Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

The widespread use of plastics and improper disposal have resulted in the ubiquity of microplastics in the environment, from uninhabited polar regions to terrestrial ecosystems. This ubiquity poses significant health concerns for our environment and health. Various , , and studies have indicated microplastic toxicity in humans' respiratory, digestive, neurological, reproductive, and developmental health. Recent studies have pointed out that these microplastics also have cardiovascular toxicity. Cardiovascular diseases (CVDs) are the number one killer in the world, with over 20 million annual deaths worldwide. Hence, microplastics, as a potential risk factor for CVDs, can result in a significant increase in mortality and morbidity because almost everyone is currently exposed to microplastics. This perspective article explores the toxic effects of microplastics on cardiovascular human health. It focuses on various studies that have found microplastics from human arteries/cardiac tissues and their potential role in atherosclerosis and subsequent increases in myocardial infarction, stroke, and mortality. Studies reported the presence of various microplastics, such as polyethylene, polyvinyl chloride, polyamide, and polystyrene, in cardiac tissues and arteries (coronary, aorta, cerebral, and carotid). Studies have suggested a potential negative correlation between microplastics and cardiovascular health, with the presence or increased concentration of microplastics linked to greater severity of health issues. Still, a causal relationship is yet to be established. Future studies, such as cohorts, should focus on deciphering and establishing whether microplastics are a potential cardiovascular risk factor.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X366030250404105925
2025-04-10
2025-08-14
Loading full text...

Full text loading...

/deliver/fulltext/ccr/21/5/CCR-21-5-01.html?itemId=/content/journals/ccr/10.2174/011573403X366030250404105925&mimeType=html&fmt=ahah

References

  1. LindstromM. DeCleeneN. DorseyH. FusterV. JohnsonC.O. LeGrandK.E. MensahG.A. RazoC. StarkB. Varieur TurcoJ. RothG.A. Global burden of cardiovascular diseases and risks collaboration, 1990-2021.J. Am. Coll. Cardiol.202280252372242510.1016/j.jacc.2022.11.00136517116
    [Google Scholar]
  2. BrownJ.C. GerhardtT.E. KwonE. Risk factors for coronary artery disease.StatPearls PublishingTreasure Island (FL)2020
    [Google Scholar]
  3. ŞahinB. İlgünG. Risk factors of deaths related to cardiovascular diseases in World Health Organization (WHO) member countries.Health Soc. Care Community2022301738010.1111/hsc.1315632909378
    [Google Scholar]
  4. SagheerU. Al-KindiS. AbohashemS. PhillipsC.T. RanaJ.S. BhatnagarA. GulatiM. RajagopalanS. KalraD.K. Environmental pollution and cardiovascular disease: Part 1 of 2: Air pollution.JACC: Advances20243210080510.1016/j.jacadv.2023.10080538939391
    [Google Scholar]
  5. NapperI.E. DaviesB.F.R. CliffordH. ElvinS. KoldeweyH.J. MayewskiP.A. MinerK.R. PotockiM. ElmoreA.C. GajurelA.P. ThompsonR.C. Reaching new heights in plastic pollution—Preliminary findings of microplastics on Mount Everest.One Earth20203562163010.1016/j.oneear.2020.10.020
    [Google Scholar]
  6. LiuS. WangC. YangY. DuZ. LiL. ZhangM. NiS. YueZ. YangK. WangY. LiX. YangY. QinY. LiJ. YangY. ZhangM. Microplastics in three types of human arteries detected by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS).J. Hazard. Mater.202446913385510.1016/j.jhazmat.2024.13385538428296
    [Google Scholar]
  7. WangT. YiZ. LiuX. CaiY. HuangX. FangJ. ShenR. LuW. XiaoY. ZhuangW. GuoS. Multimodal detection and analysis of microplastics in human thrombi from multiple anatomically distinct sites.EBioMedicine202410310511810.1016/j.ebiom.2024.10511838614011
    [Google Scholar]
  8. NgC.H. MistohM.A. TeoS.H. GalassiA. IbrahimA. SipautC.S. FooJ. SeayJ. Taufiq-YapY.H. JanaunJ. Plastic waste and microplastic issues in Southeast Asia.Front. Environ. Sci.202311114207110.3389/fenvs.2023.1142071
    [Google Scholar]
  9. YangY. ZhangF. JiangZ. DuZ. LiuS. ZhangM. JinY. QinY. YangX. WangC. GaoH. Microplastics are associated with elevated atherosclerotic risk and increased vascular complexity in acute coronary syndrome patients.Part. Fibre Toxicol.20242113410.1186/s12989‑024‑00596‑439164741
    [Google Scholar]
  10. KoelmansA.A. Mohamed NorN.H. HermsenE. KooiM. MintenigS.M. De FranceJ. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality.Water Res.201915541042210.1016/j.watres.2019.02.05430861380
    [Google Scholar]
  11. SangkhamS. Aminul IslamM. AdhikariS. KumarR. SharmaP. SakunkooP. BhattacharyaP. TiwariA. Evidence of microplastics in groundwater: A growing risk for human health.Groundw. Sustain. Dev.20232310098110.1016/j.gsd.2023.100981
    [Google Scholar]
  12. WuD. FengY. WangR. JiangJ. GuanQ. YangX. WeiH. XiaY. LuoY. Pigment microparticles and microplastics found in human thrombi based on Raman spectral evidence.J. Adv. Res.20234914115010.1016/j.jare.2022.09.00436116710
    [Google Scholar]
  13. SongJ. WangC. LiG. Defining primary and secondary microplastics: A connotation analysis.2024462330233210.1021/acsestwater.4c00316
    [Google Scholar]
  14. SunA. WangW.X. Human exposure to microplastics and its associated health risks.Environ. Health20231313914910.1021/envhealth.3c0005339473618
    [Google Scholar]
  15. GoodmanK.E. HuaT. SangQ.X.A. Effects of polystyrene microplastics on human kidney and liver cell morphology, cellular proliferation, and metabolism.ACS Omega2022738341363415310.1021/acsomega.2c0345336188270
    [Google Scholar]
  16. LiY. ChenL. ZhouN. ChenY. LingZ. XiangP. Microplastics in the human body: A comprehensive review of exposure, distribution, migration mechanisms, and toxicity.Sci. Total Environ.202494617421510.1016/j.scitotenv.2024.17421538914339
    [Google Scholar]
  17. MarfellaR. PrattichizzoF. SarduC. FulgenziG. GraciottiL. SpadoniT. D’OnofrioN. ScisciolaL. La GrottaR. FrigéC. PellegriniV. MunicinòM. SiniscalchiM. SpinettiF. VigliottiG. VecchioneC. CarrizzoA. AccarinoG. SquillanteA. SpazianoG. MirraD. EspositoR. AltieriS. FalcoG. FentiA. GaloppoS. CanzanoS. SassoF.C. MatacchioneG. OlivieriF. FerraraccioF. PanareseI. PaolissoP. BarbatoE. LubrittoC. BalestrieriM.L. MauroC. CaballeroA.E. RajagopalanS. CerielloA. D’AgostinoB. IovinoP. PaolissoG. Microplastics and nanoplastics in atheromas and cardiovascular events.N. Engl. J. Med.20243901090091010.1056/NEJMoa230982238446676
    [Google Scholar]
  18. PrattichizzoF. CerielloA. PellegriniV. La GrottaR. GraciottiL. OlivieriF. PaolissoP. D’AgostinoB. IovinoP. BalestrieriM.L. RajagopalanS. LandriganP.J. MarfellaR. PaolissoG. Micro-nanoplastics and cardiovascular diseases: Evidence and perspectives.Eur. Heart J.202445384099411010.1093/eurheartj/ehae55239240674
    [Google Scholar]
  19. ZhuX. WangC. DuanX. LiangB. Genbo XuE. HuangZ. Micro- and nanoplastics: A new cardiovascular risk factor?Environ. Int.202317110766210.1016/j.envint.2022.10766236473237
    [Google Scholar]
  20. LiZ. ZhuS. LiuQ. WeiJ. JinY. WangX. ZhangL. Polystyrene microplastics cause cardiac fibrosis by activating Wnt/β-catenin signaling pathway and promoting cardiomyocyte apoptosis in rats.Environ. Pollut.2020265Pt A11502510.1016/j.envpol.2020.11502532806417
    [Google Scholar]
  21. SunM. DingR. MaY. SunQ. RenX. SunZ. DuanJ. Cardiovascular toxicity assessment of polyethylene nanoplastics on developing zebrafish embryos.Chemosphere202128213112410.1016/j.chemosphere.2021.13112434374342
    [Google Scholar]
  22. ZhaoJ. GomesD. YuanF. FengJ. ZhangX. O’TooleT.E. Oral polystyrene consumption potentiates atherosclerotic lesion formation in ApoE −/− mice.Circ. Res.202413491228123010.1161/CIRCRESAHA.124.32441938662862
    [Google Scholar]
  23. YangY. XieE. DuZ. PengZ. HanZ. LiL. ZhaoR. QinY. XueM. LiF. HuaK. YangX. Detection of various microplastics in patients undergoing cardiac surgery.Environ. Sci. Technol.20235730109111091810.1021/acs.est.2c0717937440474
    [Google Scholar]
  24. HuM. PalićD. Micro- and nano-plastics activation of oxidative and inflammatory adverse outcome pathways.Redox Biol.20203710162010.1016/j.redox.2020.10162032863185
    [Google Scholar]
  25. NnorukaU.C. OkonkwoC.J. IlechukwuI. OkonkwoC.J. BelonwuD.C. Impact of polystyrene microplastic exposure on lipid profile and oxidative stress status of male and female Wistar rats.Environ. Anal. Health Toxicol.2022373e202202410.5620/eaht.202202436262068
    [Google Scholar]
  26. YangW. JannatunN. ZengY. Impacts of microplastics on immunity.Front Toxicol.2022495688510.3389/ftox.2022.95688536238600
    [Google Scholar]
  27. BäckM. YurdagulA. TabasI. ÖörniK. KovanenP.T. Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities.Nat. Rev. Cardiol.201916738940610.1038/s41569‑019‑0169‑230846875
    [Google Scholar]
  28. AdlerM.Y. IssoualI. RückertM. DelochL. MeierC. TschernigT. AlexiouC. PfisterF. RamspergerA.F.R.M. LaforschC. GaiplU.S. JüngertK. PaulsenF. Effect of micro- and nanoplastic particles on human macrophages.J. Hazard. Mater.202447113425310.1016/j.jhazmat.2024.13425338642497
    [Google Scholar]
  29. MooreK.J. SheedyF.J. FisherE.A. Macrophages in atherosclerosis: A dynamic balance.Nat. Rev. Immunol.2013131070972110.1038/nri352023995626
    [Google Scholar]
  30. LeeD.H. Microplastics and cardiovascular diseases: Importance of coexisting environmental pollutants.Circulation20241501290891010.1161/CIRCULATIONAHA.124.06980139283932
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X366030250404105925
Loading
/content/journals/ccr/10.2174/011573403X366030250404105925
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test