Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Background

Metabolic reprogramming is critical in cardiovascular disease (CVD) research, affecting a variety of diseases such as myocardial damage, coronary heart disease, and atherosclerosis, and has also emerged as a therapeutic target. This study conducts a bibliometric analysis of the past 24 years to identify trends and hotspots in CVD metabolism, aiming to guide future research and inform policy.

Methods

This study analyzes publications from January 1, 2000, to October 10, 2024, using the Web of Science Core Collection database. Tools like CiteSpace, VOSviewer, and SCImago Graphica were used for co-authorship, keyword, citation, and journal visualizations. Dual-map overlays and annual publication trends were examined to uncover hotspots, trends, and the progression of metabolic reprogramming in CVD.

Results

This study analyzed 765 articles and reviews from 66 countries. The USA had the most publications, with the University of Milan being the most productive institution. Després, JP's team in Italy, published the most papers. The had the highest publication count, while had the greatest citation impact. Recent research has mainly focused on the role of immune cell substrate metabolism in CVD.

Conclusion

This study reveals the development trend and research characteristics of CVD metabolic reprogramming over the past 24 years, from the early focus on disease risk factors to the recent exploration of the transformation of immune cell metabolism. In the future, targeting immune cell metabolism will drive CVD therapy forward.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X371021250109064231
2025-02-07
2025-08-14
The full text of this item is not currently available.

References

  1. LeongD.P. JosephP.G. McKeeM. AnandS.S. TeoK.K. SchwalmJ.D. YusufS. Reducing the global burden of cardiovascular disease, Part 2.Circ. Res.2017121669571010.1161/CIRCRESAHA.117.31184928860319
    [Google Scholar]
  2. ChenR. ZhangH. TangB. LuoY. YangY. ZhongX. ChenS. XuX. HuangS. LiuC. Macrophages in cardiovascular diseases: Molecular mechanisms and therapeutic targets.Signal Transduct. Target. Ther.20249113010.1038/s41392‑024‑01840‑138816371
    [Google Scholar]
  3. TahirU.A. GersztenR.E. Molecular biomarkers for cardiometabolic disease: Risk assessment in young individuals.Circ. Res.2023132121663167310.1161/CIRCRESAHA.123.32200037289904
    [Google Scholar]
  4. SmoldersV.F. ZoddaE. QuaxP.H.A. CariniM. BarberàJ.A. ThomsonT.M. Tura-CeideO. CascanteM. Metabolic alterations in cardiopulmonary vascular dysfunction.Front. Mol. Biosci.2019512010.3389/fmolb.2018.0012030723719
    [Google Scholar]
  5. KashiharaT. MukaiR. OkaS. ZhaiP. NakadaY. YangZ. MizushimaW. NakaharaT. WarrenJ.S. AbdellatifM. SadoshimaJ. YAP mediates compensatory cardiac hypertrophy through aerobic glycolysis in response to pressure overload.J. Clin. Invest.20221326e15059510.1172/JCI15059535133975
    [Google Scholar]
  6. Fernandez-CaggianoM. EatonP. Heart failure—Emerging roles for the mitochondrial pyruvate carrier.Cell Death Differ.20212841149115810.1038/s41418‑020‑00729‑033473180
    [Google Scholar]
  7. AlgoetM. JanssensS. HimmelreichU. GsellW. PusovnikM. Van den EyndeJ. OosterlinckW. Myocardial ischemia-reperfusion injury and the influence of inflammation.Trends Cardiovasc. Med.202333635736610.1016/j.tcm.2022.02.00535181472
    [Google Scholar]
  8. KimA.J. XuN. YutzeyK.E. Macrophage lineages in heart valve development and disease.Cardiovasc. Res.2021117366367310.1093/cvr/cvaa06232170926
    [Google Scholar]
  9. PengH. WangX. DuJ. CuiQ. HuangY. JinH. Metabolic reprogramming of vascular endothelial cells: Basic research and clinical applications.Front. Cell Dev. Biol.2021962604710.3389/fcell.2021.62604733681205
    [Google Scholar]
  10. JanM. CuetoR. JiangX. LuL. SardyJ. XiongX. YuJ.E. PhamH. KhanM. QinX. JiY. YangX.F. WangH. Molecular processes mediating hyperhomocysteinemia-induced metabolic reprogramming, redox regulation and growth inhibition in endothelial cells.Redox Biol.20214510201810.1016/j.redox.2021.10201834140262
    [Google Scholar]
  11. WangH. ShenM. ShuX. GuoB. JiaT. FengJ. LuZ. ChenY. LinJ. LiuY. ZhangJ. ZhangX. SunD. Cardiac metabolism, reprogramming, and diseases.J. Cardiovasc. Transl. Res.2024171718410.1007/s12265‑023‑10432‑337668897
    [Google Scholar]
  12. LiY. XiongZ. YanW. GaoE. ChengH. WuG. LiuY. ZhangL. LiC. WangS. FanM. ZhaoH. ZhangF. TaoL. Branched chain amino acids exacerbate myocardial ischemia/reperfusion vulnerability via enhancing GCN2/ATF6/PPAR-α pathway-dependent fatty acid oxidation.Theranostics202010125623564010.7150/thno.4483632373236
    [Google Scholar]
  13. TianS. ChenM. Global research progress of gut microbiota and epigenetics: Bibliometrics and visualized analysis.Front. Immunol.202415141264010.3389/fimmu.2024.141264038803501
    [Google Scholar]
  14. YangW. ShenJ. ShiG. ZhangT. WeiW. WangC. XingW. MaL. Bibliometric and visual analysis of hypoxic pulmonary hypertension from 2013 to 2022.Heliyon2023911e2204410.1016/j.heliyon.2023.e2204438074866
    [Google Scholar]
  15. YeungA.W.K. A revisit to the specification of sub-datasets and corresponding coverage timespans when using Web of Science Core Collection.Heliyon2023911e2152710.1016/j.heliyon.2023.e2152738027607
    [Google Scholar]
  16. ShenJ. ShenH. KeL. ChenJ. DangX. LiuB. HuaY. Knowledge mapping of immunotherapy for hepatocellular carcinoma: A bibliometric study.Front. Immunol.20221381557510.3389/fimmu.2022.81557535173728
    [Google Scholar]
  17. WilsonM. SampsonM. BarrowmanN. DojaA. Bibliometric analysis of neurology articles published in general medicine journals.JAMA Netw. Open202144e21584010.1001/jamanetworkopen.2021.584033856477
    [Google Scholar]
  18. YuanW.C. ZhangJ.X. ChenH.B. YuanY. ZhuangY.P. ZhouH.L. LiM.H. QiuW.L. ZhouH.G. A bibliometric and visual analysis of cancer-associated fibroblasts.Front. Immunol.202314132311510.3389/fimmu.2023.132311538173726
    [Google Scholar]
  19. WuP.N. LiuJ.L. FangM.J. FuX.S. WeiJ.L. WangY. QianH.H. ZhangD. Global trends in colorectal cancer and metabolic syndrome research: A bibliometric and visualization analysis.Int. J. Surg.202411063723373310.1097/JS9.000000000000134238498393
    [Google Scholar]
  20. XiaL. OyangL. LinJ. TanS. HanY. WuN. YiP. TangL. PanQ. RaoS. LiangJ. TangY. SuM. LuoX. YangY. ShiY. WangH. ZhouY. LiaoQ. The cancer metabolic reprogramming and immune response.Mol. Cancer20212012810.1186/s12943‑021‑01316‑833546704
    [Google Scholar]
  21. YangK. WangX. SongC. HeZ. WangR. XuY. JiangG. WanY. MeiJ. MaoW. The role of lipid metabolic reprogramming in tumor microenvironment.Theranostics20231361774180810.7150/thno.8292037064872
    [Google Scholar]
  22. DeprinceA. HaasJ.T. StaelsB. Dysregulated lipid metabolism links NAFLD to cardiovascular disease.Mol. Metab.20204210109210.1016/j.molmet.2020.10109233010471
    [Google Scholar]
  23. ChenS. ZouY. SongC. CaoK. CaiK. WuY. ZhangZ. GengD. SunW. OuyangN. ZhangN. LiZ. SunG. ZhangY. SunY. ZhangY. The role of glycolytic metabolic pathways in cardiovascular disease and potential therapeutic approaches.Basic Res. Cardiol.202311814810.1007/s00395‑023‑01018‑w37938421
    [Google Scholar]
  24. TangM. YangS. ZouJ. LiM. SunY. WangM. LiW. HeJ. ChenY. TangZ. Global trends and research hotspots of PCSK9 and cardiovascular disease: A bibliometric and visual analysis.Front. Cardiovasc. Med.202411133626410.3389/fcvm.2024.133626438887452
    [Google Scholar]
  25. DingY. ChenD. DingX. WangG. WanY. ShenQ. A bibliometric analysis of income and cardiovascular disease.Medicine20209934e2182810.1097/MD.000000000002182832846827
    [Google Scholar]
  26. NestelP.J. MoriT.A. Dietary patterns, dietary nutrients and cardiovascular disease.Rev. Cardiovasc. Med.20222311710.31083/j.rcm230101735092209
    [Google Scholar]
  27. VoskoI. ZirlikA. BuggerH. Impact of COVID-19 on cardiovascular disease.Viruses202315250810.3390/v1502050836851722
    [Google Scholar]
  28. ShuH. WenZ. LiN. ZhangZ. CeesayB.M. PengY. ZhouN. WangD.W. COVID-19 and cardiovascular diseases: From cellular mechanisms to clinical manifestations.Aging Dis.20231462071208810.14336/AD.2023.031437199573
    [Google Scholar]
  29. CongX. KongW. Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease.Cell. Signal.20206610948510.1016/j.cellsig.2019.10948531770579
    [Google Scholar]
  30. OhT.W. ParkK.H. JungH.W. ParkY.K. Neuroprotective effect of the hairy root extract of Angelica gigas NAKAI on transient focal cerebral ischemia in rats through the regulation of angiogenesis.BMC Complement. Altern. Med.201515110110.1186/s12906‑015‑0589‑425888524
    [Google Scholar]
  31. YuJ. LiC. DingQ. QueJ. LiuK. WangH. LiaoS. Netrin-1 ameliorates blood-brain barrier impairment secondary to ischemic stroke via the activation of PI3K pathway.Front. Neurosci.20171170010.3389/fnins.2017.0070029311781
    [Google Scholar]
  32. TangX. DiX. LiuY. Protective effects of Donepezil against endothelial permeability.Eur. J. Pharmacol.2017811606510.1016/j.ejphar.2017.05.05328576405
    [Google Scholar]
  33. ZhaoJ.W. PingJ.D. WangY.F. LiuX.N. LiN. HuZ.L. MingL. Vitamin D suppress the production of vascular endothelial growth factor in mast cell by inhibiting PI3K/Akt/p38 MAPK/HIF-1α pathway in chronic spontaneous urticaria.Clin. Immunol.202021510844410.1016/j.clim.2020.10844432339669
    [Google Scholar]
  34. GuoC. YangM. JingL. WangJ. YuY. LiY. DuanJ. ZhouX. LiY. SunZ. Amorphous silica nanoparticles trigger vascular endothelial cell injury through apoptosis and autophagy via reactive oxygen species-mediated MAPK/Bcl-2 and PI3K/Akt/mTOR signaling.Int. J. Nanomedicine2016115257527610.2147/IJN.S11203027785026
    [Google Scholar]
  35. WuG. MeiningerC.J. Nitric oxide and vascular insulin resistance.Biofactors2009351212710.1002/biof.319319842
    [Google Scholar]
  36. OrmazabalV. NairS. ElfekyO. AguayoC. SalomonC. ZuñigaF.A. Association between insulin resistance and the development of cardiovascular disease.Cardiovasc. Diabetol.201817112210.1186/s12933‑018‑0762‑430170598
    [Google Scholar]
  37. DuttaroyA.K. Role of gut microbiota and their metabolites on atherosclerosis, hypertension and human blood platelet function: A review.Nutrients202113114410.3390/nu1301014433401598
    [Google Scholar]
  38. HamjaneN. MechitaM.B. NouroutiN.G. BarakatA. Gut microbiota dysbiosis -associated obesity and its involvement in cardiovascular diseases and type 2 diabetes. A systematic review.Microvasc. Res.202415110460110.1016/j.mvr.2023.10460137690507
    [Google Scholar]
  39. JiangF. ChenQ. WangW. LingY. YanY. XiaP. Hepatocyte-derived extracellular vesicles promote endothelial inflammation and atherogenesis via microRNA-1.J. Hepatol.202072115616610.1016/j.jhep.2019.09.01431568800
    [Google Scholar]
  40. WitkowskiM. WeeksT.L. HazenS.L. Gut microbiota and cardiovascular disease.Circ. Res.2020127455357010.1161/CIRCRESAHA.120.31624232762536
    [Google Scholar]
  41. WangZ. ZhaoY. Gut microbiota derived metabolites in cardiovascular health and disease.Protein Cell20189541643110.1007/s13238‑018‑0549‑029725935
    [Google Scholar]
  42. ArunachalamG. UpadhyayR. DingH. TriggleC.R. MicroRNA signature and cardiovascular dysfunction.J. Cardiovasc. Pharmacol.201565541942910.1097/FJC.000000000000017825384197
    [Google Scholar]
  43. LeeW. MicroRNA, insulin resistance, and metabolic disorders.Int. J. Mol. Sci.202223241621510.3390/ijms23241621536555853
    [Google Scholar]
  44. PulakatL. AroorA.R. GulR. SowersJ.R. Cardiac insulin resistance and microRNA modulators.Exp. Diabetes Res.2012201211210.1155/2012/65490421977024
    [Google Scholar]
  45. GangwarR.S. RajagopalanS. NatarajanR. DeiuliisJ.A. Noncoding RNAs in cardiovascular disease: Pathological relevance and emerging role as biomarkers and therapeutics.Am. J. Hypertens.201831215016510.1093/ajh/hpx19729186297
    [Google Scholar]
  46. AboukhaterD. MoradB. NasrallahN. NasserS.A. SahebkarA. KobeissyF. BoudakaA. EidA.H. Inflammation and hypertension: Underlying mechanisms and emerging understandings.J. Cell. Physiol.202323861148115910.1002/jcp.3101937039489
    [Google Scholar]
  47. ZengZ. LiY. PanY. LanX. SongF. SunJ. ZhouK. LiuX. RenX. WangF. HuJ. ZhuX. YangW. LiaoW. LiG. DingY. LiangL. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis.Nat. Commun.201891539510.1038/s41467‑018‑07810‑w30568162
    [Google Scholar]
  48. HamanakaR.B. ChandelN.S. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes.Trends Biochem. Sci.201035950551310.1016/j.tibs.2010.04.00220430626
    [Google Scholar]
  49. DaiberA. Di LisaF. OelzeM. Kröller-SchönS. StevenS. SchulzE. MünzelT. Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signalling and its role for vascular function.Br. J. Pharmacol.2017174121670168910.1111/bph.1340326660451
    [Google Scholar]
  50. SwerdlowR.H. Treating neurodegeneration by modifying mitochondria: Potential solutions to a “complex” problem.Antioxid. Redox Signal.20079101591160410.1089/ars.2007.167617663643
    [Google Scholar]
  51. BellE.L. KlimovaT.A. EisenbartJ. SchumackerP.T. ChandelN.S. Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia.Mol. Cell. Biol.200727165737574510.1128/MCB.02265‑0617562866
    [Google Scholar]
  52. KieransS.J. TaylorC.T. Regulation of glycolysis by the hypoxia‐inducible factor (HIF): Implications for cellular physiology.J. Physiol.20215991233710.1113/JP28057233006160
    [Google Scholar]
  53. SemenzaG.L. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology.Annu. Rev. Pathol.201491477110.1146/annurev‑pathol‑012513‑10472023937437
    [Google Scholar]
  54. GusarovaG.A. DadaL.A. KellyA.M. BrodieC. WittersL.A. ChandelN.S. SznajderJ.I. Alpha1-AMP-activated protein kinase regulates hypoxia-induced Na,K-ATPase endocytosis via direct phosphorylation of protein kinase C zeta.Mol. Cell. Biol.200929133455346410.1128/MCB.00054‑0919380482
    [Google Scholar]
  55. MichielsC. Physiological and pathological responses to hypoxia.Am. J. Pathol.200416461875188210.1016/S0002‑9440(10)63747‑915161623
    [Google Scholar]
  56. GrishkoV. SolomonM. BreitJ.F. KillileaD.W. LeDouxS.P. WilsonG.L. GillespieM.N. Hypoxia promotes oxidative base modifications in the pulmonary artery endothelial cell VEGF gene.FASEB J.20011571267126910.1096/fj.00‑0755fje11344109
    [Google Scholar]
  57. del RíoL.A. ROS and RNS in plant physiology: An overview.J. Exp. Bot.201566102827283710.1093/jxb/erv09925873662
    [Google Scholar]
  58. FerrucciL. FabbriE. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty.Nat. Rev. Cardiol.201815950552210.1038/s41569‑018‑0064‑230065258
    [Google Scholar]
  59. DingP. SongY. YangY. ZengC. NLRP3 inflammasome and pyroptosis in cardiovascular diseases and exercise intervention.Front. Pharmacol.202415136883510.3389/fphar.2024.136883538681198
    [Google Scholar]
  60. ZhaolinZ. GuohuaL. ShiyuanW. ZuoW. Role of pyroptosis in cardiovascular disease.Cell Prolif.2019522e1256310.1111/cpr.1256330525268
    [Google Scholar]
  61. WangM. PanW. XuY. ZhangJ. WanJ. JiangH. Microglia-mediated neuroinflammation: A potential target for the treatment of cardiovascular diseases.J. Inflamm. Res.2022153083309410.2147/JIR.S35010935642214
    [Google Scholar]
  62. DingH.S. HuangY. QuJ.F. WangY.J. HuangZ.Y. WangF.Y. YiW.J. LiuX.X. Panaxynol ameliorates cardiac ischemia/reperfusion injury by suppressing NLRP3-induced pyroptosis and apoptosis via HMGB1/TLR4/NF-κB axis.Int. Immunopharmacol.202312111022210.1016/j.intimp.2023.11022237343367
    [Google Scholar]
  63. ShiS. ChenY. LuoZ. NieG. DaiY. Role of oxidative stress and inflammation-related signaling pathways in doxorubicin-induced cardiomyopathy.Cell Commun. Signal.20232116110.1186/s12964‑023‑01077‑536918950
    [Google Scholar]
  64. LiuW. LiuT. ZhengY. XiaZ. Metabolic reprogramming and its regulatory mechanism in sepsis-mediated inflammation.J. Inflamm. Res.2023161195120710.2147/JIR.S40377836968575
    [Google Scholar]
  65. SunL. YangX. YuanZ. WangH. Metabolic reprogramming in immune response and tissue inflammation.Arterioscler. Thromb. Vasc. Biol.20204091990200110.1161/ATVBAHA.120.31403732698683
    [Google Scholar]
  66. RussoS. KwiatkowskiM. GovorukhinaN. BischoffR. MelgertB.N. Meta-inflammation and metabolic reprogramming of macrophages in diabetes and obesity: The importance of metabolites.Front. Immunol.20211274615110.3389/fimmu.2021.74615134804028
    [Google Scholar]
  67. FleetwoodA.J. NoonanJ. La GrutaN. KalliesA. MurphyA.J. Immunometabolism in atherosclerotic disorders.Nature Cardiovascular Research20243663765010.1038/s44161‑024‑00473‑539196223
    [Google Scholar]
  68. SreejitG. NootiS.K. JaggersR.M. AthmanathanB. Ho ParkK. Al-ShareaA. JohnsonJ. DahdahA. LeeM.K.S. MaJ. MurphyA.J. NagareddyP.R. Retention of the NLRP3 inflammasome–primed neutrophils in the bone marrow is essential for myocardial infarction–induced granulopoiesis.Circulation20221451314410.1161/CIRCULATIONAHA.121.05601934788059
    [Google Scholar]
  69. SreejitG. Abdel-LatifA. AthmanathanB. AnnabathulaR. DhyaniA. NoothiS.K. Quaife-RyanG.A. Al-ShareaA. PernesG. DragoljevicD. LalH. SchroderK. HanaokaB.Y. RamanC. GrantM.B. HudsonJ.E. SmythS.S. PorrelloE.R. MurphyA.J. NagareddyP.R. Neutrophil-derived S100A8/A9 amplify granulopoiesis after myocardial infarction.Circulation2020141131080109410.1161/CIRCULATIONAHA.119.04383331941367
    [Google Scholar]
  70. LiL. CaoJ. LiS. CuiT. NiJ. ZhangH. ZhuY. MaoJ. GaoX. MidgleyA.C. ZhuM. FanG. M2 macrophage‐derived sEV regulate pro‐inflammatory CCR2 + macrophage subpopulations to favor post‐AMI cardiac repair.Adv. Sci.20231014220296410.1002/advs.20220296436950739
    [Google Scholar]
  71. LuS. TianY. LuoY. XuX. GeW. SunG. SunX. Iminostilbene, a novel small-molecule modulator of PKM2, suppresses macrophage inflammation in myocardial ischemia–reperfusion injury.J. Adv. Res.202129839410.1016/j.jare.2020.09.00133842007
    [Google Scholar]
  72. TangY. FengM. SuY. MaT. ZhangH. WuH. WangX. ShiS. ZhangY. XuY. HuS. WeiK. XuD. Jmjd4 facilitates Pkm2 degradation in cardiomyocytes and is protective against dilated cardiomyopathy.Circulation2023147221684170410.1161/CIRCULATIONAHA.123.06412137066795
    [Google Scholar]
  73. Lorenzana-CarrilloM.A. GopalK. ByrneN.J. TejayS. SalemeB. DasS.K. ZhangY. HaromyA. EatonF. Mendiola PlaM. BowlesD.E. DyckJ.R.B. UssherJ.R. MichelakisE.D. SutendraG. TRIM35-mediated degradation of nuclear PKM2 destabilizes GATA4/6 and induces P53 in cardiomyocytes to promote heart failure.Sci. Transl. Med.202214669eabm356510.1126/scitranslmed.abm356536322626
    [Google Scholar]
  74. FehrenbachD.J. NguyenB. AlexanderM.R. MadhurM.S. ModulatingT. Modulating T cell phenotype and function to treat hypertension.Kidney360202344e534e54310.34067/KID.000000000000009036951464
    [Google Scholar]
  75. KumarV. EvansL.C. KurthT. YangC. WollnerC. NasciV. ZheleznovaN.N. BukowyJ. DaytonA. CowleyA.W.Jr Therapeutic suppression of mTOR (Mammalian Target of Rapamycin) signaling prevents and reverses salt-induced hypertension and kidney injury in Dahl salt-sensitive rats.Hypertension201973363063910.1161/HYPERTENSIONAHA.118.12378
    [Google Scholar]
  76. KumarV. WollnerC. KurthT. BukowyJ.D. CowleyA.W.Jr Inhibition of mammalian target of rapamycin complex 1 Attenuates salt-induced hypertension and kidney injury in Dahl Salt-sensitive rats.Hypertension201770481382110.1161/HYPERTENSIONAHA.117.09456
    [Google Scholar]
  77. MichalekR.D. GerrietsV.A. JacobsS.R. MacintyreA.N. MacIverN.J. MasonE.F. SullivanS.A. NicholsA.G. RathmellJ.C. Cutting edge: Distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets.J Immunol.201118663299330310.4049/jimmunol.1003613
    [Google Scholar]
  78. YuQ. TaiY.Y. TangY. ZhaoJ. NegiV. CulleyM.K. PilliJ. SunW. BruggerK. MayrJ. SaggarR. SaggarR. WallaceW.D. RossD.J. WaxmanA.B. WendellS.G. MullettS.J. SembratJ. RojasM. KhanO.F. DahlmanJ.E. SugaharaM. KagiyamaN. SatohT. ZhangM. FengN. GorcsanJ.III VargasS.O. HaleyK.J. KumarR. GrahamB.B. LangerR. AndersonD.G. WangB. ShivaS. BerteroT. ChanS.Y. BOLA (BolA family member 3) deficiency controls endothelial metabolism and glycine homeostasis in pulmonary hypertension.Circulation2019139192238225510.1161/CIRCULATIONAHA.118.03588930759996
    [Google Scholar]
  79. SchoorsS. BruningU. MissiaenR. QueirozK.C.S. BorgersG. EliaI. ZecchinA. CantelmoA.R. ChristenS. GoveiaJ. HeggermontW. GoddéL. VinckierS. Van VeldhovenP.P. EelenG. SchoonjansL. GerhardtH. DewerchinM. BaesM. De BockK. GhesquièreB. LuntS.Y. FendtS.M. CarmelietP. Fatty acid carbon is essential for dNTP synthesis in endothelial cells.Nature2015520754619219710.1038/nature1436225830893
    [Google Scholar]
  80. WongB.W. WangX. ZecchinA. ThienpontB. CornelissenI. KaluckaJ. García-CaballeroM. MissiaenR. HuangH. BrüningU. BlacherS. VinckierS. GoveiaJ. KnoblochM. ZhaoH. DierkesC. ShiC. HägerlingR. Moral-DardéV. WynsS. LippensM. JessbergerS. FendtS.M. LuttunA. NoelA. KieferF. GhesquièreB. MoonsL. SchoonjansL. DewerchinM. EelenG. LambrechtsD. CarmelietP. The role of fatty acid β-oxidation in lymphangiogenesis.Nature20175427639495410.1038/nature2102828024299
    [Google Scholar]
  81. SteinbergG.R. SchertzerJ.D. AMPK promotes macrophage fatty acid oxidative metabolism to mitigate inflammation: Implications for diabetes and cardiovascular disease.Immunol. Cell Biol.201492434034510.1038/icb.2014.1124638063
    [Google Scholar]
  82. JenkinsA.J. WelshP. PetrieJ.R. Metformin, lipids and atherosclerosis prevention.Curr. Opin. Lipidol.201829434635310.1097/MOL.000000000000053229878903
    [Google Scholar]
  83. AcharyaA.P. TangY. BerteroT. TaiY.Y. HarveyL.D. WoodcockC.S.C. SunW. PinedaR. MitashN. KönigshoffM. LittleS.R. ChanS.Y. Simultaneous pharmacologic inhibition of yes‐associated protein 1 and glutaminase 1 via inhaled poly(Lactic‐co‐Glycolic) acid–encapsulated microparticles improves pulmonary hypertension.J. Am. Heart Assoc.20211012e01909110.1161/JAHA.120.01909134056915
    [Google Scholar]
  84. ZhanC. LiuG. LiJ. LiG. LiT. ZhaoH. LiL. YangW. BaiN. ZhengM. YangJ. LiW. Rotenone and 3-bromopyruvate toxicity impacts electrical and structural cardiac remodeling in rats.Toxicol. Lett.2020318576410.1016/j.toxlet.2019.09.02431585160
    [Google Scholar]
  85. LiuJ. WangW. WangL. QiX.M. ShaY.H. YangT. 3-Bromopyruvate alleviates the development of monocrotaline-induced rat pulmonary arterial hypertension by decreasing aerobic glycolysis, inducing apoptosis, and suppressing inflammation.Chin. Med. J.20201331496010.1097/CM9.000000000000057731923104
    [Google Scholar]
  86. WangF. GeJ. HuangS. ZhouC. SunZ. SongY. XuY. JiY. KLF5/LINC00346/miR‑148a‑3p axis regulates inflammation and endothelial cell injury in atherosclerosis.Int. J. Mol. Med.202148215210.3892/ijmm.2021.498534165154
    [Google Scholar]
  87. Akbari KordkheyliV. PoursheikhaniA. SharobandiS.H. HosseiniS.M. Analysis of KLF7 and KLF5 transcription factors gene variants in coronary artery disease.Rev Port Cardiol.2023421083584310.1016/j.repc.2023.03.017
    [Google Scholar]
  88. DongJ.T. ChenC. Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases.Cell. Mol. Life Sci.200966162691270610.1007/s00018‑009‑0045‑z19448973
    [Google Scholar]
  89. MaD. ZhengB. LiuH. ZhaoY. LiuX. ZhangX. LiQ. ShiW. SuzukiT. WenJ. Klf5 down-regulation induces vascular senescence through eIF5a depletion and mitochondrial fission.PLoS Biol.2020188e300080810.1371/journal.pbio.300080832817651
    [Google Scholar]
  90. LuJ HouY LiuS.X Acetyl-CoA synthetase 2 induces pyroptosis and inflammation of renal epithelial tubular cells in sepsis-induced acute kidney injury by upregulating the KLF5/NF-κB pathway.Cell communication and signaling: CCS20242218710.1186/s12964‑024‑01556‑3
    [Google Scholar]
  91. SunK. ZhangJ. YangQ. ZhuJ. ZhangX. WuK. LiZ. XieW. LuoX. MiR-10b-3p alleviates cerebral ischemia/reperfusion injury by targeting Krüppel-like factor 5 (KLF5).Pflugers Arch.2022474334335310.1007/s00424‑021‑02645‑934989875
    [Google Scholar]
  92. XuW. BillonC. LiH. WildermanA. QiL. GravesA. RidebJ.R.D.C. ZhaoY. HayesM. YuK. LosbyM. HamptonC.S. AdeyemiC.M. HongS.J. NasiotisE. FuC. OhT.G. FanW. DownesM. WelchR.D. EvansR.M. MilosavljevicA. WalkerJ.K. JensenB.C. PeiL. BurrisT. ZhangL. Novel Pan-ERR agonists ameliorate heart failure through enhancing cardiac fatty acid metabolism and mitochondrial function.Circulation2024149322725010.1161/CIRCULATIONAHA.123.06654237961903
    [Google Scholar]
  93. TianZ. ZhangY. LyuX. Promoting roles of KLF5 in myocardial infarction in mice involving microRNA-27a suppression and the following GFPT2/TGF-β/Smad2/3 axis activation.Cell Cycle202120987489310.1080/15384101.2021.190751233910455
    [Google Scholar]
  94. SmitV. de MolJ. SchaftenaarF.H. DepuydtM.A.C. PostelR.J. SmeetsD. VerheijenF.W.M. BogersL. van DuijnJ. VerwilligenR.A.F. GrievinkH.W. Bernabé KleijnM.N.A. van IngenE. de JongM.J.M. GoncalvesL. PeetersJ.A.H.M. SmeetsH.J. WezelA. PolanskyJ.K. de WintherM.P.J. BinderC.J. TsiantoulasD. BotI. KuiperJ. FoksA.C. Single-cell profiling reveals age-associated immunity in atherosclerosis.Cardiovasc. Res.2023119152508252110.1093/cvr/cvad09937390467
    [Google Scholar]
  95. FanY. ZhouH. LiuX. LiJ. XuK. FuX. YeL. LiG. Applications of single-cell RNA sequencing in cardiovascular research.Front. Cell Dev. Biol.2022981023210.3389/fcell.2021.81023235174168
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X371021250109064231
Loading
/content/journals/ccr/10.2174/011573403X371021250109064231
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test