Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Enhancer RNAs (eRNAs), a class of non-coding RNAs transcribed from enhancer regions, have emerged as critical regulators of gene expression in cardiovascular diseases (CVDs), which are among the leading causes of morbidity and mortality in China. The pathogenesis of CVD is complex, involving precise regulation of diverse biological processes. Recent advances in epigenetics have highlighted the pivotal role of eRNAs in gene regulation. This review summarizes the fundamental characteristics of eRNAs and their mechanisms of action in CVD, focusing on how they regulate gene expression through enhancer-promoter looping, chromatin remodeling, and transcriptional control. Key eRNAs, including IRENES, CARMEN, LINC00607, HERNA1, PSMB8-AS1, and WISPER, are discussed in detail, emphasizing their roles in pathological processes, such as cardiac development, vascular remodeling, atherosclerosis, and fibrosis. These eRNAs interact with transcription factors and others to influence cardiovascular gene regulatory networks. Advances in high-throughput sequencing have identified eRNAs as potential biomarkers and therapeutic targets in CVDs, offering implications for diagnosis, treatment, and precision medicine. For instance, targeting CARMEN may attenuate atherosclerosis, while LEENE could address endothelial dysfunction. Despite their therapeutic potential, further studies are needed to elucidate the mechanisms underlying eRNAs function and their roles in CVD pathogenesis. A deeper understanding of eRNAs may pave the way for novel therapeutic strategies in cardiovascular medicine.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X375542250529182602
2025-06-05
2026-01-28
Loading full text...

Full text loading...

References

  1. JosephP. LeongD. McKeeM. Reducing the global burden of cardiovascular disease, Part 1.Circ. Res.2017121667769410.1161/CIRCRESAHA.117.308903 28860318
    [Google Scholar]
  2. ZhangY. YinK. WangD. Polystyrene microplastics-induced cardiotoxicity in chickens via the ROS-driven NF-κB-NLRP3-GSDMD and AMPK-PGC-1α axes.Sci. Total Environ.202284015672710.1016/j.scitotenv.2022.156727 35714743
    [Google Scholar]
  3. ZhaoH. WangY. LiuJ. The cardiotoxicity of the common carp (Cyprinus carpio) exposed to environmentally relevant concentrations of arsenic and subsequently relieved by zinc supplementation.Environ. Pollut.201925374174810.1016/j.envpol.2019.07.065 31344536
    [Google Scholar]
  4. HouL. DongH. ZhangE. A new insight into fluoride induces cardiotoxicity in chickens: Involving the regulation of PERK/IRE1/ATF6 pathway and heat shock proteins.Toxicology202450115368810.1016/j.tox.2023.153688 38036095
    [Google Scholar]
  5. LiS. ZhaoH. WangY. Regulation of autophagy factors by oxidative stress and cardiac enzymes imbalance during arsenic or/and copper induced cardiotoxicity in gallus gallus.Ecotoxicol. Environ. Saf.201814812513410.1016/j.ecoenv.2017.10.018 29035754
    [Google Scholar]
  6. PearsonT.A. SmithS.C. Poole-WilsonP. Cardiovascular specialty societies and the emerging global burden of cardiovascular disease: A call to action.Circulation199897660260410.1161/01.CIR.97.6.602 9494032
    [Google Scholar]
  7. MensahG.A. RothG.A. FusterV. The global burden of cardiovascular diseases and risk factors.J. Am. Coll. Cardiol.201974202529253210.1016/j.jacc.2019.10.009 31727292
    [Google Scholar]
  8. CoronadoF. MelvinS.C. BellR.A. ZhaoG. Global responses to prevent, manage, and control cardiovascular diseases.Prev. Chronic Dis.20221922034710.5888/pcd19.220347 36480801
    [Google Scholar]
  9. van der HarstP. de WindtL.J. ChambersJ.C. Translational perspective on epigenetics in cardiovascular disease.J. Am. Coll. Cardiol.201770559060610.1016/j.jacc.2017.05.067 28750703
    [Google Scholar]
  10. MukaT. KoromaniF. PortillaE. The role of epigenetic modifications in cardiovascular disease: A systematic review.Int. J. Cardiol.201621217418310.1016/j.ijcard.2016.03.062 27038728
    [Google Scholar]
  11. BanerjiJ. RusconiS. SchaffnerW. Expression of a β-globin gene is enhanced by remote SV40 DNA sequences.Cell198127229930810.1016/0092‑8674(81)90413‑X 6277502
    [Google Scholar]
  12. MoreauP. HenR. WasylykB. EverettR. GaubM.P. ChambonP. The SV40 72 base repair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants.Nucleic Acids Res.19819226047606810.1093/nar/9.22.6047 6273820
    [Google Scholar]
  13. WamstadJ.A. WangX. DemurenO.O. BoyerL.A. Distal enhancers: New insights into heart development and disease.Trends Cell Biol.201424529430210.1016/j.tcb.2013.10.008 24321408
    [Google Scholar]
  14. Anene-NzeluC.G. LeeM.C.J. TanW.L.W. DashiA. FooR.S.Y. Genomic enhancers in cardiac development and disease.Nat. Rev. Cardiol.202219172510.1038/s41569‑021‑00597‑2 34381190
    [Google Scholar]
  15. JindalG.A. BantleA.T. SolvasonJ.J. Single-nucleotide variants within heart enhancers increase binding affinity and disrupt heart development.Dev. Cell2023582122062216.e510.1016/j.devcel.2023.09.005 37848026
    [Google Scholar]
  16. ParisiC. VashishtS. WinataC.L. Fish-Ing for enhancers in the heart.Int. J. Mol. Sci.2021228391410.3390/ijms22083914 33920121
    [Google Scholar]
  17. YamaguchiN. ChangE.W. LinZ. An anterior second heart field enhancer regulates the gene regulatory network of the cardiac outflow tract.Circulation2023148211705172210.1161/CIRCULATIONAHA.123.065700 37772400
    [Google Scholar]
  18. DupaysL. MohunT. Spatiotemporal regulation of enhancers during cardiogenesis.Cell. Mol. Life Sci.201774225726510.1007/s00018‑016‑2322‑y 27497925
    [Google Scholar]
  19. KimT.K. HembergM. GrayJ.M. Widespread transcription at neuronal activity-regulated enhancers.Nature2010465729518218710.1038/nature09033 20393465
    [Google Scholar]
  20. De SantaF. BarozziI. MiettonF. A large fraction of extragenic RNA pol II transcription sites overlap enhancers.PLoS Biol.201085e100038410.1371/journal.pbio.1000384 20485488
    [Google Scholar]
  21. StatelloL. GuoC.J. ChenL.L. HuarteM. Gene regulation by long non-coding RNAs and its biological functions.Nat. Rev. Mol. Cell Biol.20212229611810.1038/s41580‑020‑00315‑9 33353982
    [Google Scholar]
  22. MangiavacchiA. MorelliG. OrlandoV. Behind the scenes: How RNA orchestrates the epigenetic regulation of gene expression.Front. Cell Dev. Biol.202311112397510.3389/fcell.2023.1123975 36760365
    [Google Scholar]
  23. BoseD.A. BergerS.L. eRNA binding produces tailored CBP activity profiles to regulate gene expression.RNA Biol.201714121655165910.1080/15476286.2017.1353862 28891741
    [Google Scholar]
  24. LiuF. Enhancer-derived RNA: A primer.Genomics Proteomics Bioinf201715319620010.1016/j.gpb.2016.12.006 28533025
    [Google Scholar]
  25. YuanL. JiangN. LiY. WangX. WangW. RGS1 enhancer RNA promotes gene transcription by recruiting transcription factor FOXJ3 and facilitates osteoclastogenesis through PLC-IP3R-dependent Ca2+ response in rheumatoid arthritis.Inflammation202548144746310.1007/s10753‑024‑02067‑6 38904871
    [Google Scholar]
  26. HuangZ. YuH. DuG. Enhancer RNA lnc-CES1-1 inhibits decidual cell migration by interacting with RNA-binding protein FUS and activating PPARγ in URPL.Mol. Ther. Nucleic Acids20212410411210.1016/j.omtn.2021.02.018 33738142
    [Google Scholar]
  27. TanH. LiuT. ZhouT. Exploring the role of eRNA in regulating gene expression.Math. Biosci. Eng.20211922095211910.3934/mbe.2022098 35135243
    [Google Scholar]
  28. MousaviK. ZareH. Dell’OrsoS. eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci.Mol. Cell201351560661710.1016/j.molcel.2013.07.022 23993744
    [Google Scholar]
  29. SchaukowitchK. JooJ.Y. LiuX. WattsJ.K. MartinezC. KimT.K. Enhancer RNA facilitates NELF release from immediate early genes.Mol. Cell2014561294210.1016/j.molcel.2014.08.023 25263592
    [Google Scholar]
  30. CaiY.M. LuZ.Q. LiB. Genome-wide enhancer RNA profiling adds molecular links between genetic variation and human cancers.Mil. Med. Res.20241113610.1186/s40779‑024‑00539‑2 38863031
    [Google Scholar]
  31. RenC. LiuF. OuyangZ. Functional annotation of structural ncRNAs within enhancer RNAs in the human genome: Implications for human disease.Sci. Rep.2017711551810.1038/s41598‑017‑15822‑7 29138457
    [Google Scholar]
  32. PlaisanceI. PerruchoudS. Fernandez-TenorioM. Cardiomyocyte lineage specification in adult human cardiac precursor cells via modulation of enhancer-associated long noncoding RNA expression.JACC Basic Transl. Sci.20161647249310.1016/j.jacbts.2016.06.008 29707678
    [Google Scholar]
  33. AnderssonR. GebhardC. Miguel-EscaladaI. An atlas of active enhancers across human cell types and tissues.Nature2014507749345546110.1038/nature12787 24670763
    [Google Scholar]
  34. KaikkonenM.U. SpannN.J. HeinzS. Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription.Mol. Cell201351331032510.1016/j.molcel.2013.07.010 23932714
    [Google Scholar]
  35. KochF. FenouilR. GutM. Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters.Nat. Struct. Mol. Biol.201118895696310.1038/nsmb.2085 21765417
    [Google Scholar]
  36. KimA. ZhaoH. IfrimI. DeanA. Beta-globin intergenic transcription and histone acetylation dependent on an enhancer.Mol. Cell. Biol.20072782980298610.1128/MCB.02337‑06 17283048
    [Google Scholar]
  37. MelgarM.F. CollinsF.S. SethupathyP. Discovery of active enhancers through bidirectional expression of short transcripts.Genome Biol.20111211R11310.1186/gb‑2011‑12‑11‑r113 22082242
    [Google Scholar]
  38. HahN. MurakamiS. NagariA. DankoC.G. KrausW.L. Enhancer transcripts mark active estrogen receptor binding sites.Genome Res.20132381210122310.1101/gr.152306.112 23636943
    [Google Scholar]
  39. DjebaliS. DavisC.A. MerkelA. Landscape of transcription in human cells.Nature2012489741410110810.1038/nature11233 22955620
    [Google Scholar]
  40. HeintzmanN.D. HonG.C. HawkinsR.D. Histone modifications at human enhancers reflect global cell-type-specific gene expression.Nature2009459724310811210.1038/nature07829 19295514
    [Google Scholar]
  41. CoreL.J. WaterfallJ.J. GilchristD.A. Defining the status of RNA polymerase at promoters.Cell Rep.2012241025103510.1016/j.celrep.2012.08.034 23062713
    [Google Scholar]
  42. HahN. BennerC. ChongL.W. YuR.T. DownesM. EvansR.M. Inflammation-sensitive super enhancers form domains of coordinately regulated enhancer RNAs.Proc. Natl. Acad. Sci. USA20151123E297E30210.1073/pnas.1424028112 25564661
    [Google Scholar]
  43. WangX. CairnsM.J. YanJ. Super-enhancers in transcriptional regulation and genome organization.Nucleic Acids Res.20194722gkz103810.1093/nar/gkz1038 31724731
    [Google Scholar]
  44. MolvaerO.I. AlbrektsenG. Alternobaric vertigo in professional divers.Undersea Biomed. Res.1988154271282 3212844
    [Google Scholar]
  45. VasilevaA.V. GladkovaM.G. AshnievG.A. Super-enhancers and their parts: From prediction efforts to pathognomonic status.Int. J. Mol. Sci.2024256310310.3390/ijms25063103 38542080
    [Google Scholar]
  46. WuM. ShenJ. From super-enhancer non-coding RNA to immune checkpoint: Frameworks to functions.Front. Oncol.20199130710.3389/fonc.2019.01307 31824865
    [Google Scholar]
  47. Giesen-CrouseE. FandeleurP. WelschC. Binding of loop diuretics to their renal receptors: Use as a screening model for potential diuretic activity.Fundam. Clin. Pharmacol.19882314515710.1111/j.1472‑8206.1988.tb00628.x 3402896
    [Google Scholar]
  48. XiaoS. HuangQ. RenH. YangM. The mechanism and function of super enhancer RNA.Genesis2021595-6e2342210.1002/dvg.23422 34028961
    [Google Scholar]
  49. KowalczykM.S. HughesJ.R. GarrickD. Intragenic enhancers act as alternative promoters.Mol. Cell201245444745810.1016/j.molcel.2011.12.021 22264824
    [Google Scholar]
  50. SongC. ZhangG. MuX. eRNAbase: A comprehensive database for decoding the regulatory eRNAs in human and mouse.Nucleic Acids Res.202452D1D81D9110.1093/nar/gkad925 37889077
    [Google Scholar]
  51. WangJ. ZhaoY. ZhouX. HiebertS.W. LiuQ. ShyrY. Nascent RNA sequencing analysis provides insights into enhancer-mediated gene regulation.BMC Genomics201819163310.1186/s12864‑018‑5016‑z 30139328
    [Google Scholar]
  52. HahN. DankoC.G. CoreL. A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells.Cell2011145462263410.1016/j.cell.2011.03.042 21549415
    [Google Scholar]
  53. BlinkaS. ReimerM.H. PulakantiK. PinelloL. YuanG.C. RaoS. Identification of transcribed enhancers by genome-wide chromatin immunoprecipitation sequencing.Methods Mol. Biol.201714689110910.1007/978‑1‑4939‑4035‑6_8 27662872
    [Google Scholar]
  54. MurakawaY. YoshiharaM. KawajiH. Enhanced identification of transcriptional enhancers provides mechanistic insights into diseases.Trends Genet.2016322768810.1016/j.tig.2015.11.004 26780995
    [Google Scholar]
  55. MichelM. DemelC. ZacherB. TT‐seq captures enhancer landscapes immediately after T‐cell stimulation.Mol. Syst. Biol.201713392010.15252/msb.20167507 28270558
    [Google Scholar]
  56. SchwalbB. MichelM. ZacherB. TT-seq maps the human transient transcriptome.Science201635262901225122810.1126/science.aad9841 27257258
    [Google Scholar]
  57. MagnusonB. VelosoA. KirkconnellK.S. Identifying transcription start sites and active enhancer elements using BruUV-seq.Sci. Rep.2015511797810.1038/srep17978 26656874
    [Google Scholar]
  58. HirabayashiS. BhagatS. MatsukiY. NET-CAGE characterizes the dynamics and topology of human transcribed cis-regulatory elements.Nat. Genet.20195191369137910.1038/s41588‑019‑0485‑9 31477927
    [Google Scholar]
  59. RouxB.T. LindsayM.A. HewardJ.A. Knockdown of nuclear-located enhancer RNAs and long ncRNAs using locked nucleic acid GapmeRs.Methods Mol. Biol.20171468111810.1007/978‑1‑4939‑4035‑6_2 27662866
    [Google Scholar]
  60. SalamonI. SerioS. BiancoS. Divergent transcription of the Nkx2-5 locus generates two enhancer RNAs with opposing functions.iScience202023910153910.1016/j.isci.2020.101539 33083767
    [Google Scholar]
  61. ShibayamaY. FanucchiS. MhlangaM.M. Visualization of enhancer-derived noncoding RNA.Methods Mol. Biol.20171468193210.1007/978‑1‑4939‑4035‑6_3 27662867
    [Google Scholar]
  62. RahmanS. ZorcaC.E. TraboulsiT. Single-cell profiling reveals that eRNA accumulation at enhancer–promoter loops is not required to sustain transcription.Nucleic Acids Res.20174563017303010.1093/nar/gkw1220 27932455
    [Google Scholar]
  63. WangR. TangQ. Current advances on the important roles of enhancer RNAs in molecular pathways of cancer.Int. J. Mol. Sci.20212211564010.3390/ijms22115640 34073237
    [Google Scholar]
  64. KimY.W. LeeS. YunJ. KimA. Chromatin looping and eRNA transcription precede the transcriptional activation of gene in the β-globin locus.Biosci. Rep.2015352e0017910.1042/BSR20140126 25588787
    [Google Scholar]
  65. LiW. NotaniD. MaQ. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation.Nature2013498745551652010.1038/nature12210 23728302
    [Google Scholar]
  66. ChenT. DentS.Y.R. Chromatin modifiers and remodellers: Regulators of cellular differentiation.Nat. Rev. Genet.20141529310610.1038/nrg3607 24366184
    [Google Scholar]
  67. BoseD.A. DonahueG. ReinbergD. ShiekhattarR. BonasioR. BergerS.L. RNA binding to CBP stimulates histone acetylation and transcription.Cell20171681-2135149.e2210.1016/j.cell.2016.12.020 28086087
    [Google Scholar]
  68. ShiekhattarR. Opening the chromatin by eRNAs.Mol. Cell201351555755810.1016/j.molcel.2013.08.033 24034693
    [Google Scholar]
  69. PezoneA. ZuchegnaC. TramontanoA. RNA stabilizes transcription-dependent chromatin loops induced by nuclear hormones.Sci. Rep.201991392510.1038/s41598‑019‑40123‑6 30850627
    [Google Scholar]
  70. JiaoW. ChenY. SongH. HPSE enhancer RNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis.Oncogene201837202728274510.1038/s41388‑018‑0128‑0 29511351
    [Google Scholar]
  71. de LaraJ.C.F. Arzate-MejíaR.G. Recillas-TargaF. Enhancer RNAs: Insights into their biological role.Epigenet. Insights201912251686571984609310.1177/2516865719846093 31106290
    [Google Scholar]
  72. ArnoldP.R. WellsA.D. LiX.C. Diversity and emerging roles of enhancer RNA in regulation of gene expression and cell fate.Front. Cell Dev. Biol.2020737710.3389/fcell.2019.00377 31993419
    [Google Scholar]
  73. OunzainS MichelettiR ArnanC. CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis.J Mol Cell Cardiol201589Pt A9811210.1016/j.yjmcc.2015.09.01626423156
    [Google Scholar]
  74. HanZ. LiW. Enhancer RNA: What we know and what we can achieve.Cell Prolif.2022554e1320210.1111/cpr.13202 35170113
    [Google Scholar]
  75. KimT.K. HembergM. GrayJ.M. Enhancer RNAs: A class of long noncoding RNAs synthesized at enhancers.Cold Spring Harb. Perspect. Biol.201571a01862210.1101/cshperspect.a018622 25561718
    [Google Scholar]
  76. DingM. LiuY. LiaoX. ZhanH. LiuY. HuangW. Enhancer RNAs (eRNAs): New insights into gene transcription and disease treatment.J. Cancer20189132334234010.7150/jca.25829 30026829
    [Google Scholar]
  77. ZhangQ. SongC. ZhangM. Super-enhancer-driven lncRNA Snhg7 aggravates cardiac hypertrophy via Tbx5/GLS2/ferroptosis axis.Eur. J. Pharmacol.202395317582210.1016/j.ejphar.2023.175822 37277029
    [Google Scholar]
  78. VacanteF. DenbyL. SluimerJ.C. BakerA.H. The function of miR-143, miR-145 and the MiR-143 host gene in cardiovascular development and disease.Vascul. Pharmacol.2019112243010.1016/j.vph.2018.11.006 30502421
    [Google Scholar]
  79. VacanteF. RodorJ. LalwaniM.K. CARMN loss regulates smooth muscle cells and accelerates atherosclerosis in mice.Circ. Res.202112891258127510.1161/CIRCRESAHA.120.318688 33622045
    [Google Scholar]
  80. NiH. HaemmigS. DengY. A smooth muscle cell–enriched long noncoding RNA regulates cell plasticity and atherosclerosis by interacting with serum response factor.Arterioscler. Thromb. Vasc. Biol.20214192399241610.1161/ATVBAHA.120.315911 34289702
    [Google Scholar]
  81. DongK. ShenJ. HeX. CARMN is an evolutionarily conserved smooth muscle cell–specific LncRNA that maintains contractile phenotype by binding myocardin.Circulation2021144231856187510.1161/CIRCULATIONAHA.121.055949 34694145
    [Google Scholar]
  82. LiuS. ZhouH. HanD. LncRNA CARMN inhibits abdominal aortic aneurysm formation and vascular smooth muscle cell phenotypic transformation by interacting with SRF.Cell. Mol. Life Sci.202481117510.1007/s00018‑024‑05193‑4 38597937
    [Google Scholar]
  83. KontarakiJ.E. MarketouM.E. KochiadakisG.E. The long non‐coding RNA s MHRT, FENDRRand CARMEN, their expression levels in peripheral blood mononuclear cells in patients with essential hypertension and their relation to heart hypertrophy.Clin. Exp. Pharmacol. Physiol.201845111213121710.1111/1440‑1681.12997 29917257
    [Google Scholar]
  84. PlaisanceI. ChouvardasP. SunY. A transposable element into the human long noncoding RNA CARMEN is a switch for cardiac precursor cell specification.Cardiovasc. Res.202311961361137610.1093/cvr/cvac191 36537036
    [Google Scholar]
  85. ZhuM. XuT. JiL. JiangB. WuK. MIR143HG promotes methylation of transcription factor HOXB7 promoter by recruiting methyltransferase DNMT1 to prevent the progression of colon cancer.FASEB J.2024381e2337810.1096/fj.202301060RRR 38127104
    [Google Scholar]
  86. WangL. ZhaoH. FangY. YuanB. GuoY. WangW. LncRNA CARMN inhibits cervical cancer cell growth via the miR-92a-3p/BTG2/Wnt/β-catenin axis.Physiol. Genomics202355111510.1152/physiolgenomics.00088.2022 36314369
    [Google Scholar]
  87. ShengX. DaiH. DuY. LncRNA CARMN overexpression promotes prognosis and chemosensitivity of triple negative breast cancer via acting as miR143-3p host gene and inhibiting DNA replication.J. Exp. Clin. Cancer Res.202140120510.1186/s13046‑021‑02015‑4 34162418
    [Google Scholar]
  88. WuZ. YinH. GuoY. YinH. LiY. Detection of cell-type-enriched long noncoding RNAs in atherosclerosis using single-cell techniques: A brief review.Life Sci.202333312213810.1016/j.lfs.2023.122138 37805167
    [Google Scholar]
  89. SriramK. LuoY. YuanD. Vascular regulation by super enhancer-derived LINC00607.Front. Cardiovasc. Med.2022988191610.3389/fcvm.2022.881916 35837599
    [Google Scholar]
  90. CalandrelliR. XuL. LuoY. Stress-induced RNA–chromatin interactions promote endothelial dysfunction.Nat. Commun.2020111521110.1038/s41467‑020‑18957‑w 33060583
    [Google Scholar]
  91. BoosF. OoJ.A. WarwickT. The endothelial-enriched lncRNA LINC00607 mediates angiogenic function.Basic Res. Cardiol.20231181510.1007/s00395‑023‑00978‑3 36700983
    [Google Scholar]
  92. ManH.S.J. MarsdenP.A. LncRNAs and epigenetic regulation of vascular endothelium: Genome positioning system and regulators of chromatin modifiers.Curr. Opin. Pharmacol.201945728010.1016/j.coph.2019.04.012 31125866
    [Google Scholar]
  93. MiaoY. AjamiN.E. HuangT.S. Enhancer-associated long non-coding RNA LEENE regulates endothelial nitric oxide synthase and endothelial function.Nat. Commun.20189129210.1038/s41467‑017‑02113‑y 29348663
    [Google Scholar]
  94. XuC. MengJ. YuX.H. TNFAIP1 promotes macrophage lipid accumulation and accelerates the development of atherosclerosis through the LEENE/FoxO1/ABCA1 pathway.J. Physiol. Biochem.202480352353910.1007/s13105‑024‑01018‑x 38878215
    [Google Scholar]
  95. TangX. LaiC.H. MalhiN.K. Genetic deletion of the LINC00520 homolog in mouse aggravates angiotensin ii-induced hypertension.Noncoding RNA2023933110.3390/ncrna9030031 37218991
    [Google Scholar]
  96. TangX. LuoY. YuanD. Long noncoding RNA LEENE promotes angiogenesis and ischemic recovery in diabetes models.J. Clin. Invest.20231333e16175910.1172/JCI161759 36512424
    [Google Scholar]
  97. MimuraI. NangakuM. Epigenetic regulation of angiogenesis and ischemic response by long noncoding RNA LEENE in diabetes.Kidney Int.202310461048105010.1016/j.kint.2023.06.025 37419449
    [Google Scholar]
  98. MirtschinkP. BischofC. PhamM.D. Inhibition of the hypoxia-inducible factor 1α–induced cardiospecific HERNA1 enhance-templated RNA protects from heart disease.Circulation2019139242778279210.1161/CIRCULATIONAHA.118.036769 30922078
    [Google Scholar]
  99. MirtschinkP. KrekW. Hypoxia-driven glycolytic and fructolytic metabolic programs: Pivotal to hypertrophic heart disease.Biochim. Biophys. Acta Mol. Cell Res.2016186371822182810.1016/j.bbamcr.2016.02.011 26896647
    [Google Scholar]
  100. ZhangH. ZhuC. HeZ. ChenS. LiL. SunC. LncRNA PSMB8-AS1 contributes to pancreatic cancer progression via modulating miR-382-3p/STAT1/PD-L1 axis.J. Exp. Clin. Cancer Res.202039117910.1186/s13046‑020‑01687‑8 32891166
    [Google Scholar]
  101. ShenG. MaoY. SuZ. DuJ. YuY. XuF. PSMB8-AS1 activated by ELK1 promotes cell proliferation in glioma via regulating miR-574-5p/RAB10.Biomed. Pharmacother.202012210965810.1016/j.biopha.2019.109658 31812014
    [Google Scholar]
  102. HuT. WangF. HanG. LncRNA PSMB8-AS1 acts as ceRNA of miR-22-3p to regulate DDIT4 expression in glioblastoma.Neurosci. Lett.202072813489610.1016/j.neulet.2020.134896 32151711
    [Google Scholar]
  103. WuJ. DengL.J. XiaY.R. Involvement of N6-methyladenosine modifications of long noncoding RNAs in systemic lupus erythematosus.Mol. Immunol.2022143778410.1016/j.molimm.2022.01.006 35051888
    [Google Scholar]
  104. LiS. HeR.C. WuS.G. LncRNA PSMB8-AS1 instigates vascular inflammation to aggravate atherosclerosis.Circ. Res.20241341608010.1161/CIRCRESAHA.122.322360 38084631
    [Google Scholar]
  105. MuchamuelT. FanR.A. AnderlJ.L. Zetomipzomib (KZR-616) attenuates lupus in mice via modulation of innate and adaptive immune responses.Front. Immunol.202314104368010.3389/fimmu.2023.1043680 36969170
    [Google Scholar]
  106. MichelettiR. PlaisanceI. AbrahamB.J. The long noncoding RNA Wisper controls cardiac fibrosis and remodeling.Sci. Transl. Med.20179395eaai911810.1126/scitranslmed.aai9118 28637928
    [Google Scholar]
  107. CzajkaC. Lnc-ing fibroblasts to cardiac fibrosis.Science201735663441243.2-10.1126/science.356.6344.1243‑b28642406
    [Google Scholar]
  108. OunzainS. PezzutoI. MichelettiR. Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease.J. Mol. Cell. Cardiol.201476557010.1016/j.yjmcc.2014.08.009 25149110
    [Google Scholar]
  109. AlexanianM. OunzainS. Long noncoding RNAs in cardiac development.Cold Spring Harb. Perspect. Biol.20201211a03737410.1101/cshperspect.a037374 31932317
    [Google Scholar]
  110. HanL. YangL. Multidimensional mechanistic spectrum of long non-coding RNAs in heart development and disease.Front. Cardiovasc. Med.2021872874610.3389/fcvm.2021.728746 34604357
    [Google Scholar]
  111. KostrzewskaA. SobieszekA. Diverse actions of cadmium on the smooth muscle myosin phosphorylation system.FEBS Lett.1990263238138410.1016/0014‑5793(90)81419‑O 2335243
    [Google Scholar]
  112. GroteP. WittlerL. HendrixD. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse.Dev. Cell201324220621410.1016/j.devcel.2012.12.012 23369715
    [Google Scholar]
  113. AndersonK.M. AndersonD.M. McAnallyJ.R. SheltonJ.M. Bassel-DubyR. OlsonE.N. Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development.Nature2016539762943343610.1038/nature20128 27783597
    [Google Scholar]
  114. YangX.H. NadadurR.D. HilveringC.R.E. Transcription-factor-dependent enhancer transcription defines a gene regulatory network for cardiac rhythm.eLife20176e3168310.7554/eLife.31683 29280435
    [Google Scholar]
  115. ArmengolJ. High frequency ventilation in acute lung injury.Br. J. Anaesth.198963711S15S10.1093/bja/63.7.11 2692676
    [Google Scholar]
  116. OunzainS. PedrazziniT. The promise of enhancer-associated long noncoding RNAs in cardiac regeneration.Trends Cardiovasc. Med.201525759260210.1016/j.tcm.2015.01.014 25753179
    [Google Scholar]
  117. Al-ObaideM.A. IslamS. Al-ObaidiI. VasylyevaT.L. Novel enhancer mediates the RPL36A-HNRNPH2 readthrough loci and GLA gene expressions associated with fabry disease.Front. Genet.202314122908810.3389/fgene.2023.1229088 38155709
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X375542250529182602
Loading
/content/journals/ccr/10.2174/011573403X375542250529182602
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test