X7r-NLRP3 signaling pathway.Phytomedicine202514015663810.1016/j.phymed.2025.156638 40106966
    [Google Scholar]
  86. SunM.J. RenW.J. ZhaoY.F. Hippocampal P2X7 and A2A purinoceptors mediate cognitive impairment caused by long-lasting epileptic seizures.Theranostics20251573159318410.7150/thno.100365 40083937
    [Google Scholar]
  87. ShenJ.B. TotiK.S. ChakrabortyS. Prevention and rescue of cardiac dysfunction by methanocarba adenosine monophosphonate derivatives.Purinergic Signal.2020161617210.1007/s11302‑020‑09688‑0 31989534
    [Google Scholar]
  88. AndrejewR. Oliveira-GiacomelliÁ. RibeiroD.E. The P2X7 receptor: Central hub of brain diseases.Front. Mol. Neurosci.20201312410.3389/fnmol.2020.00124 32848594
    [Google Scholar]
  89. KrajewskiJ.L. P2X3-containing receptors as targets for the treatment of chronic pain.Neurotherapeutics202017382683810.1007/s13311‑020‑00934‑2 33009633
    [Google Scholar]
  90. BurnstockG. RalevicV. Purinergic signaling and blood vessels in health and disease.Pharmacol. Rev.201466110219210.1124/pr.113.008029 24335194
    [Google Scholar]
  91. LiY. ZhouM. LiH. Macrophage P2Y6 receptor deletion attenuates atherosclerosis by limiting foam cell formation through phospholipase Cβ/store-operated calcium entry/calreticulin/scavenger receptor A pathways.Eur. Heart J.202445426828310.1093/eurheartj/ehad796 38036416
    [Google Scholar]
  92. FerrariD. VitielloL. IdzkoM. la SalaA. Purinergic signaling in atherosclerosis.Trends Mol. Med.201521318419210.1016/j.molmed.2014.12.008 25637413
    [Google Scholar]
  93. ReissA.B. CronsteinB.N. Regulation of foam cells by adenosine.Arterioscler. Thromb. Vasc. Biol.201232487988610.1161/ATVBAHA.111.226878 22423040
    [Google Scholar]
  94. JalkanenJ. YegutkinG.G. HollménM. Aberrant circulating levels of purinergic signaling markers are associated with several key aspects of peripheral atherosclerosis and thrombosis.Circ. Res.201511671206121510.1161/CIRCRESAHA.116.305715 25645301
    [Google Scholar]
  95. EunS.Y. KoY.S. ParkS.W. ChangK.C. KimH.J. IL-1β enhances vascular smooth muscle cell proliferation and migration via P2Y2 receptor-mediated RAGE expression and HMGB1 release.Vascul. Pharmacol.20157210811710.1016/j.vph.2015.04.013 25956731
    [Google Scholar]
  96. SathanooriR. SwärdK. OldeB. ErlingeD. The ATP receptors P2X7 and P2X4 modulate high glucose and palmitate-induced inflammatory responses in endothelial cells.PLoS One2015105e012511110.1371/journal.pone.0125111 25938443
    [Google Scholar]
  97. CardosoA.M. AneliN.M. LammersM. Resistance training reduces platelet activation in hypertensive women: The role of purinergic signaling.J. Hypertens.202341111745175210.1097/HJH.0000000000003529 37796209
    [Google Scholar]
  98. RodriguesJ.Q.D. da SilvaE.D. de Magalhães GalvãoK. Differential regulation of atrial contraction by P1 and P2 purinoceptors in normotensive and spontaneously hypertensive rats.Hypertens. Res.201437321021910.1038/hr.2013.146 24285249
    [Google Scholar]
  99. BodinP. BurnstockG. Evidence that release of adenosine triphosphate from endothelial cells during increased shear stress is vesicular.J. Cardiovasc. Pharmacol.200138690090810.1097/00005344‑200112000‑00012 11707694
    [Google Scholar]
  100. WangS. IringA. StrilicB. P2Y2 and Gq/G11 control blood pressure by mediating endothelial mechanotransduction.J. Clin. Invest.201512583077308610.1172/JCI81067 26168216
    [Google Scholar]
  101. MarinaN. AngR. MachhadaA. Brainstem hypoxia contributes to the development of hypertension in the spontaneously hypertensive rat.Hypertension201565477578310.1161/HYPERTENSIONAHA.114.04683 25712724
    [Google Scholar]
  102. MenziesR.I. HowarthA.R. UnwinR.J. TamF.W.K. MullinsJ.J. BaileyM.A. Inhibition of the purinergic P2X7 receptor improves renal perfusion in angiotensin-II-infused rats.Kidney Int.20158851079108710.1038/ki.2015.182 26108066
    [Google Scholar]
  103. NayakS. KhanM.A.H. WanT.C. Characterization of Dahl salt-sensitive rats with genetic disruption of the A2B adenosine receptor gene: Implications for A2B adenosine receptor signaling during hypertension.Purinergic Signal.201511451953110.1007/s11302‑015‑9470‑7 26385692
    [Google Scholar]
  104. LiuF. TantryU.S. GurbelP.A. P2Y12 receptor inhibitors for secondary prevention of ischemic stroke.Expert Opin. Pharmacother.20151681149116510.1517/14656566.2015.1035256 25873127
    [Google Scholar]
  105. PedataF. DettoriI. CoppiE. Purinergic signalling in brain ischemia.Neuropharmacology201610410513010.1016/j.neuropharm.2015.11.007 26581499
    [Google Scholar]
  106. McEnaneyR.M. ShuklaA. MadiganM.C. SachdevU. TzengE. P2Y 2 nucleotide receptor mediates arteriogenesis in a murine model of hind limb ischemia.J. Vasc. Surg.201663121622510.1016/j.jvs.2014.06.112 25088742
    [Google Scholar]
  107. PengK. LiuL. WeiD. P2X7R is involved in the progression of atherosclerosis by promoting NLRP3 inflammasome activation.Int. J. Mol. Med.20153551179118810.3892/ijmm.2015.2129 25761252
    [Google Scholar]
  108. Bautista-PérezR. Pérez-MéndezO. Cano-MartínezA. The role of P2X7 purinergic receptors in the renal inflammation associated with angiotensin II-induced hypertension.Int. J. Mol. Sci.20202111404110.3390/ijms21114041 32516946
    [Google Scholar]
  109. KawaguchiM. TakahashiM. HataT. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury.Circulation2011123659460410.1161/CIRCULATIONAHA.110.982777 21282498
    [Google Scholar]
  110. YinJ. YouS. LiuH. Role of P2X7R in the development and progression of pulmonary hypertension.Respir. Res.201718112710.1186/s12931‑017‑0603‑0 28646872
    [Google Scholar]
  111. JiX. NaitoY. HirokawaG. P2X7 receptor antagonism attenuates the hypertension and renal injury in Dahl salt-sensitive rats.Hypertens. Res.201235217317910.1038/hr.2011.153 21918525
    [Google Scholar]
  112. ZhaoT.V. LiY. LiuX. ATP release drives heightened immune responses associated with hypertension.Sci. Immunol.2019436eaau642610.1126/sciimmunol.aau6426 31253642
    [Google Scholar]
  113. HuangS. WangW. LiL. P2X7 receptor deficiency ameliorates STZ-induced cardiac damage and remodeling through PKCβ and ERK.Front. Cell Dev. Biol.2021969202810.3389/fcell.2021.692028 34395424
    [Google Scholar]
  114. Palomino-DozaJ. RahmanT.J. AveryP.J. Ambulatory blood pressure is associated with polymorphic variation in P2X receptor genes.Hypertension200852598098510.1161/HYPERTENSIONAHA.108.113282 18852390
    [Google Scholar]
  115. SluyterR. The P2X7 receptor.Adv. Exp. Med. Biol.20171051175310.1007/5584_2017_59 28676924
    [Google Scholar]
  116. DuewellP. KonoH. RaynerK.J. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals.Nature201046472931357136110.1038/nature08938 20428172
    [Google Scholar]
  117. StachonP. HeidenreichA. MerzJ. P2X7 deficiency blocks lesional inflammasome activity and ameliorates atherosclerosis in mice.Circulation2017135252524253310.1161/CIRCULATIONAHA.117.027400 28377486
    [Google Scholar]
  118. BurnstockG. Purinergic signalling and endothelium.Curr. Vasc. Pharmacol.201614213014510.2174/1570161114666151202204948 26638799
    [Google Scholar]
  119. LinL. HuangS. ZhuZ. P2X7 receptor regulates EMMPRIN and MMP 9 expression through AMPK/MAPK signaling in PMA induced macrophages.Mol. Med. Rep.20181833027303310.3892/mmr.2018.9282 30015874
    [Google Scholar]
  120. LiX. HuB. WangL. XiaQ. NiX. P2X7 receptor-mediated phenotype switching of pulmonary artery smooth muscle cells in hypoxia.Mol. Biol. Rep.20214832133214210.1007/s11033‑021‑06222‑2 33650080
    [Google Scholar]
  121. BhattacharyaA. WangQ. AoH. Pharmacological characterization of a novel centrally permeable P2X7 receptor antagonist: JNJ‐47965567.Br. J. Pharmacol.2013170362464010.1111/bph.12314 23889535
    [Google Scholar]
  122. FischerW. FrankeH. KrügelU. Critical evaluation of P2X7 receptor antagonists in selected seizure models.PLoS One2016116e015646810.1371/journal.pone.0156468 27281030
    [Google Scholar]
  123. LyD. DongolA. CuthbertsonP. The P2X7 receptor antagonist JNJ-47965567 administered thrice weekly from disease onset does not alter progression of amyotrophic lateral sclerosis in SOD1G93A mice.Purinergic Signal.202016110912210.1007/s11302‑020‑09692‑4 32170537
    [Google Scholar]
  124. Donnelly-RobertsD.L. NamovicM.T. SurberB. [3H]A-804598 ([3H]2-cyano-1-[(1S)-1-phenylethyl]-3-quinolin-5-ylguanidine) is a novel, potent and selective antagonist radioligand for P2X7 receptors.Neuropharmacology200956122322910.1016/j.neuropharm.2008.06.012 18602931
    [Google Scholar]
  125. YangJ.K. KimJ. AhnY.H. Inhibition of P2RX7 contributes to cytotoxicity by suppression of glycolysis and AKT activation in human hepatocellular carcinoma.BMB Rep.2024571045946410.5483/BMBRep.2024‑0070 39219047
    [Google Scholar]
  126. FreireD. ReyesR.E. BaghramA. DaviesD.L. AsatryanL. P2X7 receptor antagonist A804598 inhibits inflammation in brain and liver in C57BL/6J mice exposed to chronic ethanol and high fat diet.J. Neuroimmune Pharmacol.201914226327710.1007/s11481‑018‑9816‑3 30353422
    [Google Scholar]
  127. ShinotsukaN. ShimizuH. KomatsuT. AK1780, a selective P2X7 receptor antagonist with high central nervous system penetration, exhibits analgesic effect in rat neuropathic pain model.J. Pain20253110538010.1016/j.jpain.2025.105380 40158710
    [Google Scholar]
  128. McGarveyL.P. BirringS.S. MoriceA.H. Efficacy and safety of gefapixant, a P2X3 receptor antagonist, in refractory chronic cough and unexplained chronic cough (COUGH-1 and COUGH-2): Results from two double-blind, randomised, parallel-group, placebo-controlled, phase 3 trials.Lancet20223991032890992310.1016/S0140‑6736(21)02348‑5 35248186
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X376830250619055153
Loading
/content/journals/ccr/10.2174/011573403X376830250619055153
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test