Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Introduction

Immunologic responses to cardiac allografts initiate before transplantation during brain-dead organ procurement and might persist for years after transplantation, culminating in chronic allograft dysfunction. Despite remarkable advances in post-transplant care and immunosuppressive agents, acute cellular and antibody-mediated rejections as well as chronic allograft vasculopathy significantly affect cardiac allograft and patient survival.

Methods

Herein, recent findings of the molecular mechanisms involved in the inflammatory responses before and after heart transplantation, including brain death donor inflammation, acute cellular rejection, antibody-mediated rejection, and chronic allograft dysfunction, have been summarized, along with novel therapeutic approaches for their treatment. Finally, recent developments in prognostic and diagnostic biomarkers for immunological complications have been provided, with an overview of the most promising biomarkers to date.

Results and Discussion

Due to the recent developments in the description of molecular mechanisms involved in the immunopathogenesis of cardiac allograft rejection, some immune cells, proinflammatory cytokines, and adhesion molecules have been proposed as therapeutic targets for the prevention or treatment of alloimmune responses. In addition, several molecules derived from graft tissue or immune cells, natriuretic peptides, cardiac troponins, exosomal products, microRNAs, and donor-derived cell-free DNA, have been suggested as potential biomarkers for the prediction or diagnosis of cardiac transplant rejection.

Conclusion

Considering the need to design non-invasive, low-cost tests for early diagnosis of post-transplant complications and convenient follow-up of the cardiac transplant recipients, peripheral blood biomarkers could be appropriate candidates for this purpose.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X362826250619112705
2025-06-25
2026-01-28
Loading full text...

Full text loading...

References

  1. ColvinM.M. SmithJ.M. AhnY.S. OPTN/SRTR 2022 Annual Data Report: Heart.Am. J. Transplant.2024242S305S39310.1016/j.ajt.2024.01.016 38431362
    [Google Scholar]
  2. KhachatoorianY. KhachadourianV. ChangE. SernasE.R. ReedE.F. DengM. Noninvasive biomarkers for prediction and diagnosis of heart transplantation rejection.Transplant. Rev.202135110059010.1016/j.trre.2020.100590
    [Google Scholar]
  3. AssadiaslS. SadeghiA. FreidoonM. NicknamM.H. Inflammation in brain-dead donor organs and therapeutic approaches to it.Curr. Transpl. Rep.2024119510910.1007/s40472‑024‑00429‑5
    [Google Scholar]
  4. SegelL.D. vonHaagD.W. ZhangJ. FolletteD.M. Selective overexpression of inflammatory molecules in hearts from brain-dead rats.J. Heart Lung Transplant.200221780481110.1016/S1053‑2498(02)00382‑0 12100907
    [Google Scholar]
  5. WilhelmM.J. PratschkeJ. BeatoF. Activation of proinflammatory mediators in heart transplants from brain-dead donors: Evidence from a model of chronic rat cardiac allograft rejection.Transplant. Proc.20023462359236010.1016/S0041‑1345(02)03283‑9 12270436
    [Google Scholar]
  6. WilhelmM.J. PratschkeJ. BeatoF. Activation of the heart by donor brain death accelerates acute rejection after transplantation.Circulation2000102192426243310.1161/01.CIR.102.19.2426 11067799
    [Google Scholar]
  7. SchwarzP. CustódioG. RheinheimerJ. CrispimD. LeitãoC.B. RechT.H. Brain death-induced inflammatory activity is similar to sepsis-induced cytokine release.Cell Transplant.201827101417142410.1177/0963689718785629 30235942
    [Google Scholar]
  8. AtkinsonC. VarelaJ.C. TomlinsonS. Complement-dependent inflammation and injury in a murine model of brain dead donor hearts.Circ. Res.2009105111094110110.1161/CIRCRESAHA.109.194977 19815824
    [Google Scholar]
  9. RitschlP.V. AshrafM.I. OberhuberR. Donor brain death leads to differential immune activation in solid organs but does not accelerate ischaemia-reperfusion injury.J. Pathol.20162391849610.1002/path.4704 26890577
    [Google Scholar]
  10. ClausenE. CantuE. Primary graft dysfunction: What we know.J. Thorac. Dis.202113116618662710.21037/jtd‑2021‑18 34992840
    [Google Scholar]
  11. ZhaoD.X.M. HuY. MillerG.G. LusterA.D. MitchellR.N. LibbyP. Differential expression of the IFN-gamma-inducible CXCR3-binding chemokines, IFN-inducible protein 10, monokine induced by IFN, and IFN-inducible T cell alpha chemoattractant in human cardiac allografts: Association with cardiac allograft vasculopathy and acute rejection.J. Immunol.200216931556156010.4049/jimmunol.169.3.1556 12133984
    [Google Scholar]
  12. FahmyN.M. YamaniM.H. StarlingR.C. Chemokine and chemokine receptor gene expression indicates acute rejection of human cardiac transplants1.Transplantation2003751727810.1097/00007890‑200301150‑00013 12544874
    [Google Scholar]
  13. FahmyN.M. YamaniM.H. StarlingR.C. Chemokine and receptor-gene expression during early and late acute rejection episodes in human cardiac allografts.Transplantation200375122044204710.1097/01.TP.0000069601.73079.94 12829909
    [Google Scholar]
  14. WangS. LiJ. XieA. Dynamic changes in Th1, Th17, and FoxP3+ T cells in patients with acute cellular rejection after cardiac transplantation.Clin. Transplant.2011252E177E18610.1111/j.1399‑0012.2010.01362.x 21114533
    [Google Scholar]
  15. ChoiD.H. ChmuraS.A. RamachandranV. The ratio of circulating regulatory cluster of differentiation 4 T cells to endothelial progenitor cells predicts clinically significant acute rejection after heart transplantation.J. Heart Lung Transplant.201837449650210.1016/j.healun.2017.10.012 29198869
    [Google Scholar]
  16. ReedE.F. DemetrisA.J. HammondE. Acute antibody-mediated rejection of cardiac transplants.J. Heart Lung Transplant.200625215315910.1016/j.healun.2005.09.003 16446213
    [Google Scholar]
  17. ValenzuelaN.M. TrinhK.R. MulderA. MorrisonS.L. ReedE.F. Monocyte recruitment by HLA IgG-activated endothelium: The relationship between IgG subclass and FcγRIIa polymorphisms.Am. J. Transplant.20151561502151810.1111/ajt.13174 25648976
    [Google Scholar]
  18. FrankR. DeanS.A. MolinaM.R. KamounM. LalP. Correlations of lymphocyte subset infiltrates with donor-specific antibodies and acute antibody-mediated rejection in endomyocardial biopsies.Cardiovasc. Pathol.201524316817210.1016/j.carpath.2014.11.001 25440957
    [Google Scholar]
  19. SannierA. StroumzaN. CaligiuriG. Thymic function is a major determinant of onset of antibody-mediated rejection in heart transplantation.Am. J. Transplant.201818496497110.1111/ajt.14595 29160947
    [Google Scholar]
  20. Farrero TorresM. PandoM.J. LuoC. LuikartH. ValantineH. KhushK. The role of complement‐fixing donor‐specific antibodies identified by a C1q assay after heart transplantation.Clin. Transplant.20173111e1312110.1111/ctr.13121 28940521
    [Google Scholar]
  21. Marrón-LiñaresG.M. NúñezL. Crespo-LeiroM.G. Donor polymorphisms in genes related to B-Cell biology associated with antibody-mediated rejection after heart transplantation.Circ. J.20188251351135910.1253/circj.CJ‑17‑1320 29618707
    [Google Scholar]
  22. SeeS.B. MantellB.S. ClerkinK.J. Profiling non-HLA antibody responses in antibody-mediated rejection following heart transplantation.Am. J. Transplant.20202092571258010.1111/ajt.15871 32190967
    [Google Scholar]
  23. Chou-WuE. KemnaM. RossS. YoungsD. LawY. GimferrerI. Association of MICA and AT1R antibodies with antibody-mediated rejection and cardiac allograft vasculopathy in a pediatric heart transplant recipient.Transpl. Immunol.20237810181110.1016/j.trim.2023.101811 36889546
    [Google Scholar]
  24. SaldanA. MengoliC. SgarabottoD. Human cytomegalovirus and Epstein–Barr virus infections occurring early after transplantation are risk factors for antibody-mediated rejection in heart transplant recipients.Front. Immunol.202314117119710.3389/fimmu.2023.1171197 37256129
    [Google Scholar]
  25. SimmondsJ. FentonM. DewarC. Endothelial dysfunction and cytomegalovirus replication in pediatric heart transplantation.Circulation2008117202657266110.1161/CIRCULATIONAHA.107.718874 18474812
    [Google Scholar]
  26. Marek-IannucciS. RajapreyarI.N. HuamanM.G. COVID‐19 associated development of antibody mediated rejection in orthotopic heart transplantation patients.Clin. Transplant.2023378e1490610.1111/ctr.14906 36610020
    [Google Scholar]
  27. GoerlerH. SimonA. GohrbandtB. Cardiac retransplantation: is it justified in times of critical donor organ shortage? Long-term single-center experience.Eur. J. Cardiothorac. Surg.20083461185119010.1016/j.ejcts.2008.06.044 18693029
    [Google Scholar]
  28. OtunlaA.A. ShanmugarajahK. DaviesA.H. Lucia MadariagaM. ShalhoubJ. The biological parallels between atherosclerosis and cardiac allograft vasculopathy: Implications for solid organ chronic rejection.Cardiol. Rev.202432121110.1097/CRD.0000000000000437 38051983
    [Google Scholar]
  29. PethigK. HeubleinB. KutschkaI. HaverichA. Systemic inflammatory response in cardiac allograft vasculopathy: High-sensitive C-reactive protein is associated with progressive luminal obstruction.Circulation200010219Suppl. 3III233III23610.1161/circ.102.suppl_3.III‑233 11082393
    [Google Scholar]
  30. MetheH. ZimmerE. GrimmC. NabauerM. KoglinJ. Evidence for a role of toll-like receptor 4 in development of chronic allograft rejection after cardiac transplantation.Transplantation20047891324133110.1097/01.TP.0000137930.40597.03 15548971
    [Google Scholar]
  31. YamaniM.H. StarlingR.C. CookD.J. Donor spontaneous intracerebral hemorrhage is associated with systemic activation of matrix metalloproteinase-2 and matrix metalloproteinase-9 and subsequent development of coronary vasculopathy in the heart transplant recipient.Circulation2003108141724172810.1161/01.CIR.0000087604.27270.5B 12975253
    [Google Scholar]
  32. FentonM. SimmondsJ. ShahV. Inflammatory cytokines, endothelial function, and chronic allograft vasculopathy in children: An investigation of the donor and recipient vasculature after heart transplantation.Am. J. Transplant.20161651559156810.1111/ajt.13643 26614396
    [Google Scholar]
  33. BalamS. Schiechl-BrachnerG. BuchtlerS. IL-3 triggers chronic rejection of cardiac allografts by activation of infiltrating basophils.J. Immunol.2019202123514352310.4049/jimmunol.1801269 31068389
    [Google Scholar]
  34. ChenZ. LiY. NiuY. MEK1/2-PKM2 pathway modulates the immunometabolic reprogramming of proinflammatory allograft-infiltrating macrophages during heart transplant rejection.Transplantation202410851127114110.1097/TP.0000000000004899 38238904
    [Google Scholar]
  35. YuanX. Paez-CortezJ. Schmitt-KnosallaI. A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy.J. Exp. Med.2008205133133314410.1084/jem.20081937 19047438
    [Google Scholar]
  36. SyrjäläS.O. KeränenM.A.I. TuuminenR. Increased Th17 rather than Th1 alloimmune response is associated with cardiac allograft vasculopathy after hypothermic preservation in the rat.J. Heart Lung Transplant.20102991047105710.1016/j.healun.2010.04.012 20591689
    [Google Scholar]
  37. ZhangA. WangK. ZhouC. Knockout of microRNA-155 ameliorates the Th1/Th17 immune response and tissue injury in chronic rejection.J. Heart Lung Transplant.201736217518410.1016/j.healun.2016.04.018 27296836
    [Google Scholar]
  38. D’AddioF. VerganiA. PotenaL. P2X7R mutation disrupts the NLRP3-mediated Th program and predicts poor cardiac allograft outcomes.J. Clin. Invest.201812883490350310.1172/JCI94524 30010623
    [Google Scholar]
  39. NathD.S. TiriveedhiV. BashaH.I. A role for antibodies to human leukocyte antigens, collagen-V, and K-α1-Tubulin in antibody-mediated rejection and cardiac allograft vasculopathy.Transplantation20119191036104310.1097/TP.0b013e318211d2f4 21383658
    [Google Scholar]
  40. TsudaH. DvorinaN. KeslarK.S. Molecular signature of antibody-mediated chronic vasculopathy in heart allografts in a novel mouse model.Am. J. Pathol.202219271053106510.1016/j.ajpath.2022.04.003 35490714
    [Google Scholar]
  41. HirohashiT. ChaseC.M. Della PelleP. A novel pathway of chronic allograft rejection mediated by NK cells and alloantibody.Am. J. Transplant.201212231332110.1111/j.1600‑6143.2011.03836.x 22070565
    [Google Scholar]
  42. ZhangZ.X. HuangX. JiangJ. Natural killer cells play a critical role in cardiac allograft vasculopathy in an interleukin-6-] dependent manner.Transplantation201498101029103910.1097/TP.0000000000000405 25286056
    [Google Scholar]
  43. ZouH. YangY. GaoM. HMGB1 is involved in chronic rejection of cardiac allograft via promoting inflammatory-like mDCs.Am. J. Transplant.20141481765177710.1111/ajt.12781 24984831
    [Google Scholar]
  44. ZouH. MingB. LiJ. Extracellular HMGB1 contributes to the chronic cardiac allograft vasculopathy/fibrosis by modulating TGF-β1 signaling.Front. Immunol.20211264197310.3389/fimmu.2021.641973 33777037
    [Google Scholar]
  45. YuanY.C. XiaZ.K. MuJ.J. ZhangQ.C. YinB.L. Increased connective tissue growth factor expression in a rat model of chronic heart allograft rejection.J. Formos. Med. Assoc.2009108324024610.1016/S0929‑6646(09)60058‑9 19293040
    [Google Scholar]
  46. FaustS.M. LuG. WoodS.C. BishopD.K. TGFbeta neutralization within cardiac allografts by decorin gene transfer attenuates chronic rejection.J. Immunol.2009183117307731310.4049/jimmunol.0902736 19917705
    [Google Scholar]
  47. Nevarez-MejiaJ. PickeringH. SosaR.A. Spatial multiomics of arterial regions from cardiac allograft vasculopathy rejected grafts reveal novel insights into the pathogenesis of chronic antibody-mediated rejection.Am. J. Transplant.20242471146116010.1016/j.ajt.2024.01.004 38219867
    [Google Scholar]
  48. KutsogiannisD.J. PagliarelloG. DoigC. RossH. ShemieS.D. Medical management to optimize donor organ potential: Review of the literature.Can. J. Anaesth.200653882083010.1007/BF03022800 16873350
    [Google Scholar]
  49. BelhajA. DewachterL. RoriveS. Roles of inflammation and apoptosis in experimental brain death–induced right ventricular failure.J. Heart Lung Transplant.201635121505151810.1016/j.healun.2016.05.014 27377219
    [Google Scholar]
  50. VenkateswaranR.V. DronavalliV. LambertP.A. The proinflammatory environment in potential heart and lung donors: Prevalence and impact of donor management and hormonal therapy.Transplantation200988458258810.1097/TP.0b013e3181b11e5d 19696643
    [Google Scholar]
  51. HoegerS. BergstraesserC. SelhorstJ. Modulation of brain dead induced inflammation by vagus nerve stimulation.Am. J. Transplant.201010347748910.1111/j.1600‑6143.2009.02951.x 20055812
    [Google Scholar]
  52. FloerchingerB. GeX. LeeY.L. Graft-specific immune cells communicate inflammatory immune responses after brain death.J. Heart Lung Transplant.201231121293130010.1016/j.healun.2012.09.005 23102910
    [Google Scholar]
  53. KremerJ. MuschitzG.K. AumayrK. Influence of antithymocyte globulin treatment of brain-dead organ donor on inflammatory response in cardiac grafts: An experimental study in mice.Transpl. Int.201629121329133610.1111/tri.12851 27571572
    [Google Scholar]
  54. MagalhãesD.M.S. ZanoniF.L. CorreiaC.J. Hypertonic saline modulates heart function and myocardial inflammatory alterations in brain-dead rats.J. Surg. Res.201923581510.1016/j.jss.2018.09.058 30691854
    [Google Scholar]
  55. Armstrong-JrR. Ricardo-da-SilvaF.Y. CorreiaC.J. Treatment with 17β‐estradiol protects donor heart against brain death effects in female rat.Transpl. Int.202033101312132110.1111/tri.13687 32621784
    [Google Scholar]
  56. Korkmaz-IcözS. ZhouP. GuoY. Mesenchymal stem cell-derived conditioned medium protects vascular grafts of brain-dead rats against in vitro ischemia/reperfusion injury.Stem Cell Res. Ther.202112114410.1186/s13287‑021‑02166‑3 33627181
    [Google Scholar]
  57. BelhajA. DewachterL. MonierA. Beneficial effects of tacrolimus on brain-death-associated right ventricular dysfunction in pigs.Int. J. Mol. Sci.202324131043910.3390/ijms241310439 37445625
    [Google Scholar]
  58. RabusM.B. CekmeceliogluD. AtaP. SalihiS. SelcukE. BalkanayM. Intraoperative tissue-immunosuppressive therapy reduces rejection episodes in heart transplant recipients.Exp. Clin. Transplant.202220876276710.6002/ect.2017.0230 30251943
    [Google Scholar]
  59. LietzK. JohnR. BeniaminovitzA. Interleukin-2 receptor blockade in cardiac transplantation: Influence of HLA-DR locus incompatibility on treatment efficacy.Transplantation200375678178710.1097/01.TP.0000055214.63049.3C 12660501
    [Google Scholar]
  60. VladG. HoE.K. VasilescuE.R. Anti-CD25 treatment and FOXP3-positive regulatory T cells in heart transplantation.Transpl. Immunol.2007181132110.1016/j.trim.2007.03.001 17584597
    [Google Scholar]
  61. AssadiaslS. MojtahediH. JAK inhibitors in solid organ transplantation.J. Clin. Pharmacol.202363121330134310.1002/jcph.2325
    [Google Scholar]
  62. ZhangM. XuM. WangK. LiL. ZhaoJ. Effect of inhibition of the JAK2/STAT3 signaling pathway on the Th17/IL-17 axis in acute cellular rejection after heart transplantation in mice.J. Cardiovasc. Pharmacol.202177561462010.1097/FJC.0000000000001007 33951698
    [Google Scholar]
  63. ChangY. XuM. ZhangY. Ruxolitinib attenuates acute rejection and can serve as an immune induction therapy in heart transplantation.Clin. Immunol.202325710985110.1016/j.clim.2023.109851 38008145
    [Google Scholar]
  64. ChenY. YanG. MaY. Combination of mesenchymal stem cells and FK506 prolongs heart allograft survival by inhibiting TBK1/IRF3-regulated-IFN-γ production.Immunol. Lett.2021238212810.1016/j.imlet.2021.06.007 34228988
    [Google Scholar]
  65. GuoH. LiB. LiN. Exosomes: Potential executors of IL‐35 gene‐modified adipose‐derived mesenchymal stem cells in inhibiting acute rejection after heart transplantation.Scand. J. Immunol.2022962e1317110.1111/sji.13171 35398907
    [Google Scholar]
  66. SlomovichS. BellJ. ClerkinK.J. Extracorporeal photopheresis and its role in heart transplant rejection: Prophylaxis and treatment.Clin. Transplant.2021357e1433310.1111/ctr.14333 33914369
    [Google Scholar]
  67. ZhengS ChenY WangZ CheY WuQ YuanS Combination of matrine and tacrolimus alleviates acute rejection in murine heart transplantation by inhibiting DCs maturation through ROS/ERK/NF-κB pathway.Int Immunopharmacol2021101Part B108218
    [Google Scholar]
  68. CheY. ChenY. WangZ. The combination of rhodosin and MMF prolongs cardiac allograft survival by inhibiting dc maturation by promoting mitochondrial fusion.Oxid. Med. Cell. Longev.2022202211910.1155/2022/7260305 35855862
    [Google Scholar]
  69. ChangY. LiX. ChengQ. Single-cell transcriptomic identified HIF1A as a target for attenuating acute rejection after heart transplantation.Basic Res. Cardiol.202111616410.1007/s00395‑021‑00904‑5 34870762
    [Google Scholar]
  70. DingX. LeS. WangK. Cytosporone B (Csn-B), an NR4A1 agonist, attenuates acute cardiac allograft rejection by inducing differential apoptosis of CD4+T cells.Int. Immunopharmacol.202210410852110.1016/j.intimp.2022.108521 35026656
    [Google Scholar]
  71. ChenZ. XuH. LiY. Single-Cell RNA sequencing reveals immune cell dynamics and local intercellular communication in acute murine cardiac allograft rejection.Theranostics202212146242625710.7150/thno.75543 36168621
    [Google Scholar]
  72. KongD. HuangS. MiaoX. The dynamic cellular landscape of grafts with acute rejection after heart transplantation.J. Heart Lung Transplant.202342216017210.1016/j.healun.2022.10.017 36411190
    [Google Scholar]
  73. ShawS.M. CritchleyW.R. PuchalkaC.M. WilliamsS.G. YonanN. FildesJ.E. Brain natriuretic peptide induces CD8+ T cell death via a caspase 3 associated pathway - Implications following heart transplantation.Transpl. Immunol.2012262-311912210.1016/j.trim.2011.11.007 22138041
    [Google Scholar]
  74. MorrowW.R. FrazierE.A. MahleW.T. Rapid reduction in donor-specific anti-human leukocyte antigen antibodies and reversal of antibody-mediated rejection with bortezomib in pediatric heart transplant patients.Transplantation201293331932410.1097/TP.0b013e31823f7eea 22179403
    [Google Scholar]
  75. HornE.T. XuQ. DibridgeJ.N. Reduction of HLA donor specific antibodies in heart transplant patients treated with proteasome inhibitors for antibody mediated rejection.Clin. Transplant.20233712e1513210.1111/ctr.15132 37705362
    [Google Scholar]
  76. LawsL.H. ParkerC.E. CheralaG. Inflammation causes resistance to anti-CD20–mediated b cell depletion.Am. J. Transplant.201616113139314910.1111/ajt.13902 27265023
    [Google Scholar]
  77. ChenC.C. KoenigA. SaisonC. CD4+ T cell help is mandatory for naive and memory donor-specific antibody responses: Impact of therapeutic immunosuppression.Front. Immunol.2018927510.3389/fimmu.2018.00275 29515582
    [Google Scholar]
  78. KwunJ. ParkJ. YiJ.S. FarrisA.B. KirkA.D. KnechtleS.J. IL-21 biased alemtuzumab induced chronic antibody-mediated rejection is reversed by LFA-1 costimulation blockade.Front. Immunol.20189232310.3389/fimmu.2018.02323 30374350
    [Google Scholar]
  79. Pour-Reza-GholiF. AssadiaslS. Eculizumab in kidney diseases.J. Nephropharmacol.2024131e1063010.34172/npj.2023.10630
    [Google Scholar]
  80. PatelJ.K. CoutanceG. LoupyA. Complement inhibition for prevention of antibody-mediated rejection in immunologically high-risk heart allograft recipients.Am. J. Transplant.20212172479248810.1111/ajt.16420 33251691
    [Google Scholar]
  81. CoutanceG. KobashigawaJ.A. KransdorfE. Intermediate-term outcomes of complement inhibition for prevention of antibody-mediated rejection in immunologically high-risk heart allograft recipients.J. Heart Lung Transplant.202342101464146810.1016/j.healun.2023.05.005 37182818
    [Google Scholar]
  82. ZhangY. HeJ. YangZ. Preventative effect of TSPO ligands on mixed antibody-mediated rejection through a mitochondria-mediated metabolic disorder.J. Transl. Med.202321129510.1186/s12967‑023‑04134‑2 37131248
    [Google Scholar]
  83. JungR. LyK. TaniguchiM. Improved graft function following desensitization of anti-AT1R and autoantibodies in a heart transplant recipient negative for donor-specific antibodies with antibody-mediated rejection: A case report.Int. J. Mol. Sci.2024254221810.3390/ijms25042218 38396895
    [Google Scholar]
  84. PicasciaA. GrimaldiV. CasamassimiA. De PascaleM.R. SchianoC. NapoliC. Human leukocyte antigens and alloimmunization in heart transplantation: An open debate.J. Cardiovasc. Transl. Res.20147766467510.1007/s12265‑014‑9587‑z 25190542
    [Google Scholar]
  85. BućinD. GustafssonR. EkmehagB. Desensitization and heart transplantation of a patient with high levels of donor-reactive anti-human leukocyte antigen antibodies.Transplantation201090111220122510.1097/TP.0b013e3181fa93c6 20885338
    [Google Scholar]
  86. PatelJ. EverlyM. ChangD. KittlesonM. ReedE. KobashigawaJ. Reduction of alloantibodies via proteosome inhibition in cardiac transplantation.J. Heart Lung Transplant.201130121320132610.1016/j.healun.2011.08.009 21968130
    [Google Scholar]
  87. MayL.J. YehJ. MaedaK. HLA desensitization with bortezomib in a highly sensitized pediatric patient.Pediatr. Transplant.2014188E280E28210.1111/petr.12347 25174602
    [Google Scholar]
  88. WoodleE.S. ShieldsA.R. EjazN.S. Prospective iterative trial of proteasome inhibitor-based desensitization.Am. J. Transplant.201515110111810.1111/ajt.13050 25534446
    [Google Scholar]
  89. SriwattanakomenR. XuQ. DemehinM. Impact of carfilzomib-based desensitization on heart transplantation of sensitized candidates.J. Heart Lung Transplant.202140759560310.1016/j.healun.2021.03.001 33785250
    [Google Scholar]
  90. ZhangX. PatelJ. KobashigawaJ. Effect of bortezomib desensitization therapy on levels of AT1R antibody.J. Heart Lung Transplant.2019384S27810.1016/j.healun.2019.01.694
    [Google Scholar]
  91. SaadiT.A. LawreckiT. NarangN. Outcomes of pre- heart transplantation desensitization in a series of highly sensitized patients bridged with left ventricular assist devices.J. Heart Lung Transplant.202140101107111110.1016/j.healun.2021.05.019 34281777
    [Google Scholar]
  92. DhillonM. KobashigawaJ.A. KittlesonM. Does bortezomib influence pre‐transplant desensitization therapy or benefit post‐heart transplant outcomes for highly sensitized patients?Clin. Transplant.2024381e1516510.1111/ctr.15165 37837612
    [Google Scholar]
  93. BrinkleyD.M. MangioneM. FosseyS.C. Efficacy of bortezomib desensitization among heart transplant candidates.Clin. Transplant.2023374e1490710.1111/ctr.14907 36661196
    [Google Scholar]
  94. Asante-KorangA. AmankwahE.K. Lopez-CeperoM. Outcomes in highly sensitized pediatric heart transplant patients using current management strategies.J. Heart Lung Transplant.201534217518110.1016/j.healun.2014.09.027 25447583
    [Google Scholar]
  95. GazdicT. MalekI. PagacovaL. Safety and efficacy of immunoadsorption in heart transplantation program.Transplant. Proc.20164882792279610.1016/j.transproceed.2016.06.061 27788819
    [Google Scholar]
  96. IssittR.W. CudworthE. Cortina-BorjaM. Rapid desensitization through immunoadsorption during cardiopulmonary bypass. A novel method to facilitate human leukocyte antigen incompatible heart transplantation.Perfusion202439354355410.1177/02676591221151035 36625378
    [Google Scholar]
  97. FuH.Y. WangY.C. TsaoC.I. Outcome of urgent desensitization in sensitized heart transplant recipients.J. Formos. Med. Assoc.2022121596997710.1016/j.jfma.2021.07.014 34340891
    [Google Scholar]
  98. SommerW. AvsarM. AburahmaK. Heart transplantation across preformed donor-specific antibody barriers using a perioperative desensitization protocol.Am. J. Transplant.20222282064207610.1111/ajt.17060 35426974
    [Google Scholar]
  99. Baez HernandezN. ButtsR. RadelL. New desensitization strategy: Daratumumab for highly sensitized pediatric heart transplant candidate.Transplantation202310710e271e27210.1097/TP.0000000000004719 37749815
    [Google Scholar]
  100. ChenJ. WangQ. YinD. VuV. SciammasR. ChongA.S. Cutting edge: CTLA-4Ig inhibits memory B cell responses and promotes allograft survival in sensitized recipients.J. Immunol.201519594069407310.4049/jimmunol.1500940 26416270
    [Google Scholar]
  101. AlishettiS. FarrM. JenningsD. Desensitizing highly sensitized heart transplant candidates with the combination of belatacept and proteasome inhibition.Am. J. Transplant.202020123620363010.1111/ajt.16113 32506824
    [Google Scholar]
  102. FidaN. EagarT.N. YunA.N. Effectiveness of combined plasma cell therapy and costimulation blockade based desensitization regimen in heart transplant candidates.Clin. Transplant.2024382e1524910.1111/ctr.15249 38369810
    [Google Scholar]
  103. PlazakM.E. GaleS.E. ReedB.N. Clinical outcomes of perioperative desensitization in heart transplant recipients.Transplant. Direct202172e65810.1097/TXD.0000000000001111 33521247
    [Google Scholar]
  104. GuihaireJ. D’AvinoS. StephanF. Urgent desensitization in patients bridged to heart transplantation under extracorporeal membrane oxygenation support: A preliminary experience.Clin. Transplant.2021351e1414610.1111/ctr.14146 33175401
    [Google Scholar]
  105. KobashigawaJ.A. PatelJ.K. KittlesonM.M. The long-term outcome of treated sensitized patients who undergo heart transplantation.Clin. Transplant.2011251E61E6710.1111/j.1399‑0012.2010.01334.x 20973825
    [Google Scholar]
  106. LobashevskyA.L. ManwaringJ.E. TravisM.M. Effect of desensitization in solid organ transplant recipients depends on some cytokines genes polymorphism.Transpl. Immunol.200921316917810.1016/j.trim.2009.03.002 19332120
    [Google Scholar]
  107. BastürkB. KavuzluM. KhalilovaA. KantaroğluB. SezginA. Determination of cytokine gene polymorphisms in a heart transplant patient resistant to desensitization therapy: Case report.Exp. Clin. Transplant.202220Suppl. 111311610.6002/ect.MESOT2021.P49 35384819
    [Google Scholar]
  108. NguyenL.S. SalemJ.E. BoriesM.C. Impact of sex in the efficacy of perioperative desensitization procedures in heart transplantation: A retrospective cohort study.Front. Immunol.20211265930310.3389/fimmu.2021.659303 34305891
    [Google Scholar]
  109. KraussA. WestL.J. ConwayJ. Successful ABO incompatible heart transplantation after desensitization therapy in an older child.Pediatr. Transplant.2023273e1445910.1111/petr.14459 36597218
    [Google Scholar]
  110. GuethoffS. StroehK. GrinningerC. De novo sirolimus with low-dose tacrolimus versus full-dose tacrolimus with mycophenolate mofetil after heart transplantation—8-year results.J. Heart Lung Transplant.201534563464210.1016/j.healun.2014.11.025 25701373
    [Google Scholar]
  111. KreienbaumH. StillerB. KubickiR. BobrowskiA. KrollJ. FleckT. mTor‐inhibition within the first days after pediatric heart transplantation is a potentially safe option to prevent cardiac allograft vasculopathy.Pediatr. Transplant.2024282e1469810.1111/petr.14698 38433342
    [Google Scholar]
  112. UeharaM. BahmaniB. JiangL. Nanodelivery of mycophenolate mofetil to the organ improves transplant vasculopathy.ACS Nano20191311123931240710.1021/acsnano.9b05115 31518498
    [Google Scholar]
  113. NakamuraK. InamiM. MorioH. AS2553627, a novel JAK inhibitor, prevents chronic rejection in rat cardiac allografts.Eur. J. Pharmacol.2017796697510.1016/j.ejphar.2016.12.025 27993641
    [Google Scholar]
  114. ChinJ.T. TrokeJ.J. KimuraN. A novel cardioprotective agent in cardiac transplantation: metformin activation of AMP-activated protein kinase decreases acute ischemia-reperfusion injury and chronic rejection.Yale J. Biol. Med.2011844423432 22180679
    [Google Scholar]
  115. IshiharaT. HaraguchiG. KonishiM. Effect of adiponectin on cardiac allograft vasculopathy.Circ. J.20117582005201210.1253/circj.CJ‑10‑0879 21737957
    [Google Scholar]
  116. WangS. XuX. XieA. Anti-interleukin-12/23p40 antibody attenuates chronic rejection of cardiac allografts partly via inhibition γδT cells.Clin. Exp. Immunol.2012169332032910.1111/j.1365‑2249.2012.04612.x 22861372
    [Google Scholar]
  117. HsiehG.R. SchnickelG.T. GarciaC. ShefizadehA. FishbeinM.C. ArdehaliA. Inflammation/oxidation in chronic rejection: Apolipoprotein a-i mimetic peptide reduces chronic rejection of transplanted hearts.Transplantation200784223824310.1097/01.tp.0000268509.60200.ea 17667816
    [Google Scholar]
  118. WangD. TediashviliG. KimD. Leukotriene B4: A potential mediator and biomarker for cardiac allograft vasculopathy.J. Heart Lung Transplant.20244381336134710.1016/j.healun.2024.04.004 38670297
    [Google Scholar]
  119. LangfordJ.T. GonzalezL. TaniguchiR. BrahmandamA. ZhangW. DardikA. EphB4 monomer inhibits chronic graft vasculopathy in an aortic transplant model.JVS Vasc. Sci.2023410010910.1016/j.jvssci.2023.100109 37519335
    [Google Scholar]
  120. XiaY. JinS. WuY. Small-molecule BCL6 inhibitor protects chronic cardiac transplant rejection and inhibits T follicular helper cell expansion and humoral response.Front. Pharmacol.202314114070310.3389/fphar.2023.1140703 37007047
    [Google Scholar]
  121. LiaoT. ShiX. HanF. Blockade of BLyS inhibits B-cell responses and antibody production for the prevention of chronic transplant rejection.J. Heart Lung Transplant.202443465266210.1016/j.healun.2023.12.001 38070662
    [Google Scholar]
  122. HanF. ShiX. LiaoT. Bruton’s tyrosine kinase ablation inhibits B cell responses and antibody production for the prevention of chronic rejection in cardiac transplantation.Clin. Immunol.202426110994110.1016/j.clim.2024.109941 38365047
    [Google Scholar]
  123. KongG. ChenY. LiuZ. WangY. LiH. GuoC. Adenovirus-IL-10 relieves chronic rejection after mouse heart transplantation by inhibiting miR-155 and activating SOCS5.Int. J. Med. Sci.202320217218510.7150/ijms.77093 36794154
    [Google Scholar]
  124. SadozaiH. Rojas-LuengasV. FarrokhiK. Congenic hematopoietic stem cell transplantation promotes survival of heart allografts in murine models of acute and chronic rejection.Clin. Exp. Immunol.2023213113815410.1093/cei/uxad038 37004176
    [Google Scholar]
  125. MehraM.R. UberP.A. PotluriS. VenturaH.O. ScottR.L. ParkM.H. Usefulness of an elevated B-type natriuretic peptide to predict allograft failure, cardiac allograft vasculopathy, and survival after heart transplantation.Am. J. Cardiol.200494445445810.1016/j.amjcard.2004.04.060 15325928
    [Google Scholar]
  126. AroraS. GullestadL. WergelandR. Probrain natriuretic peptide and C-reactive protein as markers of acute rejection, allograft vasculopathy, and mortality in heart transplantation.Transplantation200783101308131510.1097/01.tp.0000263338.39555.21 17519779
    [Google Scholar]
  127. AvelloN. MolinaB.D. LlorenteE. BernardoM.J. PrietoB. ÁlvarezF.V. N-terminal pro-brain natriuretic peptide as a potential non-invasive marker of cardiac transplantation rejection.Ann. Clin. Biochem.200744218218810.1258/000456307780117876 17362585
    [Google Scholar]
  128. McIlroyD.R. WallaceS. RoubosN. Brain natriuretic peptide (BNP) as a biomarker of myocardial ischemia-reperfusion injury in cardiac transplantation.J. Cardiothorac. Vasc. Anesth.201024693994510.1053/j.jvca.2010.05.008 20655247
    [Google Scholar]
  129. Pascual-FigalD.A. GarridoI.P. BlancoR. Soluble ST2 is a marker for acute cardiac allograft rejection.Ann. Thorac. Surg.20119262118212410.1016/j.athoracsur.2011.07.048 22035779
    [Google Scholar]
  130. Szyguła-JurkiewiczB. ZakliczyńskiM. SzczurekW. SkrzypekM. GąsiorM. ZembalaM. Perioperative risk factors of cardiac allograft vasculopathy in the long-term follow-up.Transplant. Proc.20164851736174110.1016/j.transproceed.2015.10.087 27496482
    [Google Scholar]
  131. DyerA.K. BarnesA.P. FixlerD.E. Use of a highly sensitive assay for cardiac troponin T and N-terminal pro-brain natriuretic peptide to diagnose acute rejection in pediatric cardiac transplant recipients.Am. Heart J.2012163459560010.1016/j.ahj.2012.02.003 22520525
    [Google Scholar]
  132. PatelP.C. HillD.A. AyersC.R. High-sensitivity cardiac troponin I assay to screen for acute rejection in patients with heart transplant.Circ. Heart Fail.20147346346910.1161/CIRCHEARTFAILURE.113.000697 24733367
    [Google Scholar]
  133. MéndezA.B. Ordonez-LlanosJ. MirabetS. Prognostic value of high-sensitivity troponin-t to identify patients at risk of left ventricular graft dysfunction after heart transplantation.Transplant. Proc.20164893021302310.1016/j.transproceed.2016.07.044 27932136
    [Google Scholar]
  134. M’PembeleR. RothS. NucaroA. Postoperative high-sensitivity troponin T predicts 1-year mortality and days alive and out of hospital after orthotopic heart transplantation.Eur. J. Med. Res.20232811610.1186/s40001‑022‑00978‑4 36624515
    [Google Scholar]
  135. PatelK. YadalamA. DeStefanoR. High sensitivity troponin I as a biomarker for cardiac allograft vasculopathy: Evaluation of diagnostic potential and clinical utility.Clin. Transplant.2024381e1516810.1111/ctr.15168 37882497
    [Google Scholar]
  136. FitzsimonsS. EvansJ. ParameshwarJ. PettitS.J. Utility of troponin assays for exclusion of acute cellular rejection after heart transplantation: A systematic review.J. Heart Lung Transplant.201837563163810.1016/j.healun.2017.12.008 29426716
    [Google Scholar]
  137. GrupperA. AbouEzzeddineO.F. MaleszewskiJ.J. Elevated ST 2 levels are associated with antibody‐mediated rejection in heart transplant recipients.Clin. Transplant.2018329e1334910.1111/ctr.13349 29998506
    [Google Scholar]
  138. MathewsL.R. LottJ.M. IsseK. Elevated ST2 distinguishes incidences of pediatric heart and small bowel transplant rejection.Am. J. Transplant.201616393895010.1111/ajt.13542 26663613
    [Google Scholar]
  139. Lozano-EdoS. Sánchez-LázaroI. PortolésM. Plasma levels of SERCA2a as a noninvasive biomarker of primary graft dysfunction after heart transplantation.Transplantation2022106488789310.1097/TP.0000000000003798 33901112
    [Google Scholar]
  140. PrzybylekB. BoethigD. NeumannA. Novel cytokine score and cardiac allograft vasculopathy.Am. J. Cardiol.201912371114111910.1016/j.amjcard.2018.12.034 30660351
    [Google Scholar]
  141. WeiL. WangM. QuX. Differential expression of microRNAs during allograft rejection.Am. J. Transplant.20121251113112310.1111/j.1600‑6143.2011.03958.x 22300508
    [Google Scholar]
  142. FengZ. XiaY. ZhangM. ZhengJ. MicroRNA-155 regulates T cell proliferation through targeting GSK3β in cardiac allograft rejection in a murine transplantation model.Cell. Immunol.2013281214114910.1016/j.cellimm.2013.04.001 23648819
    [Google Scholar]
  143. GuptaS.K. ItagakiR. ZhengX. miR-21 promotes fibrosis in an acute cardiac allograft transplantation model.Cardiovasc. Res.2016110221522610.1093/cvr/cvw030 26865549
    [Google Scholar]
  144. Duong Van HuyenJ.P. TibleM. GayA. MicroRNAs as non-invasive biomarkers of heart transplant rejection.Eur. Heart J.201435453194320210.1093/eurheartj/ehu346 25176944
    [Google Scholar]
  145. NeumannA. NappL.C. KleebergerJ.A. MicroRNA 628-5p as a novel biomarker for cardiac allograft vasculopathy.Transplantation20171011e26e3310.1097/TP.0000000000001477 27653298
    [Google Scholar]
  146. Esmaeili-bandboniA. BagheriJ. BakhshandehA.R. MohammadnejadJ. SadroddinyE. Serum Levels of miR-155, miR-326, and miR-133b as Early Diagnostic Biomarkers for the Detection of Human Acute Heart Allograft Rejection in Comparison with Serum Cardiac Troponin T.Heart Surg. Forum201821210110.1532/hsf.1887 29658868
    [Google Scholar]
  147. Di FrancescoA. FedrigoM. SantovitoD. MicroRNA signatures in cardiac biopsies and detection of allograft rejection.J. Heart Lung Transplant.201837111329134010.1016/j.healun.2018.06.010 30174164
    [Google Scholar]
  148. KennelP.J. YahiA. NakaY. Longitudinal profiling of circulating miRNA during cardiac allograft rejection: A proof‐of‐concept study.ESC Heart Fail.2021831840184910.1002/ehf2.13238 33713567
    [Google Scholar]
  149. Pérez-CarrilloL. Sánchez-LázaroI. TriviñoJ.C. Diagnostic value of serum miR-144-3p for the detection of acute cellular rejection in heart transplant patients.J. Heart Lung Transplant.202241213714710.1016/j.healun.2021.10.004 34895840
    [Google Scholar]
  150. Pérez-CarrilloL. Sánchez-LázaroI. TriviñoJ.C. Combining serum miR-144-3p and miR-652-3p as potential biomarkers for the early diagnosis and stratification of acute cellular rejection in heart transplantation patients.Transplantation202310792064207210.1097/TP.0000000000004622 37606906
    [Google Scholar]
  151. ShannonC.P. HollanderZ. DaiD.L.Y. HEARTBiT: A transcriptomic signature for excluding acute cellular rejection in adult heart allograft patients.Can. J. Cardiol.20203681217122710.1016/j.cjca.2019.11.017 32553820
    [Google Scholar]
  152. KimJ.Y.V. AssadianS. HollanderZ. Regulatory T cell biomarkers identify patients at risk of developing acute cellular rejection in the first year following heart transplantation.Transplantation202310781810181910.1097/TP.0000000000004607 37365692
    [Google Scholar]
  153. De VlaminckI. ValantineH.A. SnyderT.M. Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection.Sci. Transl. Med.20146241241ra7710.1126/scitranslmed.3007803 24944192
    [Google Scholar]
  154. KhushK.K. PatelJ. PinneyS. Noninvasive detection of graft injury after heart transplant using donor-derived cell-free DNA: A prospective multicenter study.Am. J. Transplant.201919102889289910.1111/ajt.15339 30835940
    [Google Scholar]
  155. ZangwillS.D. KindelS.J. RagalieW.S. Early changes in cell‐free DNA levels in newly transplanted heart transplant patients.Pediatr. Transplant.2020241e1362210.1111/petr.13622 31825144
    [Google Scholar]
  156. KnüttgenF. BeckJ. DittrichM. Graft-derived cell-free DNA as a noninvasive biomarker of cardiac allograft rejection: A cohort study on clinical validity and confounding factors.Transplantation2022106361562210.1097/TP.0000000000003725 33653997
    [Google Scholar]
  157. Agbor-EnohS. ShahP. TuncI. Cell-free DNA to detect heart allograft acute rejection.Circulation2021143121184119710.1161/CIRCULATIONAHA.120.049098 33435695
    [Google Scholar]
  158. ScottJ.P. RagalieW.S. StammK.D. Total cell-free DNA predicts death and infection following pediatric and adult heart transplantation.Ann. Thorac. Surg.202111241282128910.1016/j.athoracsur.2020.08.006 33039362
    [Google Scholar]
  159. TeszakT. BödörC. HegyiL. Local laboratory‐run donor‐derived cell‐free DNA assay for rejection surveillance in heart transplantation—first six months of clinical experience.Clin. Transplant.2023379e1507810.1111/ctr.15078 37489087
    [Google Scholar]
  160. HenricksenE.J. MoayediY. PurewalS. Combining donor derived cell free DNA and gene expression profiling for non‐invasive surveillance after heart transplantation.Clin. Transplant.2023373e1469910.1111/ctr.14699 35559582
    [Google Scholar]
  161. TarazónE. Pérez-CarrilloL. García-BoluferP. Circulating mitochondrial genes detect acute cardiac allograft rejection: Role of the mitochondrial calcium uniporter complex.Am. J. Transplant.20212162056206610.1111/ajt.16387 33125788
    [Google Scholar]
  162. KennelP.J. SahaA. MaldonadoD.A. Serum exosomal protein profiling for the non-invasive detection of cardiac allograft rejection.J. Heart Lung Transplant.201837340941710.1016/j.healun.2017.07.012 28789823
    [Google Scholar]
  163. HuR.W. KorutlaL. ReddyS. Circulating donor heart exosome profiling enables noninvasive detection of antibody-mediated rejection.Transplant. Direct2020611e61510.1097/TXD.0000000000001057 33134491
    [Google Scholar]
  164. CastellaniC. BurrelloJ. FedrigoM. Circulating extracellular vesicles as non-invasive biomarker of rejection in heart transplant.J. Heart Lung Transplant.202039101136114810.1016/j.healun.2020.06.011 32665078
    [Google Scholar]
  165. KorutlaL. HoffmanJ.R. RostamiS. Circulating T cell specific extracellular vesicle profiles in cardiac allograft acute cellular rejection.Am. J. Transplant.202424341943510.1016/j.ajt.2023.10.021 38295008
    [Google Scholar]
  166. Lozano-EdoS. Roselló-LletíE. Sánchez-LázaroI. Cardiac allograft rejection induces changes in nucleocytoplasmic transport: RANGAP1 as a potential non-invasive biomarker.J. Pers. Med.202212691310.3390/jpm12060913 35743697
    [Google Scholar]
  167. HiraiT. MayerA.T. NobashiT.W. Imaging alloreactive T cells provides early warning of organ transplant rejection.JCI Insight2021613e14536010.1172/jci.insight.145360 34236044
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X362826250619112705
Loading
/content/journals/ccr/10.2174/011573403X362826250619112705
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test