Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Background

At a critical juncture in the ongoing fight against cardiovascular disease (CVD), healthcare professionals are striving for more informed and expedited decision-making. Artificial intelligence (AI) promises to be a guiding light in this endeavor. The diagnosis of coronary artery disease has now become non-invasive and convenient, while wearable devices excel at promptly detecting life-threatening arrhythmias and treatments for heart failure.

Objective

This study aimed to highlight the applications of AI in cardiology with a particular focus on arrhythmias and its potential impact on healthcare for all through careful implementation and constant research efforts.

Methods

An extensive search strategy was implemented. The search was conducted in renowned electronic medical databases, including Medline, PubMed, Cochrane Library, and Google Scholar. Artificial Intelligence, cardiovascular diseases, arrhythmias, machine learning, and convolutional neural networks in cardiology were used as keywords for the search strategy.

Results

A total of 6876 records were retrieved from different electronic databases. Duplicates (N = 1356) were removed, resulting in 5520 records for screening. Based on predefined inclusion and exclusion criteria, 4683 articles were excluded. Following the full-text screening of the remaining 837 articles, a further 637 were excluded. Ultimately, 200 studies were included in this review.

Conclusion

AI represents not just a development but a cutting-edge force propelling the next evolution of cardiology. With its capacity to make precise predictions, facilitate non-invasive diagnosis, and personalize therapies, AI holds the potential to save lives and enhance healthcare quality on a global scale.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X334095241205041550
2025-02-03
2025-10-21
Loading full text...

Full text loading...

References

  1. JohnsonK.W. Torres SotoJ. GlicksbergB.S. ShameerK. MiottoR. AliM. AshleyE. DudleyJ.T. Artificial intelligence in cardiology.J. Am. Coll. Cardiol.201871232668267910.1016/j.jacc.2018.03.52129880128
    [Google Scholar]
  2. HaqI.U. ChhatwalK. SanakaK. XuB. Artificial intelligence in cardiovascular medicine: Current insights and future prospects.Vasc. Health Risk Manag.20221851752810.2147/VHRM.S27933735855754
    [Google Scholar]
  3. KilicA. Artificial intelligence and machine learning in cardiovascular health care.Ann. Thorac. Surg.202010951323132910.1016/j.athoracsur.2019.09.04231706869
    [Google Scholar]
  4. NagarajanV.D. LeeS.L. RobertusJ.L. NienaberC.A. TrayanovaN.A. ErnstS. Artificial intelligence in the diagnosis and management of arrhythmias.Eur. Heart J.202142383904391610.1093/eurheartj/ehab54434392353
    [Google Scholar]
  5. Dorado-DíazP.I. Sampedro-GómezJ. Vicente-PalaciosV. SánchezP.L. Applications of artificial intelligence in cardiology. The future is already here.Rev. Esp. Cardiol. (Engl. Ed.)201972121065107510.1016/j.rec.2019.05.01431611150
    [Google Scholar]
  6. SenbekovM. SalievT. BukeyevaZ. AlmabayevaA. ZhanaliyevaM. AitenovaN. ToishibekovY. FakhradiyevI. The recent progress and applications of digital technologies in healthcare: A review.Int J Telemed Appl2020883020010.1155/2020/8830200
    [Google Scholar]
  7. KoulaouzidisG. JadczykT. IakovidisD.K. KoulaouzidisA. BisnaireM. CharisopoulouD. Artificial intelligence in cardiology—a narrative review of current status.J. Clin. Med.20221113391010.3390/jcm1113391035807195
    [Google Scholar]
  8. SermesantM. DelingetteH. CochetH. JaïsP. AyacheN. Applications of artificial intelligence in cardiovascular imaging.Nat. Rev. Cardiol.202118860060910.1038/s41569‑021‑00527‑233712806
    [Google Scholar]
  9. HaleemA. JavaidM. SinghR.P. SumanR. Applications of Artificial Intelligence (AI) for cardiology during COVID-19 pandemic.Sustainable Operations and Computers20212717810.1016/j.susoc.2021.04.003
    [Google Scholar]
  10. de MarvaoA. DawesT.J.W. HowardJ.P. O’ReganD.P. Artificial intelligence and the cardiologist: What you need to know for 2020.Heart2020106539940010.1136/heartjnl‑2019‑31603331974212
    [Google Scholar]
  11. RomitiS. VinciguerraM. SaadeW. Anso CortajarenaI. GrecoE. Artificial Intelligence (AI) and cardiovascular diseases: An unexpected alliance.Cardiol Res Pract20204972346
    [Google Scholar]
  12. KabraR. IsraniS. VijayB. BaruC. MenduR. FellmanM. SridharA. MasonP. CheungJ.W. DiBiaseL. Emerging role of artificial intelligence in cardiac electrophysiology.Cardiovascular Digital Health Journal202210.1016/j.cvdhj.2022.09.001
    [Google Scholar]
  13. LallahP.N. LaiteC. BangashA.B. ChooahO. JiangC. The use of Artificial Intelligence for detecting and predicting atrial arrhythmias post catheter ablation.Rev. Cardiovasc. Med.202324821510.31083/j.rcm240821539076714
    [Google Scholar]
  14. NoseworthyP.A. AttiaZ.I. BehnkenE.M. GiblonR.E. BewsK.A. LiuS. GosseT.A. LinnZ.D. DengY. YinJ. GershB.J. Graff-RadfordJ. RabinsteinA.A. SiontisK.C. FriedmanP.A. YaoX. Artificial intelligence-guided screening for atrial fibrillation using electrocardiogram during sinus rhythm: A prospective non-randomised interventional trial.Lancet2022400103591206121210.1016/S0140‑6736(22)01637‑336179758
    [Google Scholar]
  15. ShakibfarS. KrauseO. Lund-AndersenC. ArandaA. MollJ. AndersenT.O. SvendsenJ.H. PetersenH.H. IgelC. Predicting electrical storms by remote monitoring of implantable cardioverter-defibrillator patients using machine learning.Europace201921226827410.1093/europace/euy25730508072
    [Google Scholar]
  16. MolenaarM.A. SelderJ.L. NicolasJ. ClaessenB.E. MehranR. BescósJ.O. SchuuringM.J. BoumaB.J. VeroudenN.J. ChamuleauS.A.J. Current state and future perspectives of artificial intelligence for automated coronary angiography imaging analysis in patients with ischemic heart disease.Curr. Cardiol. Rep.202224436537610.1007/s11886‑022‑01655‑y35347566
    [Google Scholar]
  17. KrajcerZ. Artificial intelligence in cardiovascular medicine: Historical overview, current status, and future directions.Tex. Heart Inst. J.2022492e20752710.14503/THIJ‑20‑752735481866
    [Google Scholar]
  18. FeenyA.K. ChungM.K. MadabhushiA. AttiaZ.I. CikesM. FirouzniaM. FriedmanP.A. KalscheurM.M. KapaS. NarayanS.M. NoseworthyP.A. PassmanR.S. PerezM.V. PetersN.S. PicciniJ.P. TarakjiK.G. ThomasS.A. TrayanovaN.A. TurakhiaM.P. WangP.J. Artificial intelligence and machine learning in arrhythmias and cardiac electrophysiology.Circ. Arrhythm. Electrophysiol.2020138e00795210.1161/CIRCEP.119.00795232628863
    [Google Scholar]
  19. JonasD.E. KahwatiL.C. YunJ.D.Y. MiddletonJ.C. Coker-SchwimmerM. AsherG.N. Screening for atrial fibrillation with electrocardiography: Evidence report and systematic review for the us preventive services task force.JAMA2018320548549810.1001/jama.2018.419030088015
    [Google Scholar]
  20. GoldenthalI.L. SciaccaR.R. RigaT. BakkenS. BaumeisterM. BivianoA.B. DizonJ.M. WangD. WangK.C. WhangW. HickeyK.T. GaranH. Recurrent atrial fibrillation/flutter detection after ablation or cardioversion using the AliveCor KardiaMobile device: iHEART results.J. Cardiovasc. Electrophysiol.201930112220222810.1111/jce.1416031507001
    [Google Scholar]
  21. KaratziaL. AungN. AksentijevicD. Artificial intelligence in cardiology: Hope for the future and power for the present.Front. Cardiovasc. Med.2022994572610.3389/fcvm.2022.94572636312266
    [Google Scholar]
  22. AdasuriyaG. HaldarS. Next generation ECG: The impact of artificial intelligence and machine learning.Curr. Cardiovasc. Risk Rep.202317814315410.1007/s12170‑023‑00723‑4
    [Google Scholar]
  23. GöçerH. Barış DurukanA. The use of artificial intelligence in interventional cardiology.Turk Gogus Kalp Damar Cerrahisi Derg.202331342042110.5606/tgkdc.dergisi.2023.2479137664782
    [Google Scholar]
  24. LongQ. YeX. ZhaoQ. Artificial intelligence and automation in valvular heart diseases.Cardiol. J.202027440442010.5603/CJ.a2020.008732567669
    [Google Scholar]
  25. YasminF. ShahS.M.I. NaeemA. ShujauddinS.M. JabeenA. KazmiS. SiddiquiS.A. KumarP. SalmanS. HassanS.A. DasariC. ChoudhryA.S. MustafaA. ChawlaS. LakH.M. Artificial intelligence in the diagnosis and detection of heart failure: The past, present, and future.Rev. Cardiovasc. Med.20212241095111310.31083/j.rcm220412134957756
    [Google Scholar]
  26. AverbuchT. SullivanK. SauerA. MamasM.A. VoorsA.A. GaleC.P. MetraM. RavindraN. Van SpallH.G.C. Applications of artificial intelligence and machine learning in heart failure.Eur. Heart J. Digit. Health20223231132210.1093/ehjdh/ztac02536713018
    [Google Scholar]
  27. BeyarR. DaviesJ.E. CookC. DudekD. CumminsP.A. BruiningN. Robotics, imaging, and artificial intelligence in the catheterisation laboratory.EuroIntervention202117753754910.4244/EIJ‑D‑21‑0014534554096
    [Google Scholar]
  28. BarrettM. BoyneJ. BrandtsJ. Brunner-La RoccaH.P. De MaesschalckL. De WitK. DixonL. EurlingsC. FitzsimonsD. GolubnitschajaO. HagemanA. HeemskerkF. HintzenA. HelmsT.M. HillL. HoedemakersT. MarxN. McDonaldK. MertensM. Müller-WielandD. PalantA. PieskJ. PomazanskyiA. RamaekersJ. RuffP. SchüttK. ShekhawatY. SkiC.F. ThompsonD.R. TsirkinA. van der MierdenK. WatsonC. Zippel-SchultzB. Artificial intelligence supported patient self-care in chronic heart failure: A paradigm shift from reactive to predictive, preventive and personalised care.EPMA J.201910444546410.1007/s13167‑019‑00188‑931832118
    [Google Scholar]
  29. ThoenesM. AgarwalA. GrundmannD. FerreroC. McDonaldA. BramlageP. SteedsR.P. Narrative review of the role of artificial intelligence to improve aortic valve disease management.J. Thorac. Dis.202113139640410.21037/jtd‑20‑183733569220
    [Google Scholar]
  30. CreaF. The new frontiers in valvular heart disease: From artificial intelligence to new pharmacological targets in aortic stenosis.Eur. Heart J.202142302871287510.1093/eurheartj/ehab48534363391
    [Google Scholar]
  31. SiontisK.C. NoseworthyP.A. AttiaZ.I. FriedmanP.A. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management.Nat. Rev. Cardiol.202118746547810.1038/s41569‑020‑00503‑233526938
    [Google Scholar]
  32. RogersM.A. AikawaE. Cardiovascular calcification: Artificial intelligence and big data accelerate mechanistic discovery.Nat. Rev. Cardiol.201916526127410.1038/s41569‑018‑0123‑830531869
    [Google Scholar]
  33. UptonR. MumithA. BeqiriA. ParkerA. HawkesW. GaoS. PorumbM. SarwarR. MarquesP. MarkhamD. KenworthyJ. O’DriscollJ.M. HassanaliN. GrovesK. DockerillC. WoodwardW. AlsharqiM. McCourtA. WilkesE.H. HeitnerS.B. YadavaM. StojanovskiD. LamataP. WoodwardG. LeesonP. Automated echocardiographic detection of severe coronary artery disease using Artificial Intelligence.JACC Cardiovasc. Imaging202215571572710.1016/j.jcmg.2021.10.01334922865
    [Google Scholar]
  34. MaragnaR. GiacariC.M. GuglielmoM. BaggianoA. FusiniL. GuaricciA.I. RossiA. RabbatM. PontoneG. Artificial Intelligence based multimodality imaging: A new frontier in coronary artery disease management.Front. Cardiovasc. Med.2021873622310.3389/fcvm.2021.73622334631834
    [Google Scholar]
  35. DoolubG. MamalakisM. AlabedS. Van der GeestR.J. SwiftA.J. RodriguesJ.C.L. GargP. JoshiN.V. DastidarA. Artificial Intelligence as a diagnostic tool in non-invasive imaging in the assessment of coronary artery disease.Med. Sci. 20231112010.3390/medsci1101002036976528
    [Google Scholar]
  36. SammaniA. van de LeurR.R. HenkensM.T.H.M. MeineM. LohP. HassinkR.J. OberskiD.L. HeymansS.R.B. DoevendansP.A. AsselbergsF.W. te RieleA.S.J.M. van EsR. Life-threatening ventricular arrhythmia prediction in patients with dilated cardiomyopathy using explainable electrocardiogram-based deep neural networks.Europace202224101645165410.1093/europace/euac05435762524
    [Google Scholar]
  37. WangJ. KangZ. LiuY. LiZ. LiuY. LiuJ. Identification of immune cell infiltration and diagnostic biomarkers in unstable atherosclerotic plaques by integrated bioinformatics analysis and machine learning.Front. Immunol.20221395607810.3389/fimmu.2022.95607836211422
    [Google Scholar]
  38. CikesM. Sanchez-MartinezS. ClaggettB. DuchateauN. PiellaG. ButakoffC. PouleurA.C. KnappeD. Biering-SørensenT. KutyifaV. MossA. SteinK. SolomonS.D. BijnensB. Machine learning‐based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy.Eur. J. Heart Fail.2019211748510.1002/ejhf.133330328654
    [Google Scholar]
  39. LiuX. FanY. LiS. ChenM. LiM. HauW.K. ZhangH. XuL. LeeA.P.W. Deep learning-based automated left ventricular ejection fraction assessment using 2-D echocardiography.Am. J. Physiol. Heart Circ. Physiol.20213212H390H39910.1152/ajpheart.00416.202034170197
    [Google Scholar]
  40. KhurshidS. FriedmanS. ReederC. Di AchilleP. DiamantN. SinghP. HarringtonL.X. WangX. Al-AlusiM.A. SarmaG. FoulkesA.S. EllinorP.T. AndersonC.D. HoJ.E. PhilippakisA.A. BatraP. LubitzS.A. ECG-based deep learning and clinical risk factors to predict atrial fibrillation.Circulation2022145212213310.1161/CIRCULATIONAHA.121.05748034743566
    [Google Scholar]
  41. ZhangJ. GajjalaS. AgrawalP. TisonG.H. HallockL.A. Beussink-NelsonL. LassenM.H. FanE. ArasM.A. JordanC. FleischmannK.E. MeliskoM. QasimA. ShahS.J. BajcsyR. DeoR.C. Fully automated echocardiogram interpretation in clinical practice: Feasibility and diagnostic accuracy.Circulation2018138161623163510.1161/CIRCULATIONAHA.118.03433830354459
    [Google Scholar]
  42. SchwabP. Beat by beat: Classifying cardiac arrhythmias with recurrent neural networks.Comput Cardiol2017arXiv:171006319
    [Google Scholar]
  43. BelloG.A. DawesT.J.W. DuanJ. BiffiC. de MarvaoA. HowardL.S.G.E. GibbsJ.S.R. WilkinsM.R. CookS.A. RueckertD. O’ReganD.P. Deep-learning cardiac motion analysis for human survival prediction.Nat. Mach. Intell.2019129510410.1038/s42256‑019‑0019‑230801055
    [Google Scholar]
  44. NamasivayamM. MyersP.D. GuttagJ.V. CapouladeR. PibarotP. PicardM.H. HungJ. StultzC.M. Predicting outcomes in patients with aortic stenosis using machine learning: The aortic stenosis Risk (ASteRisk) score.Open Heart202291e00199010.1136/openhrt‑2022‑00199035641101
    [Google Scholar]
  45. GiudicessiJ.R. SchramM. BosJ.M. GallowayC.D. ShreibatiJ.B. JohnsonP.W. CarterR.E. DisrudL.W. KleimanR. AttiaZ.I. NoseworthyP.A. FriedmanP.A. AlbertD.E. AckermanM.J. Artificial intelligence–enabled assessment of the heart rate corrected QT interval using a mobile electrocardiogram device.Circulation2021143131274128610.1161/CIRCULATIONAHA.120.05023133517677
    [Google Scholar]
  46. EliasP. PoteruchaT.J. RajaramV. MollerL.M. RodriguezV. BhaveS. HahnR.T. TisonG. AbreauS.A. BarriosJ. TorresJ.N. HughesJ.W. PerezM.V. FinerJ. KodaliS. KhaliqueO. HamidN. SchwartzA. HommaS. KumaraiahD. CohenD.J. MaurerM.S. EinsteinA.J. NazifT. LeonM.B. PerotteA.J. Deep learning electrocardiographic analysis for detection of left-sided valvular heart disease.J. Am. Coll. Cardiol.202280661362610.1016/j.jacc.2022.05.02935926935
    [Google Scholar]
  47. MooghaliM. StroudA.M. YooD.W. BarryB.A. GrimshawA.A. RossJ.S. ZhuX. MillerJ.E. Trustworthy and ethical AI-enabled cardiovascular care: A rapid review.BMC Med. Inform. Decis. Mak.202424124710.1186/s12911‑024‑02653‑639232725
    [Google Scholar]
  48. MathurP. SrivastavaS. XuX. MehtaJ.L. Artificial intelligence, machine learning, and cardiovascular disease.Clin. Med. Insights Cardiol.20201410.1177/117954682092740432952403
    [Google Scholar]
  49. NakamuraT. SasanoT. Artificial intelligence and cardiology: Current status and perspective.J. Cardiol.202279332633310.1016/j.jjcc.2021.11.01734895982
    [Google Scholar]
  50. NabiW. BansalA. XuB. Applications of artificial intelligence and machine learning approaches in echocardiography.Echocardiography202138698299210.1111/echo.1504833982820
    [Google Scholar]
  51. Arterys receives FDA clearance for the first zero-footprint medical imaging analytics cloud software with deep learning for cardiac MRI2017Available from: https://www.prnewswire.com/in/news-releases/arterys-receives-fda-clearance-for-the-first-zero-footprint-medical-imaging-analytics-cloud-software-with-deep-learning-for-cardiac-mri-610137105.html
  52. LinA. KolossváryM. MotwaniM. IšgumI. Maurovich-HorvatP. SlomkaP.J. DeyD. Artificial intelligence in cardiovascular CT: Current status and future implications.J. Cardiovasc. Comput. Tomogr.202115646246910.1016/j.jcct.2021.03.00633812855
    [Google Scholar]
  53. AI-enabled solutions.Available from: https://www.philips.com/a-w/about/artificial-intelligence/ai-enabled-solutions.html
  54. JafariM. ShoeibiA. KhodatarsM. GhassemiN. MoridianP. AlizadehsaniR. KhosraviA. LingS.H. DelfanN. ZhangY.D. WangS.H. GorrizJ.M. Alinejad-RoknyH. AcharyaU.R. Automated diagnosis of cardiovascular diseases from cardiac magnetic resonance imaging using deep learning models: A review.Comput. Biol. Med.202316010699810.1016/j.compbiomed.2023.10699837182422
    [Google Scholar]
  55. HsuL.Y. JacobsM. BenovoyM. TaA.D. ConnH.M. WinklerS. GreveA.M. ChenM.Y. ShanbhagS.M. BandettiniW.P. AraiA.E. Diagnostic performance of fully automated pixel-wise quantitative myocardial perfusion imaging by cardiovascular magnetic resonance.JACC Cardiovasc. Imaging201811569770710.1016/j.jcmg.2018.01.00529454767
    [Google Scholar]
  56. KusunoseK. Steps to use artificial intelligence in echocardiography.J. Echocardiogr.2021191212710.1007/s12574‑020‑00496‑433044715
    [Google Scholar]
  57. PasdeloupD. OlaisenS.H. ØstvikA. SaboS. PettersenH.N. HolteE. GrenneB. StølenS.B. SmistadE. AaseS.A. DalenH. LøvstakkenL. Real-time echocardiography guidance for optimized apical standard views.Ultrasound Med. Biol.202349133334610.1016/j.ultrasmedbio.2022.09.00636280443
    [Google Scholar]
  58. KusunoseK. HagaA. InoueM. FukudaD. YamadaH. SataM. Clinically feasible and accurate view classification of echocardiographic images using deep learning.Biomolecules202010566510.3390/biom1005066532344829
    [Google Scholar]
  59. WangL. LiuY. QinC. SunG. FuY. In Dual relation semi-supervised multi-label learning.Proceedings of the AAAI Conference on Artificial Intelligence202062276234
    [Google Scholar]
  60. Schulz-MengerJ. BluemkeD.A. BremerichJ. FlammS.D. FogelM.A. FriedrichM.G. KimR.J. von Knobelsdorff-BrenkenhoffF. KramerC.M. PennellD.J. PleinS. NagelE. Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update.J. Cardiovasc. Magn. Reson.20202211910.1186/s12968‑020‑00610‑632160925
    [Google Scholar]
  61. ČelutkienėJ. PlymenC.M. FlachskampfF.A. de BoerR.A. GrapsaJ. MankaR. AndersonL. GarbiM. BarberisV. FilardiP.P. GargiuloP. ZamoranoJ.L. LainscakM. SeferovicP. RuschitzkaF. RosanoG.M.C. NihoyannopoulosP. Innovative imaging methods in heart failure: A shifting paradigm in cardiac assessment. Position statement on behalf of the heart failure association of the european society of cardiology.Eur. J. Heart Fail.201820121615163310.1002/ejhf.133030411833
    [Google Scholar]
  62. WaltersD. OmranJ. PatelM. ReevesR. AngL. MahmudE. Robotic-assisted percutaneous intervention coronary. Updates in Percutaneous Coronary Intervention, An Issue of Interventional Cardiology Clinics.Ebook201982149159
    [Google Scholar]
  63. RalovichK. Image-based treatment outcome prediction and intervention guidance for cardiovascular diseases.Dissertation2018
    [Google Scholar]
  64. DiasR.D. ShahJ.A. ZenatiM.A. Artificial intelligence in cardiothoracic surgery.Minerva Cardioangiol.202068553253810.23736/S0026‑4725.20.05235‑432989966
    [Google Scholar]
  65. RimT.H. LeeC.J. ThamY.C. CheungN. YuM. LeeG. KimY. TingD.S.W. ChongC.C.Y. ChoiY.S. YooT.K. RyuI.H. BaikS.J. KimY.A. KimS.K. LeeS.H. LeeB.K. KangS.M. WongE.Y.M. KimH.C. KimS.S. ParkS. ChengC.Y. WongT.Y. Deep-learning-based cardiovascular risk stratification using coronary artery calcium scores predicted from retinal photographs.Lancet Digit. Health202135e306e31610.1016/S2589‑7500(21)00043‑133890578
    [Google Scholar]
  66. BarriadaR.G. MasipD. An overview of deep-learning-based methods for cardiovascular risk assessment with retinal images.Diagnostics 20221316810.3390/diagnostics1301006836611360
    [Google Scholar]
  67. BlackwellD.J. SchmeckpeperJ. KnollmannB.C. Animal models to study cardiac arrhythmias.Circ. Res.2022130121926196410.1161/CIRCRESAHA.122.32025835679367
    [Google Scholar]
  68. PandeyS.K. JanghelR.R. Automatic arrhythmia recognition from electrocardiogram signals using different feature methods with long short-term memory network model.Signal Image Video Process.20201461255126310.1007/s11760‑020‑01666‑8
    [Google Scholar]
  69. TalobaA. I. AlanaziR. ShahinO. R. ElhadadA. AbozeidA. El-AzizA. RashaM. Machine algorithm for heartbeat monitoring and arrhythmia detection based on ECG systemsComput. Intell. Neurosci.20212021767756810.1155/2021/7677568
    [Google Scholar]
  70. ParvanehS. RubinJ. BabaeizadehS. Xu-WilsonM. Cardiac arrhythmia detection using deep learning: A review.J. Electrocardiol.201957S70S7410.1016/j.jelectrocard.2019.08.00431416598
    [Google Scholar]
  71. SangaiahA.K. ArumugamM. BianG.B. An intelligent learning approach for improving ECG signal classification and arrhythmia analysis.Artif. Intell. Med.202010310178810.1016/j.artmed.2019.10178832143795
    [Google Scholar]
  72. ZhaoY. XiongJ. HouY. ZhuM. LuY. XuY. TeliewubaiJ. LiuW. XuX. LiX. LiuZ. PengW. ZhaoX. ZhangY. XuY. Early detection of ST-segment elevated myocardial infarction by artificial intelligence with 12-lead electrocardiogram.Int. J. Cardiol.202031722323010.1016/j.ijcard.2020.04.08932376417
    [Google Scholar]
  73. QuerG. ArnaoutR. HenneM. ArnaoutR. Machine learning and the future of cardiovascular care: JACC state-of-the-art review.J. Am. Coll. Cardiol.202177330031310.1016/j.jacc.2020.11.03033478654
    [Google Scholar]
  74. HayıroğluM.İ. AltayS. The role of Artificial Intelligence in coronary artery disease and atrial fibrillation.Balkan Med. J.202340315115210.4274/balkanmedj.galenos.2023.0604202337025078
    [Google Scholar]
  75. SagerS. BernhardtF. KehrleF. MerkertM. PotschkaA. MederB. KatusH. ScholzE. Expert-enhanced machine learning for cardiac arrhythmia classification.PLoS One20211612e026157110.1371/journal.pone.026157134941897
    [Google Scholar]
  76. LaptsevaN. RossiV.A. SudanoI. SchwotzerR. RuschitzkaF. FlammerA.J. DuruF. Arrhythmic manifestations of cardiac amyloidosis: Challenges in risk stratification and clinical management.J. Clin. Med.2023127258110.3390/jcm1207258137048664
    [Google Scholar]
  77. ReddyK. G. VijayaP. A. SuhasiniS. ECG signal characterization and correlation to heart abnormalities.(IRJET)201745
    [Google Scholar]
  78. WallaceM.J. El RefaeyM. MesircaP. HundT.J. MangoniM.E. MohlerP.J. Genetic complexity of sinoatrial node dysfunction.Front. Genet.20211265492510.3389/fgene.2021.65492533868385
    [Google Scholar]
  79. JúniorE.A. Bravo-ValenzuelaN.J. RochaL.A. Machado NardozzaL.M. Fetal cardiac arrhythmias: Current evidence.Ann. Pediatr. Cardiol.201811214816310.4103/apc.APC_134_1729922012
    [Google Scholar]
  80. SaundersC.B. FergusonJ.D. Narrow QRS Complex Tachycardia.The Electrocardiogram in Emergency and Acute Care20233340
    [Google Scholar]
  81. SandhuK. Recognition of the electrocardiogram and interpretation.In: Fundamentals of Operating Department PracticeCambridge University Press2022
    [Google Scholar]
  82. AhujaA.S. The impact of artificial intelligence in medicine on the future role of the physician.PeerJ20197e770210.7717/peerj.770231592346
    [Google Scholar]
  83. KavakiotisI. TsaveO. SalifoglouA. MaglaverasN. VlahavasI. ChouvardaI. Machine learning and data mining methods in diabetes research.Comput. Struct. Biotechnol. J.20171510411610.1016/j.csbj.2016.12.00528138367
    [Google Scholar]
  84. ArmoundasA. A. SinghJ. P. HeistE. K. IsselbacherE. M. State of the art on wearable and implantable devices for cardiac and respiratory monitoring.Cardiac Bioelectric TherapySpringerCham2021353362
    [Google Scholar]
  85. WangN. ZhouJ. DaiG. HuangJ. XieY. Energy-efficient intelligent ECG monitoring for wearable devices.IEEE Trans. Biomed. Circuits Syst.20191351112112110.1109/TBCAS.2019.293021531329129
    [Google Scholar]
  86. RandazzoV. FerrettiJ. PaseroE. Anytime ECG monitoring through the use of a low-cost, user-friendly, wearable device.Sensors 20212118603610.3390/s2118603634577247
    [Google Scholar]
  87. LeeS.P. HaG. WrightD.E. MaY. Sen-GuptaE. HaubrichN.R. BrancheP.C. LiW. HuppertG.L. JohnsonM. MutluH.B. LiK. ShethN. WrightJ.A.Jr HuangY. MansourM. RogersJ.A. GhaffariR. Highly flexible, wearable, and disposable cardiac biosensors for remote and ambulatory monitoring.NPJ Digit. Med.201811210.1038/s41746‑017‑0009‑x31304288
    [Google Scholar]
  88. SteinbergC. PhilipponF. SanchezM. Fortier-PoissonP. O’HaraG. MolinF. SarrazinJ.F. NaultI. BlierL. RoyK. PlourdeB. ChampagneJ. A novel wearable device for continuous ambulatory ECG recording: Proof of concept and assessment of signal quality.Biosensors 2019911710.3390/bios901001730669678
    [Google Scholar]
  89. LiuJ. LiZ. JinY. LiuY. LiuC. ZhaoL. ChenX. A review of arrhythmia detection based on electrocardiogram with artificial intelligence.Expert Rev. Med. Devices202219754956010.1080/17434440.2022.211588735993248
    [Google Scholar]
  90. MarsiliI.A. BiasiolliL. MasèM. AdamiA. AndrighettiA.O. RavelliF. NolloG. Implementation and validation of real-time algorithms for atrial fibrillation detection on a wearable ECG device.Comput. Biol. Med.202011610354010.1016/j.compbiomed.2019.10354031751811
    [Google Scholar]
  91. FaragM.M. A self-contained STFT CNN for ECG classification and arrhythmia detection at the edge.IEEE Access202210944699448610.1109/ACCESS.2022.3204703
    [Google Scholar]
  92. SurgesR. ShmuelyS. DietzeC. RyvlinP. ThijsR.D. Identifying patients with epilepsy at high risk of cardiac death: Signs, risk factors and initial management of high risk of cardiac death.Epileptic Disord.2021231173910.1684/epd.2021.125433650492
    [Google Scholar]
  93. SchwartzP.J. AckermanM.J. AntzelevitchC. BezzinaC.R. BorggrefeM. CuneoB.F. WildeA.A.M. Inherited cardiac arrhythmias.Nat. Rev. Dis. Primers2020615810.1038/s41572‑020‑0188‑732678103
    [Google Scholar]
  94. SciomerS. MoscucciF. SalvioniE. MarcheseG. BussottiM. CorràU. PiepoliM.F. Role of gender, age and BMI in prognosis of heart failure.Eur. J. Prev. Cardiol.2020272_supplSuppl.465110.1177/204748732096198033238736
    [Google Scholar]
  95. PanayidesA.S. AminiA. FilipovicN.D. SharmaA. TsaftarisS.A. YoungA. ForanD. DoN. GolematiS. KurcT. HuangK. NikitaK.S. VeaseyB.P. ZervakisM. SaltzJ.H. PattichisC.S. AI in medical imaging informatics: Current challenges and future directions.IEEE J. Biomed. Health Inform.20202471837185710.1109/JBHI.2020.299104332609615
    [Google Scholar]
  96. MontoneR.A. JangI.K. BeltrameJ.F. SicariR. MeucciM.C. BodeM. GaibazziN. NiccoliG. Bucciarelli-DucciC. CreaF. The evolving role of cardiac imaging in patients with myocardial infarction and non-obstructive coronary arteries.Prog. Cardiovasc. Dis.202168788710.1016/j.pcad.2021.08.00434600948
    [Google Scholar]
  97. AhmedN. CarrickD. LaylandJ. OldroydK.G. BerryC. The role of cardiac magnetic resonance imaging (MRI) in acute myocardial infarction (AMI).Heart Lung Circ.201322424325510.1016/j.hlc.2012.11.01623279917
    [Google Scholar]
  98. PannoneL. FalasconiG. CianfanelliL. BaldettiL. MoroniF. SpoladoreR. VergaraP. Sudden cardiac death in patients with heart disease and preserved systolic function: Current options for risk stratification.J. Clin. Med.2021109182310.3390/jcm1009182333922111
    [Google Scholar]
  99. LinA. KolossváryM. IšgumI. Maurovich-HorvatP. SlomkaP.J. DeyD. Artificial intelligence: Improving the efficiency of cardiovascular imaging.Expert Rev. Med. Devices202017656557710.1080/17434440.2020.177785532510252
    [Google Scholar]
  100. Ajmone MarsanN. MichalskiB. CameliM. PodlesnikarT. MankaR. SitgesM. DweckM.R. HaugaaK.H. EACVI survey on standardization of cardiac chambers quantification by transthoracic echocardiography.Oxford University Press202010.1093/ehjci/jez297
    [Google Scholar]
  101. AwadE.M.L. MahmoudA.H. MaghrbyK.S. TahaN.M. IbrahimA.M. Short-term prognostic value of TAPSE, RVFAC and Tricuspid S′ wave peak systolic velocity after first acute myocardial infarction.BMC Res. Notes202013119610.1186/s13104‑020‑05040‑232238188
    [Google Scholar]
  102. AgasthiP. ChaoC.J. SiegelR.J. PujariS.H. MookadamF. VenepallyN.R. WangP. AshrafH. MarcotteF. BrownL. SemkivO.I. FathA.R. AllamM.N.A. JokerstC.E. ArsanjaniR. Comparison of echocardiographic parameters with cardiac magnetic resonance imaging in the assessment of right ventricular function.Echocardiography202037111792180210.1111/echo.1487733012034
    [Google Scholar]
  103. TsayD. PattersonC. From machine learning to artificial intelligence applications in cardiac care: Real-world examples in improving imaging and patient access.Circulation2018138222569257510.1161/CIRCULATIONAHA.118.03173430571349
    [Google Scholar]
  104. YuanN. DuffyG. DhruvaS.S. OesterleA. PellegriniC.N. TheurerJ. ValiM. HeidenreichP.A. KeyhaniS. OuyangD. Deep learning of electrocardiograms in sinus rhythm from US veterans to predict atrial fibrillation.JAMA Cardiol.20238121131113910.1001/jamacardio.2023.370137851434
    [Google Scholar]
  105. PrevedelloL.M. HalabiS.S. ShihG. WuC.C. KohliM.D. ChokshiF.H. EricksonB.J. Kalpathy-CramerJ. AndrioleK.P. FlandersA.E. Challenges related to artificial intelligence research in medical imaging and the importance of image analysis competitions.Radiol. Artif. Intell.201911e18003110.1148/ryai.201918003133937783
    [Google Scholar]
  106. KhunteA. SanghaV. HolsteG. DhingraL.S. AminorroayaA. WangZ. KheraR. Abstract 18776: ECG-GPT: Automated Complete diagnosis generation from ECG images using novel vision-text transformer model.Circulation2023148Suppl. 1A18776A1877610.1161/circ.148.suppl_1.18776
    [Google Scholar]
  107. MelziP. TolosanaR. CecconiA. Sanz-GarciaA. OrtegaG.J. Jimenez-BorregueroL.J. Vera-RodriguezR. Analyzing artificial intelligence systems for the prediction of atrial fibrillation from sinus-rhythm ECGs including demographics and feature visualization.Sci. Rep.20211112278610.1038/s41598‑021‑02179‑134815461
    [Google Scholar]
  108. PipilasD. FriedmanS.F. KhurshidS. The use of artificial intelligence to predict the development of atrial fibrillation.Curr. Cardiol. Rep.202325538138910.1007/s11886‑023‑01859‑w37000332
    [Google Scholar]
  109. IsaksenJ.L. BaumertM. HermansA.N.L. MaleckarM. LinzD. Artificial intelligence for the detection, prediction, and management of atrial fibrillation.Herzschrittmacherther. Elektrophysiol.2022331344110.1007/s00399‑022‑00839‑x35147766
    [Google Scholar]
  110. Martínez-SellésM. Marina-BreysseM. Current and future use of Artificial Intelligence in electrocardiography.J. Cardiovasc. Dev. Dis.202310417510.3390/jcdd1004017537103054
    [Google Scholar]
  111. HolmströmL. ZhangF.Z. OuyangD. DeyD. SlomkaP.J. ChughS.S. Artificial Intelligence in ventricular arrhythmias and sudden death.Arrhythm. Electrophysiol. Rev.202312e1710.15420/aer.2022.4237457439
    [Google Scholar]
  112. AlamgirA. MousaO. ShahZ. Artificial Intelligence in predicting cardiac arrest: Scoping review.JMIR Med. Inform.2021912e3079810.2196/3079834927595
    [Google Scholar]
  113. PopescuD.M. ShadeJ.K. LaiC. AronisK.N. OuyangD. MoorthyM.V. CookN.R. LeeD.C. KadishA. AlbertC.M. WuK.C. MaggioniM. TrayanovaN.A. Arrhythmic sudden death survival prediction using deep learning analysis of scarring in the heart.Nat. Cardiovasc. Res.20221433434310.1038/s44161‑022‑00041‑935464150
    [Google Scholar]
  114. ChaudharyM.H. DevS. KumariA. KanwalK. JadavD.N. RasoolS. Tayyab SaleemM. BhagatR. PrachiF.N.U. PuriP. KashifM. VarrassiG. KhatriM. KumarS. MohamadT. Holistic approaches to arrhythmia management: Combining medication, ablation, and device interventions.Cureus2023159e4595810.7759/cureus.4595837900386
    [Google Scholar]
  115. GriffinM. CalvertP. GuptaD. Persistent atrial fibrillation ablation: Ongoing challenges defining the target population and substrate.Curr. Treat. Options Cardiovasc. Med.2023251046147510.1007/s11936‑023‑01011‑5
    [Google Scholar]
  116. TakigawaM. TakahashiA. KuwaharaT. OkuboK. TakahashiY. WatariY. TakagiK. FujinoT. KimuraS. HikitaH. TomitaM. HiraoK. IsobeM. Long-term follow-up after catheter ablation of paroxysmal atrial fibrillation: The incidence of recurrence and progression of atrial fibrillation.Circ. Arrhythm. Electrophysiol.20147226727310.1161/CIRCEP.113.00047124610740
    [Google Scholar]
  117. VizzardiE. CurnisA. LatiniM.G. SalghettiF. RoccoE. LupiL. RovettaR. QuinzaniF. BonadeiI. BontempiL. D’AloiaA. Dei CasL. Risk factors for atrial fibrillation recurrence.J. Cardiovasc. Med. (Hagerstown)201415323525310.2459/JCM.0b013e328358554b23114271
    [Google Scholar]
  118. ChungM.K. RefaatM. ShenW.K. KutyifaV. ChaY.M. Di BiaseL. BaranchukA. LampertR. NataleA. FisherJ. LakkireddyD.R. Atrial fibrillation.J. Am. Coll. Cardiol.202075141689171310.1016/j.jacc.2020.02.02532273035
    [Google Scholar]
  119. DollN. WeimarT. KosiorD.A. BulavaA. MokracekA. MönnigG. SahuJ. HunterS. WijffelsM. van PutteB. RübN. NemecP. OstrizekT. SuwalskiP. Efficacy and safety of hybrid epicardial and endocardial ablation versus endocardial ablation in patients with persistent and longstanding persistent atrial fibrillation: A randomised, controlled trial.EClinicalMedicine20236110205210.1016/j.eclinm.2023.10205237425372
    [Google Scholar]
  120. NaruseY. TadaH. SekiguchiY. MachinoT. OzawaM. YamasakiH. IgarashiM. KurokiK. ItohY. MurakoshiN. YamaguchiI. AonumaK. Concomitant chronic kidney disease increases the recurrence of atrial fibrillation after catheter ablation of atrial fibrillation: A mid-term follow-up.Heart Rhythm20118333534110.1016/j.hrthm.2010.10.04721056121
    [Google Scholar]
  121. JiangJ. DengH. LiaoH. FangX. ZhanX. WeiW. WuS. XueY. An Artificial Intelligence-enabled ECG algorithm for predicting the risk of recurrence in patients with paroxysmal atrial fibrillation after catheter ablation.J. Clin. Med.2023125193310.3390/jcm1205193336902719
    [Google Scholar]
  122. KistlerP.M. ChiengD. SugumarH. LingL.H. SeganL. AzzopardiS. Al-KaiseyA. ParameswaranR. AndersonR.D. HawsonJ. PrabhuS. VoskoboinikA. WongG. MortonJ.B. PathikB. McLellanA.J. LeeG. WongM. FinchS. PathakR.K. RajaD.C. SternsL. GinksM. ReidC.M. SandersP. KalmanJ.M. Effect of catheter ablation using pulmonary vein isolation with vs without posterior left atrial wall isolation on atrial arrhythmia recurrence in patients with persistent atrial fibrillation: The CAPLA randomized clinical trial.JAMA2023329212713510.1001/jama.2022.2372236625809
    [Google Scholar]
  123. TangS. RazeghiO. KapoorR. AlhusseiniM.I. FazalM. RogersA.J. Rodrigo BortM. CloptonP. WangP.J. RubinD.L. NarayanS.M. BaykanerT. Machine learning–enabled multimodal fusion of intra-atrial and body surface signals in prediction of atrial fibrillation ablation outcomes.Circ. Arrhythm. Electrophysiol.2022158e01085010.1161/CIRCEP.122.01085035867397
    [Google Scholar]
  124. SardarP. AbbottJ. D. KunduA. AronowH. D. GranadaJ. F. GiriJ. Impact of artificial intelligence on interventional cardiology: From decision-making aid to advanced interventional procedure assistance.JACC Cardiovasc. Interv.2019121412931303
    [Google Scholar]
  125. GopalakrishnanK. AdhikariA. PallipamuN. SinghM. NusratT. GaddamS. SamaddarP. RajagopalA. CherukuriA.S.S. YadavA. MangaS.S. DamaniD.N. ShivaramS. DeyS. RoyS. MitraD. ArunachalamS.P. Applications of microwaves in medicine leveraging Artificial Intelligence: Future perspectives.Electronics 2023125110110.3390/electronics12051101
    [Google Scholar]
  126. NajjarR. Redefining radiology: A review of artificial intelligence integration in medical imaging.Diagnostics 20231317276010.3390/diagnostics1317276037685300
    [Google Scholar]
  127. MurphyK. Di RuggieroE. UpshurR. WillisonD.J. MalhotraN. CaiJ.C. MalhotraN. LuiV. GibsonJ. Artificial intelligence for good health: A scoping review of the ethics literature.BMC Med. Ethics20212211410.1186/s12910‑021‑00577‑833588803
    [Google Scholar]
  128. KochM. Artificial intelligence based methods for atrial fibrillation ablation procedures.Doctoral Thesis,20201140
    [Google Scholar]
  129. BrownG. ConwayS. AhmadM. AdegbieD. PatelN. MyneniV. AlradhawiM. KumarN. ObaidD.R. PimentaD. BrayJ.J.H. Role of artificial intelligence in defibrillators: A narrative review.Open Heart202292e00197610.1136/openhrt‑2022‑00197635790317
    [Google Scholar]
  130. TrayanovaN.A. PopescuD.M. ShadeJ.K. Machine learning in arrhythmia and electrophysiology.Circ. Res.2021128454456610.1161/CIRCRESAHA.120.31787233600229
    [Google Scholar]
  131. CarpioE.F. GomezJ.F. SebastianR. Lopez-PerezA. CastellanosE. AlmendralJ. FerreroJ.M. TrenorB. Optimization of lead placement in the right ventricle during cardiac resynchronization therapy. A simulation study.Front. Physiol.2019107410.3389/fphys.2019.0007430804805
    [Google Scholar]
  132. SohnsC. FoxH. MarroucheN.F. CrijnsH.J.G.M. Costard-JaeckleA. BergauL. HindricksG. DagresN. SossallaS. SchrammR. FinkT. El HamritiM. MoersdorfM. SciaccaV. KonietschkeF. RudolphV. GummertJ. TijssenJ.G.P. SommerP. Catheter ablation in end-stage heart failure with atrial fibrillation.N. Engl. J. Med.2023389151380138910.1056/NEJMoa2306037
    [Google Scholar]
  133. DeisenhoferI. AlbenqueJ.P. BuschS. GitenayE. MountantonakisS. RouxA. HorvilleurJ. BakouboulaB. OzaS.R. AbbeyS. ThéodoreG. LepillierA. GuyomarY. BessiereF. MilpiedP. AppetitiA. GuerreroD. De PotterT. de ChillouC. GoldbargS.H. VermaA. HummelJ.D. LB-469805-01 TAILORED CARDIAC ABLATION PROCEDURE FOR PERSISTENT ATRIAL FIBRILLATION GUIDED BY ARTIFICIAL INTELLIGENCE: THE TAILORED-AF RANDOMIZED CLINICAL TRIAL.Heart Rhythm2024217119910.1016/j.hrthm.2024.04.025
    [Google Scholar]
  134. MalchanoZ. J. Image guidance in cardiac electrophysiology.Thesis (M. Eng.)--Harvard-MIT Division of Health Sciences and Technology2006
    [Google Scholar]
  135. ZimmermannC. MichelmannA. DanielY. EnderleM.D. SalkicN. LinzenboldW. Application of deep learning for real-time ablation zone measurement in ultrasound imaging.Cancers 2024169170010.3390/cancers1609170038730652
    [Google Scholar]
  136. HuS. LuR. ZhuY. ZhuW. JiangH. BiS. Application of Medical Image Navigation Technology in Minimally Invasive Puncture Robot.Sensors20232316719610.3390/s2316719637631733
    [Google Scholar]
  137. CitoneM. FanelliF. FalconeG. MondainiF. CozziD. MieleV. A closer look to the new frontier of artificial intelligence in the percutaneous treatment of primary lesions of the liver.Med. Oncol.20203765510.1007/s12032‑020‑01380‑y32424627
    [Google Scholar]
  138. AndradeJ.G. KhairyP. DubucM. Catheter Cryoablation.Circ. Arrhythm. Electrophysiol.20136121822710.1161/CIRCEP.112.97365123424224
    [Google Scholar]
  139. SeitzJ. DurdezT.M. AlbenqueJ.P. PisapiaA. GitenayE. DurandC. MonteauJ. MoubarakG. ThéodoreG. LepillierA. ZhaoA. BremondyM. MaluskiA. CauchemezB. CombesS. GuyomarY. HeulsS. ThomasO. PenarandaG. SiameS. AppetitiA. MilpiedP. BarsC. KalifaJ. Artificial intelligence software standardizes electrogram‐based ablation outcome for persistent atrial fibrillation.J. Cardiovasc. Electrophysiol.202233112250226010.1111/jce.1565735989543
    [Google Scholar]
  140. BahlkeF. EnglertF. PopaM. BourierF. ReentsT. LennerzC. KraftH. MartinezA.T. KottmaierM. SyväriJ. TydecksM. TelishevskaM. LengauerS. HesslingG. DeisenhoferI. ErhardN. First clinical data on artificial intelligence‐guided catheter ablation in long‐standing persistent atrial fibrillation.J. Cardiovasc. Electrophysiol.202435340641410.1111/jce.1618438197476
    [Google Scholar]
  141. Al JefairiN. Leads to improve atrial fibrillation ablation, catheters, imaging and mapping guidance.Cardiology and cardiovascular system. Université de Bordeaux2017
    [Google Scholar]
  142. DukkipatiS.R. ChoudryS. KoruthJ.S. MillerM.A. WhangW. ReddyV.Y. Catheter ablation of ventricular tachycardia in structurally normal hearts: Indications, strategies, and outcomes—part I.J. Am. Coll. Cardiol.201770232909292310.1016/j.jacc.2017.10.03129216987
    [Google Scholar]
  143. EllermannC. FrommeyerG. EckardtL. Hochauflösendes 3‑D-Mapping.Herzschrittmacherther. Elektrophysiol.2018293284292[High-resolution 3D mapping: Opportunities and limitations of the Rhythmia™ mapping system].10.1007/s00399‑018‑0580‑0
    [Google Scholar]
  144. KhanK. KimJ.A. GurguA. KhawajaM. CozmaD. CheluM.G. Innovations in cardiac implantable electronic devices.Cardiovasc. Drugs Ther.202111333651211
    [Google Scholar]
  145. ImbertiJ.F. TosettiA. MeiD.A. MaisanoA. BorianiG. Remote monitoring and telemedicine in heart failure: Implementation and benefits.Curr. Cardiol. Rep.20212365510.1007/s11886‑021‑01487‑233959819
    [Google Scholar]
  146. McGeeM.J. RayM. BrienesseS.C. SritharanS. BoyleA.J. JacksonN. LeitchJ.W. SverdlovA.L. Remote monitoring in patients with heart failure with cardiac implantable electronic devices: A systematic review and meta-analysis.Open Heart202292e00209610.1136/openhrt‑2022‑00209636442906
    [Google Scholar]
  147. ZeitlerE.P. PicciniJ.P. Remote monitoring of cardiac implantable electronic devices (CIED).Trends Cardiovasc. Med.201626656857710.1016/j.tcm.2016.03.01227134007
    [Google Scholar]
  148. AdduciC. PalanoF. SilvettiG. CosentinoP. FranciaP. Prevention of sudden cardiac death: Focus on the subcutaneous implantable cardioverter-defibrillator.High Blood Press. Cardiovasc. Prev.202027429129710.1007/s40292‑020‑00394‑x32519207
    [Google Scholar]
  149. OjoA. TariqS. HarikrishnanP. IwaiS. JacobsonJ.T. Cardiac resynchronization therapy for heart failure.Interv. Cardiol. Clin.20176341742628600094
    [Google Scholar]
  150. MajeedH. KhanU. KhanA.M. KhalidS.N. FarookS. GanguK. SagheerS. SheikhA.B. BRASH syndrome: A systematic review of reported cases.Curr. Probl. Cardiol.202348610166310.1016/j.cpcardiol.2023.10166336842470
    [Google Scholar]
  151. YangS. StabenauH.F. KiernanK. DiamondJ.E. KramerD.B. Clinical utility of remote monitoring for patients with cardiac implantable electrical devices.J. Interv. Card. Electrophysiol.202266496196910.1007/s10840‑022‑01406‑736327060
    [Google Scholar]
  152. ArcinasL.A. SheldonR.S. Complications related to pacemakers and other cardiac implantable electronic devices: Essentials for internists and emergency physicians.Intern. Emerg. Med.202318385186210.1007/s11739‑023‑03227‑636892799
    [Google Scholar]
  153. PiedadeJ. Q. KenchettyK. PrabhudesaiA. FernandesW. NaikG. Cardiac implantable electronic devices: Indications, risk factors and complications in a tertiary care centre in Goa.JCDR202213109762833
    [Google Scholar]
  154. RanasingheI. LabroscianoC. HortonD. GanesanA. CurtisJ.P. KrumholzH.M. McGaviganA. HossainS. AirT. HariharaputhiranS. Institutional variation in quality of cardiovascular implantable electronic device implantation: A cohort study.Ann. Intern. Med.2019171530931710.7326/M18‑281031357210
    [Google Scholar]
  155. AddetiaK. HarbS.C. HahnR.T. KapadiaS. LangR.M. Cardiac implantable electronic device lead-induced tricuspid regurgitation.JACC Cardiovasc. Imaging201912462263610.1016/j.jcmg.2018.09.02830947905
    [Google Scholar]
  156. LappegårdK.T. MoeF. Remote monitoring of CIEDs—for both safety, economy and convenience?Int. J. Environ. Res. Public Health202119131210.3390/ijerph1901031235010572
    [Google Scholar]
  157. TorielloF. SavianoM. FaggianoA. GentileD. ProvenzaleG. PollinaA.V. GherbesiE. BarbieriL. CarugoS. Cardiac implantable electronic devices infection assessment, diagnosis and management: A review of the literature.J. Clin. Med.20221119589810.3390/jcm1119589836233765
    [Google Scholar]
  158. ItchhaporiaD. Artificial intelligence in cardiology.Trends Cardiovasc. Med.2022321344110.1016/j.tcm.2020.11.00733242635
    [Google Scholar]
  159. Vidal-PerezR. Vazquez-RodriguezJ.M. Role of artificial intelligence in cardiology.World J. Cardiol.202315411611810.4330/wjc.v15.i4.11637124979
    [Google Scholar]
  160. SanghaV. MortazaviB.J. HaimovichA.D. RibeiroA.H. BrandtC.A. JacobyD.L. SchulzW.L. KrumholzH.M. RibeiroA.L.P. KheraR. Automated multilabel diagnosis on electrocardiographic images and signals.Nat. Commun.2022131158310.1038/s41467‑022‑29153‑335332137
    [Google Scholar]
  161. HannunA.Y. RajpurkarP. HaghpanahiM. TisonG.H. BournC. TurakhiaM.P. NgA.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network.Nat. Med.2019251656910.1038/s41591‑018‑0268‑330617320
    [Google Scholar]
  162. GadaletaM. HarringtonP. BarnhillE. HytopoulosE. TurakhiaM.P. SteinhublS.R. QuerG. Prediction of atrial fibrillation from at-home single-lead ECG signals without arrhythmias.NPJ Digit. Med.20236122910.1038/s41746‑023‑00966‑w38087028
    [Google Scholar]
  163. PanjiyarB.K. DavydovG. NashatH. GhaliS. AfifiS. SuryadevaraV. HababY. HutchesonA. Arcia FranchiniA.P. DavydovG.G. A systematic review: Do the use of machine learning, deep learning, and artificial intelligence improve patient outcomes in acute myocardial ischemia compared to clinician-only approaches?Cureus2023158e4300310.7759/cureus.4300337674942
    [Google Scholar]
  164. Mohd FaizalA.S. ThevarajahT.M. KhorS.M. ChangS.W. A review of risk prediction models in cardiovascular disease: Conventional approach vs. artificial intelligent approach.Comput. Methods Programs Biomed.202120710619010.1016/j.cmpb.2021.10619034077865
    [Google Scholar]
  165. LyuY. BennamounM. SharifN. LipG.Y.H. DwivediG. Artificial Intelligence in the Image-Guided Care of Atrial Fibrillation.Life 2023139187010.3390/life1309187037763273
    [Google Scholar]
  166. TangP. WangQ. OuyangH. YangS. HuaP. The feasibility of early detecting coronary artery disease using deep learning-based algorithm based on electrocardiography.Aging20231593524353710.18632/aging.20468837186897
    [Google Scholar]
  167. PapandrianosN. PapageorgiouE. Automatic diagnosis of coronary artery disease in SPECT myocardial perfusion imaging employing deep learning.Appl. Sci. 20211114636210.3390/app11146362
    [Google Scholar]
  168. AbubakerM.B. BabayiğitB. Detection of cardiovascular diseases in ECG images using machine learning and deep learning methods.IEEE Trans. Artif. Intell.20234237338210.1109/TAI.2022.3159505
    [Google Scholar]
  169. LiastutiL.D. Budi SiswantoB. SukmawanR. JatmikoW. NursakinaY. PutriR.Y.I. JatiG. NurA.A. Detecting left heart failure in echocardiography through machine learning: A systematic review.Rev. Cardiovasc. Med.2022231240210.31083/j.rcm231240239076649
    [Google Scholar]
  170. KashouA.H. KoW.Y. AttiaZ.I. CohenM.S. FriedmanP.A. NoseworthyP.A. A comprehensive artificial intelligence–enabled electrocardiogram interpretation program.Cardiovasc. Digit. Health J.202012627010.1016/j.cvdhj.2020.08.00535265877
    [Google Scholar]
  171. KulkarniH. AminA.P. Artificial intelligence in percutaneous coronary intervention: Improved prediction of PCI-related complications using an artificial neural network.medRxiv202010.1101/2020.08.17.20177055
    [Google Scholar]
  172. Chang JuniorJ. BinuesaF. CaneoL.F. TurquettoA.L.R. AritaE.C.T.C. BarbosaA.C. FernandesA.M.S. TrindadeE.M. JateneF.B. DossouP.E. JateneM.B. Improving preoperative risk-of-death prediction in surgery congenital heart defects using artificial intelligence model: A pilot study.PLoS One2020159e023819910.1371/journal.pone.023819932886688
    [Google Scholar]
  173. ChoiD.J. ParkJ.J. AliT. LeeS. Artificial intelligence for the diagnosis of heart failure.NPJ Digit. Med.2020315410.1038/s41746‑020‑0261‑332285014
    [Google Scholar]
  174. BetancurJ. OtakiY. MotwaniM. FishM.B. LemleyM. DeyD. GransarH. TamarappooB. GermanoG. SharirT. BermanD.S. SlomkaP.J. Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning.JACC Cardiovasc. Imaging20181171000100910.1016/j.jcmg.2017.07.02429055639
    [Google Scholar]
  175. OikonomouE.K. KheraR. Machine learning in precision diabetes care and cardiovascular risk prediction.Cardiovasc. Diabetol.202322125910.1186/s12933‑023‑01985‑337749579
    [Google Scholar]
  176. WesterlundA.M. HaweJ.S. HeinigM. SchunkertH. Risk prediction of cardiovascular events by exploration of molecular data with explainable artificial intelligence.Int. J. Mol. Sci.202122191029110.3390/ijms22191029134638627
    [Google Scholar]
  177. DogheimG.M. HussainA. Patient Care through AI-driven Remote Monitoring: Analyzing the Role of Predictive Models and Intelligent Alerts in Preventive Medicine.Journal of Contemporary Healthcare Analytics20237194110
    [Google Scholar]
  178. KhanM. Bioinformatics and machine learning: Analyzing genomic data for personalized medicine2023Available from: https://typeset.io/papers/bioinformatics-and-machine-learning-analyzing-genomic-data-cjfosc17ll
  179. AlowaisS.A. AlghamdiS.S. AlsuhebanyN. AlqahtaniT. AlshayaA.I. AlmoharebS.N. AldairemA. AlrashedM. Bin SalehK. BadreldinH.A. Al YamiM.S. Al HarbiS. AlbekairyA.M. Revolutionizing healthcare: The role of artificial intelligence in clinical practice.BMC Med. Educ.202323168910.1186/s12909‑023‑04698‑z37740191
    [Google Scholar]
  180. WangF. PreiningerA. AI in health: State of the art, challenges, and future directions.Yearb. Med. Inform.2019281162610.1055/s‑0039‑1677908
    [Google Scholar]
  181. AbbasiN. NizamullahF. ZebS. AI in healthcare: Integrating advanced technologies with traditional practices for enhanced patient care.BULLET: Jurnal Multidisiplin Ilmu202323546556
    [Google Scholar]
  182. SempionattoJ.R. MontielV.R.V. VargasE. TeymourianH. WangJ. Wearable and mobile sensors for personalized nutrition.ACS Sens.2021651745176010.1021/acssensors.1c0055334008960
    [Google Scholar]
  183. ElvasL.B. NunesM. FerreiraJ.C. DiasM.S. RosárioL.B. AI-driven decision support for early detection of cardiac events: Unveiling patterns and predicting myocardial ischemia.J. Pers. Med.2023139142110.3390/jpm1309142137763188
    [Google Scholar]
  184. HaleemA. JavaidM. SinghR. P. SumanR. Telemedicine for healthcare: Capabilities, features, barriers, and applicationsSens. Int.20212100117
    [Google Scholar]
  185. DeyD. SlomkaP.J. LeesonP. ComaniciuD. ShresthaS. SenguptaP.P. MarwickT.H. Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review.J. Am. Coll. Cardiol.201973111317133510.1016/j.jacc.2018.12.05430898208
    [Google Scholar]
  186. AndrikopoulouE. The rise of AI in telehealth.Emerging Practices in Telehealth.Elsevier202318320710.1016/B978‑0‑443‑15980‑0.00011‑9
    [Google Scholar]
  187. BrahmbhattD.H. RossH.J. MoayediY. Digital technology application for improved responses to health care challenges: Lessons learned from COVID-19.Can. J. Cardiol.202238227929110.1016/j.cjca.2021.11.01434863912
    [Google Scholar]
  188. van LeeuwenK.G. de RooijM. SchalekampS. van GinnekenB. RuttenM.J. How does artificial intelligence in radiology improve efficiency and health outcomes?Pediatr. Radiol.20211734117522
    [Google Scholar]
  189. LazebnikT. Data-driven hospitals staff and resources allocation using agent-based simulation and deep reinforcement learning.Eng. Appl. Artif. Intell.202312610678310.1016/j.engappai.2023.106783
    [Google Scholar]
  190. SahniN. SteinG. ZemmelR. CutlerD.M. The potential impact of artificial intelligence on healthcare spending.Nat Bureau Eco Res20233085710.3386/w30857
    [Google Scholar]
  191. VealeM. BrassI. Administration by algorithm?In: Administration by Algorithm? Public Management Meets Public Sector Machine LearningOxford Academic201910.1093/oso/9780198838494.003.0006
    [Google Scholar]
  192. PatelB. Artificial intelligence advances in the world of cardiovascular imaging.Healthcare2022101154
    [Google Scholar]
  193. GalaD. MakaryusA.N. The utility of language models in cardiology: A narrative review of the benefits and concerns of ChatGPT-4.Int. J. Environ. Res. Public Health20232015643810.3390/ijerph2015643837568980
    [Google Scholar]
  194. WongK.K.L. FortinoG. AbbottD. Deep learning-based cardiovascular image diagnosis: A promising challenge.Future Gener. Comput. Syst.202011080281110.1016/j.future.2019.09.047
    [Google Scholar]
  195. MurdochB. Privacy and artificial intelligence: Challenges for protecting health information in a new era.BMC Med. Ethics202122112210.1186/s12910‑021‑00687‑334525993
    [Google Scholar]
  196. AldoseriA. Al-KhalifaK.N. HamoudaA.M. Re-thinking data strategy and integration for artificial intelligence: Concepts, opportunities, and challenges.Appl. Sci.20231312708210.3390/app13127082
    [Google Scholar]
  197. GautamN. GhantaS. MuellerJ. MansourM. ChenZ. PuenteC. HaY. TarunT. DharG. SivakumarK. ZhangY. HalimehA. NakarmiU. Al-KindiS. DeMazumderD. Al’ArefS. Artificial Intelligence, Wearables and Remote Monitoring for Heart failure: Current and future applications.Diagnostics 20221212296410.3390/diagnostics1212296436552971
    [Google Scholar]
  198. ChungC. T. LeeS. KingE. LiuT. ArmoundasA. A. BazoukisG. TseG. Clinical significance, challenges and limitations in using artificial intelligence for electrocardiography-based diagnosis.Int. J. Arrhythmia202223124
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X334095241205041550
Loading
/content/journals/ccr/10.2174/011573403X334095241205041550
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test