Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Stroke and heart disease are two of the leading causes of the global disease burden. However, modern research has gradually revealed a potential causal link between these two conditions. Most studies have focused on the direct role of arrhythmias in stroke. However, clinical evidence suggests that the incidence of arrhythmias increases after stroke in patients without a history of arrhythmia, and cardiac disease after stroke has become the second leading cause of death after stroke. This article focuses on arrhythmias after stroke and reviews brain-heart crosstalk after stroke. This article examines the potential mechanisms of brain-heart interactions after stroke, including increased catecholamines due to autonomic imbalance, gut microbial dysbiosis, immune response, and systemic inflammation. In addition, this article discusses the impact of arrhythmia on stroke severity and the role of brain injury sites in brain-heart interactions. To address these mechanisms, we propose that post-stroke arrhythmia is a type of stroke-induced disease distinct from primary arrhythmia. We aimed to identify new therapeutic targets and treatments, both pharmacological and non-pharmacological, to achieve targeted treatment and provide guidance for future clinical prevention and treatment.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X363465250407072854
2025-04-23
2025-10-12
Loading full text...

Full text loading...

References

  1. ByerE. AshmanR. TothL.A. Electrocardiograms with large, upright T waves and long Q-T intervals.Am. Heart J.194733679680610.1016/0002‑8703(47)90025‑2 20242366
    [Google Scholar]
  2. SposatoL.A. HilzM.J. AspbergS. Post-stroke cardiovascular complications and neurogenic cardiac injury.J. Am. Coll. Cardiol.202076232768278510.1016/j.jacc.2020.10.009 33272372
    [Google Scholar]
  3. ProsserJ. MacGregorL. LeesK.R. DienerH.C. HackeW. DavisS. Predictors of early cardiac morbidity and mortality after ischemic stroke.Stroke20073882295230210.1161/STROKEAHA.106.471813 17569877
    [Google Scholar]
  4. SörösP. HachinskiV. Cardiovascular and neurological causes of sudden death after ischaemic stroke.Lancet Neurol.201211217918810.1016/S1474‑4422(11)70291‑5 22265213
    [Google Scholar]
  5. SposatoL.A. ChaturvediS. HsiehC.Y. MorilloC.A. KamelH. Atrial fibrillation detected after stroke and transient ischemic attack: A novel clinical concept challenging current views.Stroke2022533e94e10310.1161/STROKEAHA.121.034777 34986652
    [Google Scholar]
  6. BragaG.P. GonçalvesR.S. MinicucciM.F. BazanR. ZornoffL.A.M. Strain pattern and T‐wave alterations are predictors of mortality and poor neurologic outcome following stroke.Clin. Cardiol.202043656857310.1002/clc.23348 32087617
    [Google Scholar]
  7. Fernández-MenéndezS. García-SantiagoR. Vega-PrimoA. Caediac arrhythmias in stroke unit payients. Evaluation of the cardiac monitoring data.Neurología201631528929510.1016/j.nrl.2015.03.013 25976944
    [Google Scholar]
  8. KumarS. SelimM.H. CaplanL.R. Medical complications after stroke.Lancet Neurol.20109110511810.1016/S1474‑4422(09)70266‑2 20083041
    [Google Scholar]
  9. CarrariniC. StefanoD.V. RussoM. ECG monitoring of post-stroke occurring arrhythmias: An observational study using 7-day Holter ECG.Sci. Rep.202212122810.1038/s41598‑021‑04285‑6 34997171
    [Google Scholar]
  10. HjalmarssonC. BokemarkL. FredrikssonS. AntonssonJ. ShadmanA. AnderssonB. Can prolonged QTc and cTNT level predict the acute and long-term prognosis of stroke?Int. J. Cardiol.2012155341441710.1016/j.ijcard.2010.10.042 21093074
    [Google Scholar]
  11. KallmünzerB. BreuerL. KahlN. Serious cardiac arrhythmias after stroke: Incidence, time course, and predictors--a systematic, prospective analysis.Stroke201243112892289710.1161/STROKEAHA.112.664318 22961962
    [Google Scholar]
  12. BuckleyB.J.R. HarrisonS.L. HillA. UnderhillP. LaneD.A. LipG.Y.H. Stroke-heart syndrome: Incidence and clinical outcomes of cardiac complications following stroke.Stroke20225351759176310.1161/STROKEAHA.121.037316 35354300
    [Google Scholar]
  13. PothineniN.V.K. SolimanE.Z. CushmanM. Continuous cardiac rhythm monitoring post-stroke: A feasibility study in REGARDS.J. Stroke Cerebrovasc. Dis.2022311110666210.1016/j.jstrokecerebrovasdis.2022.106662 36115108
    [Google Scholar]
  14. MuggeridgeD. CallumK. MacphersonL. Clinical and health economic evaluation of a post-stroke arrhythmia monitoring service.Br. J. Cardiol.20222921510.5837/bjc.2022.015 36212791
    [Google Scholar]
  15. PohM.Q.W. ThamC.H. CheeJ.D.M.S. Predicting atrial fibrillation after ischemic stroke: Clinical, genetics, and electrocardiogram modelling.Cerebrovasc. Dis. Extra202213191710.1159/000528516 36521445
    [Google Scholar]
  16. HimmelreichJ.C.L. LucassenW.A.M. CoutinhoJ.M. HarskampR.E. GrootD.J.R. CPM van Weert H. 14-day Holter monitoring for atrial fibrillation after ischemic stroke: The yield of guideline-recommended monitoring duration.Eur. Stroke J.20238115716710.1177/23969873221146027 37021150
    [Google Scholar]
  17. LyckhageL.F. HansenM.L. ButtJ.H. GislasonH.G. GundlundA. WieneckeT. Time trends and patient selection in the use of continuous electrocardiography for detecting atrial fibrillation after stroke: A nationwide cohort study.Eur. J. Neurol.202027112191220110.1111/ene.14418 32593218
    [Google Scholar]
  18. ScheitzJ.F. SposatoL.A. Schulz-MengerJ. NolteC.H. BacksJ. EndresM. Stroke–heart syndrome: Recent advances and challenges.J. Am. Heart Assoc.20221117e02652810.1161/JAHA.122.026528 36056731
    [Google Scholar]
  19. SchnabelR.B. HaeuslerK.G. HealeyJ.S. Searching for atrial fibrillation poststroke.Circulation2019140221834185010.1161/CIRCULATIONAHA.119.040267 31765261
    [Google Scholar]
  20. BhatlaA. BorovskiyY. KatzR. Stroke, timing of atrial fibrillation diagnosis, and risk of death.Neurology20219612e1655e166210.1212/WNL.0000000000011633 33536273
    [Google Scholar]
  21. ScheitzJ.F. NolteC.H. DoehnerW. HachinskiV. EndresM. Stroke–heart syndrome: Clinical presentation and underlying mechanisms.Lancet Neurol.201817121109112010.1016/S1474‑4422(18)30336‑3 30509695
    [Google Scholar]
  22. MaziniB. DietzM. MaréchalB. Corredor-JerezR. PriorJ.O. DunetV. Interrelation between cardiac and brain small-vessel disease: A pilot quantitative PET and MRI study.Eur. J. Hybrid Imaging2023712010.1186/s41824‑023‑00180‑7 37926793
    [Google Scholar]
  23. Nicolás-ÁvilaJ.A. HidalgoA. BallesterosI. Specialized functions of resident macrophages in brain and heart.J. Leukoc. Biol.2018104474375610.1002/JLB.6MR0118‑041R 29947422
    [Google Scholar]
  24. ArmourJ.A. Functional anatomy of intrathoracic neurons innervating the atria and ventricles.Heart Rhythm20107799499610.1016/j.hrthm.2010.02.014 20156593
    [Google Scholar]
  25. KapaS. VenkatachalamK.L. AsirvathamS.J. The autonomic nervous system in cardiac electrophysiology: An elegant interaction and emerging concepts.Cardiol. Rev.201018627528410.1097/CRD.0b013e3181ebb152 20926936
    [Google Scholar]
  26. ArdellJ.L. AndresenM.C. ArmourJ.A. Translational neurocardiology: Preclinical models and cardioneural integrative aspects.J. Physiol.2016594143877390910.1113/JP271869 27098459
    [Google Scholar]
  27. HadayaJ. ArdellJ.L. Autonomic modulation for cardiovascular disease.Front. Physiol.20201161745910.3389/fphys.2020.617459 33414727
    [Google Scholar]
  28. PalmaJ.A. BenarrochE.E. Neural control of the heart.Neurology201483326127110.1212/WNL.0000000000000605 24928126
    [Google Scholar]
  29. ShenM.J. ZipesD.P. Role of the autonomic nervous system in modulating cardiac arrhythmias.Circ. Res.201411461004102110.1161/CIRCRESAHA.113.302549 24625726
    [Google Scholar]
  30. ZhaoB. LiT. FanZ. Heart-brain connections: Phenotypic and genetic insights from magnetic resonance images.Science20233806648abn659810.1126/science.abn6598 37262162
    [Google Scholar]
  31. SaeedA. LopezO. CohenA. ReisS.E. Cardiovascular disease and Alzheimer’s disease: The heart–brain axis.J. Am. Heart Assoc.20231221e03078010.1161/JAHA.123.030780 37929715
    [Google Scholar]
  32. KoppikarS. BaranchukA. GuzmánJ.C. MorilloC.A. Stroke and ventricular arrhythmias.Int. J. Cardiol.2013168265365910.1016/j.ijcard.2013.03.058 23602297
    [Google Scholar]
  33. AlkhouliM. AlqahtaniF. AljohaniS. AlviM. HolmesD.R. Burden of atrial fibrillation–associated ischemic stroke in the united states.JACC Clin. Electrophysiol.20184561862510.1016/j.jacep.2018.02.021 29798789
    [Google Scholar]
  34. KhechinashviliG. AsplundK. Electrocardiographic changes in patients with acute stroke: A systematic review.Cerebrovasc. Dis.2002142677610.1159/000064733 12187009
    [Google Scholar]
  35. FanX. CaoJ. LiM. Stroke related brain–heart crosstalk: Pathophysiology, clinical implications, and underlying mechanisms.Adv. Sci.20241114230769810.1002/advs.202307698 38308187
    [Google Scholar]
  36. KnollmannB.C. RodenD.M. A genetic framework for improving arrhythmia therapy.Nature2008451718192993610.1038/nature06799 18288182
    [Google Scholar]
  37. ChaumontC. SuffeeN. GandjbakhchE. BalseE. AnselmeF. HatemS.N. Epicardial origin of cardiac arrhythmias: Clinical evidences and pathophysiology.Cardiovasc. Res.202211871693170210.1093/cvr/cvab213 34152392
    [Google Scholar]
  38. ZipesD.P. Contemporary approaches to treating arrhythmias.Nat. Rev. Cardiol.2015122686910.1038/nrcardio.2014.211 25533797
    [Google Scholar]
  39. SeifertF. KallmünzerB. GutjahrI. Neuroanatomical correlates of severe cardiac arrhythmias in acute ischemic stroke.J. Neurol.201526251182119010.1007/s00415‑015‑7684‑9 25736554
    [Google Scholar]
  40. MäkikallioA.M. MäkikallioT.H. KorpelainenJ.T. SotaniemiK.A. HuikuriH.V. MyllyläV.V. Heart rate dynamics predict poststroke mortality.Neurology200462101822182610.1212/01.WNL.0000125190.10967.D5 15159485
    [Google Scholar]
  41. YoshimuraS. ToyodaK. OharaT. Takotsubo cardiomyopathy in acute ischemic stroke.Ann. Neurol.200864554755410.1002/ana.21459 18688801
    [Google Scholar]
  42. BeissnerF. MeissnerK. BärK.J. NapadowV. The autonomic brain: An activation likelihood estimation meta-analysis for central processing of autonomic function.J. Neurosci.20133325105031051110.1523/JNEUROSCI.1103‑13.2013 23785162
    [Google Scholar]
  43. OppenheimerS.M. KedemG. MartinW.M. Left-insular cortex lesions perturb cardiac autonomic tone in humans.Clin. Auton. Res.19966313114010.1007/BF02281899 8832121
    [Google Scholar]
  44. OppenheimerS. CechettoD. The insular cortex and the regulation of cardiac function.Compr. Physiol.2016621081113310.1002/cphy.c140076
    [Google Scholar]
  45. OppenheimerS.M. WilsonJ.X. GuiraudonC. CechettoD.F. Insular cortex stimulation produces lethal cardiac arrhythmias: A mechanism of sudden death?Brain Res.1991550111512110.1016/0006‑8993(91)90412‑O 1888988
    [Google Scholar]
  46. ColivicchiF. BassiA. SantiniM. CaltagironeC. Prognostic implications of right-sided insular damage, cardiac autonomic derangement, and arrhythmias after acute ischemic stroke.Stroke20053681710171510.1161/01.STR.0000173400.19346.bd 16020766
    [Google Scholar]
  47. KrauseT. WernerK. FiebachJ.B. Stroke in right dorsal anterior insular cortex Is related to myocardial injury.Ann. Neurol.201781450251110.1002/ana.24906 28253544
    [Google Scholar]
  48. AyH. KoroshetzW.J. BennerT. Neuroanatomic correlates of stroke-related myocardial injury.Neurology20066691325132910.1212/01.wnl.0000206077.13705.6d 16525122
    [Google Scholar]
  49. VargasR.E. SörösP. ShoemakerJ.K. HachinskiV. Human cerebral circuitry related to cardiac control: A neuroimaging meta‐analysis.Ann. Neurol.201679570971610.1002/ana.24642 30240034
    [Google Scholar]
  50. RydénL. SacuiuS. WetterbergH. Atrial fibrillation, stroke, and silent cerebrovascular disease.Neurology20219716e1608e161910.1212/WNL.0000000000012675 34521692
    [Google Scholar]
  51. MakovacE ThayerJF OttavianiC A meta-analysis of noninvasive brain stimulation and autonomic functioning: Implications for brain-heart pathways to cardiovascular disease. Neurosci Biobehav Rev201774Pt B3304110.1016/j.neubiorev.2016.05.001 27185286
    [Google Scholar]
  52. NguyenT. HoehlS. BertenthalB.I. AbneyD.H. Coupling between prefrontal brain activity and respiratory sinus arrhythmia in infants and adults.Dev. Cogn. Neurosci.20225310104710.1016/j.dcn.2021.101047 34933169
    [Google Scholar]
  53. HilzM.J. DevinskyO. SzczepanskaH. BorodJ.C. MartholH. TutajM. Right ventromedial prefrontal lesions result in paradoxical cardiovascular activation with emotional stimuli.Brain2006129123343335510.1093/brain/awl299 17082198
    [Google Scholar]
  54. FerraroS. Klugah-BrownB. TenchC.R. The central autonomic system revisited – Convergent evidence for a regulatory role of the insular and midcingulate cortex from neuroimaging meta-analyses.Neurosci. Biobehav. Rev.202214210491510.1016/j.neubiorev.2022.104915 36244505
    [Google Scholar]
  55. HilzM.J. SchwabS. Stroke-induced sudden-autonomic death: Areas of fatality beyond the insula.Stroke20083992421242210.1161/STROKEAHA.108.518613 18635835
    [Google Scholar]
  56. RinconF. DhamoonM. MoonY. Stroke location and association with fatal cardiac outcomes: Northern Manhattan Study (NOMAS).Stroke20083992425243110.1161/STROKEAHA.107.506055 18635863
    [Google Scholar]
  57. LiouL.M. RugeD. KuoM.C. Functional connectivity between parietal cortex and the cardiac autonomic system in uremics.Kaohsiung J. Med. Sci.201430312513210.1016/j.kjms.2013.11.001 24581212
    [Google Scholar]
  58. LiF. JiaY. Cortical infarction of the right parietal lobe and neurogenic heart disease: A report of three cases.Neural Regen. Res.71294394710.3969/j.issn.1673‑5374.2012.12.011
    [Google Scholar]
  59. WangS.S. YanX.B. HofmanM.A. SwaabD.F. ZhouJ.N. Increased expression level of corticotropin-releasing hormone in the amygdala and in the hypothalamus in rats exposed to chronic unpredictable mild stress.Neurosci. Bull.201026429730310.1007/s12264‑010‑0329‑1 20651811
    [Google Scholar]
  60. SierraG. Acun˜aC. OteroJ. DominguezR. Simultaneous stimulation of limbic system structures.Brain Res.197247111312510.1016/0006‑8993(72)90256‑9 4641263
    [Google Scholar]
  61. TawakolA. IshaiA. TakxR.A.P. Relation between resting amygdalar activity and cardiovascular events: A longitudinal and cohort study.Lancet20173891007183484510.1016/S0140‑6736(16)31714‑7 28088338
    [Google Scholar]
  62. SaperC.B. The central autonomic nervous system: Conscious visceral perception and autonomic pattern generation.Annu. Rev. Neurosci.200225143346910.1146/annurev.neuro.25.032502.111311 12052916
    [Google Scholar]
  63. JiaS. XiaQ. ZhangB. WangL. Involvement of the paraventricular nucleus in the occurrence of arrhythmias in middle cerebral artery occlusion rats.J. Stroke Cerebrovasc. Dis.201524484485110.1016/j.jstrokecerebrovasdis.2014.11.025 25724236
    [Google Scholar]
  64. RogersM.C. AbildskovJ.A. PrestonJ.B. Neurogenic ECG changes in critically ill patients.Crit. Care Med.19731419219610.1097/00003246‑197307000‑00003 4764357
    [Google Scholar]
  65. OppenheimerS.M. SalehT. CechettoD.F. Lateral hypothalamic area neurotransmission and neuromodulation of the specific cardiac effects of insular cortex stimulation.Brain Res.1992581113314210.1016/0006‑8993(92)90352‑A 1354006
    [Google Scholar]
  66. VogtB.A. Pain and emotion interactions in subregions of the cingulate gyrus.Nat. Rev. Neurosci.20056753354410.1038/nrn1704 15995724
    [Google Scholar]
  67. MedfordN. CritchleyH.D. Conjoint activity of anterior insular and anterior cingulate cortex: Awareness and response.Brain Struct. Funct.20102145-653554910.1007/s00429‑010‑0265‑x 20512367
    [Google Scholar]
  68. TaylorK.S. SeminowiczD.A. DavisK.D. Two systems of resting state connectivity between the insula and cingulate cortex.Hum. Brain Mapp.20093092731274510.1002/hbm.20705 19072897
    [Google Scholar]
  69. CritchleyH.D. MathiasC.J. JosephsO. Human cingulate cortex and autonomic control: Converging neuroimaging and clinical evidence.Brain2003126102139215210.1093/brain/awg216 12821513
    [Google Scholar]
  70. MatthewsS.C. PaulusM.P. SimmonsA.N. NelesenR.A. DimsdaleJ.E. Functional subdivisions within anterior cingulate cortex and their relationship to autonomic nervous system function.Neuroimage20042231151115610.1016/j.neuroimage.2004.03.005 15219587
    [Google Scholar]
  71. KamaliA. MilosavljevicS. GandhiA. The cortico-limbo-thalamo-cortical circuits: An update to the original papez circuit of the human limbic system.Brain Topogr.202336337138910.1007/s10548‑023‑00955‑y 37148369
    [Google Scholar]
  72. BarmanS.M. 2019 Ludwig Lecture: Rhythms in sympathetic nerve activity are a key to understanding neural control of the cardiovascular system.Am. J. Physiol. Regul. Integr. Comp. Physiol.20203182R191R20510.1152/ajpregu.00298.2019 31664868
    [Google Scholar]
  73. HamasakiT. YamakawaT. FujiwaraK. Sympathetic hyperactivity, hypertension, and tachycardia induced by stimulation of the ponto-medullary junction in humans.Clin. Neurophysiol.202113261264127310.1016/j.clinph.2021.03.006 33867252
    [Google Scholar]
  74. LinnmanC. MoultonE.A. BarmettlerG. BecerraL. BorsookD. Neuroimaging of the periaqueductal gray: State of the field.Neuroimage201260150552210.1016/j.neuroimage.2011.11.095 22197740
    [Google Scholar]
  75. RozeskeR.R. JercogD. KaralisN. Prefrontal-periaqueductal gray-projecting neurons mediate context fear discrimination.Neuron2018974898910.e610.1016/j.neuron.2017.12.044 29398355
    [Google Scholar]
  76. BehbehaniM.M. Functional characteristics of the midbrain periaqueductal gray.Prog. Neurobiol.199546657560510.1016/0301‑0082(95)00009‑K 8545545
    [Google Scholar]
  77. TaggartP. CritchleyH. LambiaseP.D. Heart-brain interactions in cardiac arrhythmia.Heart201197969870810.1136/hrt.2010.209304 21367742
    [Google Scholar]
  78. DuY. DemillardL.J. RenJ. Catecholamine-induced cardiotoxicity: A critical element in the pathophysiology of stroke-induced heart injury.Life Sci.202128712010610.1016/j.lfs.2021.120106 34756930
    [Google Scholar]
  79. BattagliniD. RobbaC. Lopes da SilvaA. Brain–heart interaction after acute ischemic stroke.Crit. Care202024116310.1186/s13054‑020‑02885‑8 32317013
    [Google Scholar]
  80. KinoshitaK. Traumatic brain injury: Pathophysiology for neurocritical care.J. Intensive Care2016412910.1186/s40560‑016‑0138‑3 27123305
    [Google Scholar]
  81. WangY. QianY. SmerinD. ZhangS. ZhaoQ. XiongX. Newly detected atrial fibrillation after acute stroke: A narrative review of causes and implications.Cardiology20191443-411212110.1159/000502971 31600748
    [Google Scholar]
  82. RuthiragoD. JulayanontP. TantrachotiP. KimJ. NugentK. Cardiac arrhythmias and abnormal electrocardiograms after acute stroke.Am. J. Med. Sci.2016351111211810.1016/j.amjms.2015.10.020 26802767
    [Google Scholar]
  83. MaJ. LuoA. WuL. Calmodulin kinase II and protein kinase C mediate the effect of increased intracellular calcium to augment late sodium current in rabbit ventricular myocytes.Am. J. Physiol. Cell Physiol.20123028C1141C115110.1152/ajpcell.00374.2011 22189558
    [Google Scholar]
  84. ChenP. ZhangL. FengY. Brain-gut axis and psychiatric disorders: A perspective from bibliometric and visual analysis.Front. Immunol.202213104700710.3389/fimmu.2022.1047007 36466907
    [Google Scholar]
  85. NamH.S. Gut microbiota and ischemic stroke: The role of trimethylamine n-oxide.J. Stroke201921215115910.5853/jos.2019.00472 31161760
    [Google Scholar]
  86. SinghV. RothS. LloveraG. Microbiota dysbiosis controls the neuroinflammatory response after stroke.J. Neurosci.201636287428744010.1523/JNEUROSCI.1114‑16.2016 27413153
    [Google Scholar]
  87. YinJ. LiaoS.X. HeY. Dysbiosis of gut microbiota with reduced trimethylamine‐n‐oxide level in patients with large‐artery atherosclerotic stroke or transient ischemic attack.J. Am. Heart Assoc.2015411e00269910.1161/JAHA.115.002699 26597155
    [Google Scholar]
  88. YooB.B. MazmanianS.K. The enteric network: Interactions between the immune and nervous systems of the gut.Immunity201746691092610.1016/j.immuni.2017.05.011 28636959
    [Google Scholar]
  89. HanS. CaiL. ChenP. KuangW. A study of the correlation between stroke and gut microbiota over the last 20years: A bibliometric analysis.Front. Microbiol.202314119175810.3389/fmicb.2023.1191758 37350780
    [Google Scholar]
  90. ZhangW. DongX.Y. HuangR. Gut microbiota in ischemic stroke: Role of gut bacteria-derived metabolites.Transl. Stroke Res.202314681182810.1007/s12975‑022‑01096‑3 36279071
    [Google Scholar]
  91. IadecolaC. BuckwalterM.S. AnratherJ. Immune responses to stroke: Mechanisms, modulation, and therapeutic potential.J. Clin. Invest.202013062777278810.1172/JCI135530 32391806
    [Google Scholar]
  92. ZeiselS.H. WarrierM. Trimethylamine N-oxide, the microbiome, and heart and kidney disease.Annu. Rev. Nutr.201737115718110.1146/annurev‑nutr‑071816‑064732 28715991
    [Google Scholar]
  93. TangW.H.W. WangZ. LevisonB.S. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk.N. Engl. J. Med.2013368171575158410.1056/NEJMoa1109400 23614584
    [Google Scholar]
  94. KomaroffA.L. The microbiome and risk for atherosclerosis.JAMA2018319232381238210.1001/jama.2018.5240 29800043
    [Google Scholar]
  95. WangZ. KlipfellE. BennettB.J. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease.Nature20114727341576310.1038/nature09922 21475195
    [Google Scholar]
  96. ZhuW. GregoryJ.C. OrgE. Gut microbial metabolite tmao enhances platelet hyperreactivity and thrombosis risk.Cell2016165111112410.1016/j.cell.2016.02.011 26972052
    [Google Scholar]
  97. KijpaisalratanaN. AmentZ. BeversM.B. BhaveV.M. Trimethylamine N-oxide and white matter hyperintensity volume among patients with acute ischemic stroke.JAMA Netw. Open2023168e233044610.1001/jamanetworkopen.2023.30446
    [Google Scholar]
  98. MengG. ZhouX. WangM. Gut microbe-derived metabolite trimethylamine N-oxide activates the cardiac autonomic nervous system and facilitates ischemia-induced ventricular arrhythmia via two different pathways.Exp. Biol. Med.20194465666410.1016/j.ebiom.2019.03.066 30954457
    [Google Scholar]
  99. ChengTY LeeTW LiSJ Short-chain fatty acid butyrate against TMAO activating endoplasmic-reticulum stress and PERK/IRE1-axis with reducing atrial arrhythmia. J Adv Res2024S2090-1232(24)00332-1.10.1016/j.jare.2024.08.009 39111622
    [Google Scholar]
  100. NennaA. LaudisioA. TaffonC. Intestinal microbiota and derived metabolites in myocardial fibrosis and postoperative atrial fibrillation.Int. J. Mol. Sci.20242511603710.3390/ijms25116037 38892223
    [Google Scholar]
  101. ObrenovichM. SiddiquiB. McCloskeyB. ReddyV.P. The microbiota–gut–brain axis heart shunt part I: The french paradox, heart disease and the microbiota.Microorganisms20208449010.3390/microorganisms8040490 32235574
    [Google Scholar]
  102. FanH. LiuX. RenZ. Gut microbiota and cardiac arrhythmia.Front. Cell. Infect. Microbiol.202313114768710.3389/fcimb.2023.1147687 37180433
    [Google Scholar]
  103. BenakisC. BreaD. CaballeroS. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells.Nat. Med.201622551652310.1038/nm.4068 27019327
    [Google Scholar]
  104. KaptogeS. SeshasaiS.R.K. GaoP. Inflammatory cytokines and risk of coronary heart disease: New prospective study and updated meta-analysis.Eur. Heart J.201435957858910.1093/eurheartj/eht367 24026779
    [Google Scholar]
  105. van der BiltI.A. VendevilleJ.P. van de HoefT.P. Myocarditis in patients with subarachnoid hemorrhage: A histopathologic study.J. Crit. Care20163219620010.1016/j.jcrc.2015.12.005 26777746
    [Google Scholar]
  106. AcostaS.A. MashkouriS. NwokoyeD. LeeJ.Y. BorlonganC.V. Chronic inflammation and apoptosis propagate in ischemic cerebellum and heart of non-human primates.Oncotarget201786110282010283410.18632/oncotarget.18330 29262526
    [Google Scholar]
  107. DollD. BarrT.L. SimpkinsJ.W. Cytokines: Their role in stroke and potential use as biomarkers and therapeutic targets.Aging Dis.20145529430610.14336/ad.2014.0500294 25276489
    [Google Scholar]
  108. LieszA. ZhouW. MracskóÉ. Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke.Brain2011134370472010.1093/brain/awr008 21354973
    [Google Scholar]
  109. ZamanianJ.L. XuL. FooL.C. Genomic analysis of reactive astrogliosis.J. Neurosci.201232186391641010.1523/JNEUROSCI.6221‑11.2012 22553043
    [Google Scholar]
  110. WuF. LiuZ. ZhouL. Systemic immune responses after ischemic stroke: From the center to the periphery.Front. Immunol.20221391166110.3389/fimmu.2022.911661 36211352
    [Google Scholar]
  111. LindsbergP.J. StrbianD. Karjalainen-LindsbergM.L. Mast cells as early responders in the regulation of acute blood-brain barrier changes after cerebral ischemia and hemorrhage.J. Cereb. Blood Flow Metab.201030468970210.1038/jcbfm.2009.282 20087366
    [Google Scholar]
  112. PedragosaJ. Salas-PerdomoA. GallizioliM. CNS-border associated macrophages respond to acute ischemic stroke attracting granulocytes and promoting vascular leakage.Acta Neuropathol. Commun.2018617610.1186/s40478‑018‑0581‑6 30092836
    [Google Scholar]
  113. AbbottN.J. PatabendigeA.A.K. DolmanD.E.M. YusofS.R. BegleyD.J. Structure and function of the blood–brain barrier.Neurobiol. Dis.2010371132510.1016/j.nbd.2009.07.030 19664713
    [Google Scholar]
  114. JicklingG.C. LiuD. AnderB.P. StamovaB. ZhanX. SharpF.R. Targeting neutrophils in ischemic stroke: Translational insights from experimental studies.J. Cereb. Blood Flow Metab.201535688890110.1038/jcbfm.2015.45 25806703
    [Google Scholar]
  115. BowerN.I. HoganB.M. Brain drains: New insights into brain clearance pathways from lymphatic biology.J. Mol. Med.201896538339010.1007/s00109‑018‑1634‑9 29610928
    [Google Scholar]
  116. YoC.H. LeeS.H. ChangS.S. LeeM.C.H. LeeC.C. Value of high-sensitivity C-reactive protein assays in predicting atrial fibrillation recurrence: A systematic review and meta-analysis.BMJ Open201442e00441810.1136/bmjopen‑2013‑004418 24556243
    [Google Scholar]
  117. LinH.B. WeiG.S. LiF.X. Macrophage–NLRP3 inflammasome activation exacerbates cardiac dysfunction after ischemic stroke in a mouse model of diabetes.Neurosci. Bull.20203691035104510.1007/s12264‑020‑00544‑0 32683554
    [Google Scholar]
  118. ClausenB.H. LambertsenK.L. BabcockA.A. HolmT.H. Dagnaes-HansenF. FinsenB. Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice.J. Neuroinflammation2008514610.1186/1742‑2094‑5‑46 18947400
    [Google Scholar]
  119. BergheT.V. LinkermannA. Jouan-LanhouetS. WalczakH. VandenabeeleP. Regulated necrosis: The expanding network of non-apoptotic cell death pathways.Nat. Rev. Mol. Cell Biol.201415213514710.1038/nrm3737 24452471
    [Google Scholar]
  120. VonderlinN. SiebermairJ. KayaE. KöhlerM. RassafT. WakiliR. Critical inflammatory mechanisms underlying arrhythmias.Herz201944212112910.1007/s00059‑019‑4788‑5 30729269
    [Google Scholar]
  121. DuncanD.J. YangZ. HopkinsP.M. SteeleD.S. HarrisonS.M. TNF-α and IL-1β increase Ca2+ leak from the sarcoplasmic reticulum and susceptibility to arrhythmia in rat ventricular myocytes.Cell Calcium201047437838610.1016/j.ceca.2010.02.002 20227109
    [Google Scholar]
  122. MarchisD.G.M. KatanM. BarroC. Serum neurofilament light chain in patients with acute cerebrovascular events.Eur. J. Neurol.201825356256810.1111/ene.13554 29281157
    [Google Scholar]
  123. BursteinB. NattelS. Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation.J. Am. Coll. Cardiol.200851880280910.1016/j.jacc.2007.09.064 18294563
    [Google Scholar]
  124. LuZ. TengY. WangL. Abnormalities of hippocampus and frontal lobes in heart failure patients and animal models with cognitive impairment or depression: A systematic review.PLoS One20221712e027839810.1371/journal.pone.0278398 36490252
    [Google Scholar]
  125. SilvaniA. Calandra-BuonauraG. DampneyR.A.L. CortelliP. Brain–heart interactions: Physiology and clinical implications.Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci.201637420672015018110.1098/rsta.2015.0181 27044998
    [Google Scholar]
  126. FuhrerH. ReinhardM. NiesenW.D. Paradigm change? cardiac output better associates with cerebral perfusion than blood pressure in ischemic stroke.Front. Neurol.2017870610.3389/fneur.2017.00706 29312128
    [Google Scholar]
  127. ClaassenJ.A.H.R. ThijssenD.H.J. PaneraiR.B. FaraciF.M. Regulation of cerebral blood flow in humans: Physiology and clinical implications of autoregulation.Physiol. Rev.202110141487155910.1152/physrev.00022.2020 33769101
    [Google Scholar]
  128. ChenZ. VenkatP. SeyfriedD. ChoppM. YanT. ChenJ. Brain–heart interaction.Circ. Res.2017121445146810.1161/CIRCRESAHA.117.311170 28775014
    [Google Scholar]
  129. la Fuente-MartínezD.J. Infante-ValenzuelaA. Martínez-RoqueD. Cruz-MorenoM. Góngora-RiveraF. Impact of arrhythmia in hospital mortality in acute ischemic stroke patients: A retrospective cohort study in northern mexico.J. Stroke Cerebrovasc. Dis.202231210625910.1016/j.jstrokecerebrovasdis.2021.106259 34923436
    [Google Scholar]
  130. RaedtD.S. VosD.A. KeyserD.J. Autonomic dysfunction in acute ischemic stroke: An underexplored therapeutic area?J. Neurol. Sci.20153481-2243410.1016/j.jns.2014.12.007 25541326
    [Google Scholar]
  131. SposatoL.A. CiprianoL.E. SaposnikG. VargasE.R. RiccioP.M. HachinskiV. Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: A systematic review and meta-analysis.Lancet Neurol.201514437738710.1016/S1474‑4422(15)70027‑X 25748102
    [Google Scholar]
  132. GoldsteinDS .Neuroscience and heart-brain medicine: The year in review. Cleve Clin J Med201077(7 suppl 3)(Suppl. 3): S34-910.3949/ccjm.77.s3.06 20622073
    [Google Scholar]
  133. CritchleyH.D. TaggartP. SuttonP.M. Mental stress and sudden cardiac death: Asymmetric midbrain activity as a linking mechanism.Brain20041281758510.1093/brain/awh324 15496434
    [Google Scholar]
  134. MeyerS. StrittmatterM. FischerC. GeorgT. SchmitzB. Lateralization in autononic dysfunction in ischemic stroke involving the insular cortex.Neuroreport200415235736110.1097/00001756‑200402090‑00029 15076768
    [Google Scholar]
  135. TokgözogluS.L. BaturM.K. TopçuogluM.A. SaribasO. KesS. OtoA. Effects of stroke localization on cardiac autonomic balance and sudden death.Stroke19993071307131110.1161/01.STR.30.7.1307 10390300
    [Google Scholar]
  136. CoxW.V. LewistonM. RobertsonH.F. The effect of stellate ganglionectomy on the cardiac function of intact dogs.Am. Heart J.193612328530010.1016/S0002‑8703(36)91122‑5
    [Google Scholar]
  137. YoonM.S. HanJ. TseW.W. RogersR. Effects of vagal stimulation, atropine, and propranolol on fibrillation threshold of normal and ischemic ventricles.Am. Heart J.1977931606510.1016/S0002‑8703(77)80172‑5 831412
    [Google Scholar]
  138. GroverG.J. HoughtonJ.M. WeissH.R. Propranolol and thyroxine-induced hypertrophic rabbit hearts: Effect on heart size and regional O2 supply/consumption variables.Basic Res. Cardiol.198883326827610.1007/BF01907360 2970840
    [Google Scholar]
  139. KinnanderG. ViitanenM. AsplundK. Beta-adrenergic blockade after stroke. A preliminary closed cohort study.Stroke198718124024310.1161/01.STR.18.1.240 2880414
    [Google Scholar]
  140. LambertsenK.L. FinsenB. ClausenB.H. Post-stroke inflammation—target or tool for therapy?Acta Neuropathol.2019137569371410.1007/s00401‑018‑1930‑z 30483945
    [Google Scholar]
  141. SimatsA. LieszA. Systemic inflammation after stroke: Implications for post‐stroke comorbidities.EMBO Mol. Med.2022149e1626910.15252/emmm.202216269 35971650
    [Google Scholar]
  142. SmithC.J. HulmeS. VailA. SCIL-stroke (subcutaneous interleukin-1 receptor antagonist in ischemic stroke).Stroke20184951210121610.1161/STROKEAHA.118.020750 29567761
    [Google Scholar]
  143. PradilloJ.M. MurrayK.N. CouttsG.A. Reparative effects of interleukin-1 receptor antagonist in young and aged/co-morbid rodents after cerebral ischemia.Brain Behav. Immun.20176111712610.1016/j.bbi.2016.11.013 27856349
    [Google Scholar]
  144. Silva-CutiniM.A. AlmeidaS.A. NascimentoA.M. Long-term treatment with kefir probiotics ameliorates cardiac function in spontaneously hypertensive rats.J. Nutr. Biochem.201966798510.1016/j.jnutbio.2019.01.006 30776608
    [Google Scholar]
  145. BrennerL.A. Stearns-YoderK.A. HoffbergA.S. Growing literature but limited evidence: A systematic review regarding prebiotic and probiotic interventions for those with traumatic brain injury and/or posttraumatic stress disorder.Brain Behav. Immun.201765576710.1016/j.bbi.2017.06.003 28606462
    [Google Scholar]
  146. KayamaH. OkumuraR. TakedaK. Interaction between the microbiota, epithelia, and immune cells in the intestine.Annu. Rev. Immunol.2020381234810.1146/annurev‑immunol‑070119‑115104 32340570
    [Google Scholar]
  147. MartinF.P.J. WangY. SprengerN. Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse model.Mol. Syst. Biol.20084115710.1038/msb4100190 18197175
    [Google Scholar]
  148. PattiG. BennettR. SeshasaiS.R.K. Statin pretreatment and risk of in-hospital atrial fibrillation among patients undergoing cardiac surgery: A collaborative meta-analysis of 11 randomized controlled trials.Europace201517685586310.1093/europace/euv001 25733550
    [Google Scholar]
  149. Jamshidnejad-TosaramandaniT. KashanianS. Al-SabriM.H. Statins and cognition: Modifying factors and possible underlying mechanisms.Front. Aging Neurosci.20221496803910.3389/fnagi.2022.968039 36046494
    [Google Scholar]
  150. ZhaoQ. YuS. HuangH. Effects of renal sympathetic denervation on the development of atrial fibrillation substrates in dogs with pacing-induced heart failure.Int. J. Cardiol.201316821672167310.1016/j.ijcard.2013.03.091 23597574
    [Google Scholar]
  151. OgawaM. TanA.Y. SongJ. Cryoablation of stellate ganglia and atrial arrhythmia in ambulatory dogs with pacing-induced heart failure.Heart Rhythm20096121772177910.1016/j.hrthm.2009.08.011 19959128
    [Google Scholar]
  152. WangY. HeS. XiongX. Left stellate ganglion ablation inhibits ventricular arrhythmias through macrophage regulation in canines with acute ischemic stroke.Int. J. Med. Sci.202118489190110.7150/ijms.50976 33456346
    [Google Scholar]
  153. ZhaoQ. YuS. ZouM. Effect of renal sympathetic denervation on the inducibility of atrial fibrillation during rapid atrial pacing.J. Interv. Card. Electrophysiol.201235211912510.1007/s10840‑012‑9717‑y 22869391
    [Google Scholar]
  154. StavrakisS. StonerJ.A. HumphreyM.B. Treat AF (transcutaneous electrical vagus nerve stimulation to suppress atrial fibrillation).JACC Clin. Electrophysiol.20206328229110.1016/j.jacep.2019.11.008 32192678
    [Google Scholar]
  155. ShengX. ScherlagB.J. YuL. Prevention and reversal of atrial fibrillation inducibility and autonomic remodeling by low-level vagosympathetic nerve stimulation.J. Am. Coll. Cardiol.201157556357110.1016/j.jacc.2010.09.034 21272747
    [Google Scholar]
  156. ShenM.J. Hao-CheChang ParkH.W. Low-level vagus nerve stimulation upregulates small conductance calcium-activated potassium channels in the stellate ganglion.Heart Rhythm201310691091510.1016/j.hrthm.2013.01.029 23357541
    [Google Scholar]
  157. HadayaJ. DajaniA.H. ChaS. Vagal nerve stimulation reduces ventricular arrhythmias and mitigates adverse neural cardiac remodeling post–myocardial infarction.JACC Basic Transl. Sci.2023891100111810.1016/j.jacbts.2023.03.025 37791302
    [Google Scholar]
  158. StavrakisS. HumphreyM.B. ScherlagB.J. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation.J. Am. Coll. Cardiol.201565986787510.1016/j.jacc.2014.12.026 25744003
    [Google Scholar]
  159. WangM. PanW. XuY. ZhangJ. WanJ. JiangH. Microglia-mediated neuroinflammation: A potential target for the treatment of cardiovascular diseases.J. Inflamm. Res.2022153083309410.2147/JIR.S350109 35642214
    [Google Scholar]
  160. CherryJ.D. OlschowkaJ.A. O’BanionM.K. Neuroinflammation and M2 microglia: The good, the bad, and the inflamed.J. Neuroinflammation20141119810.1186/1742‑2094‑11‑98 24889886
    [Google Scholar]
  161. LeeH.I. LeeS.W. KimN.G. Low‐level light emitting diode (LED) therapy suppresses inflammasome‐mediated brain damage in experimental ischemic stroke.J. Biophotonics201710111502151310.1002/jbio.201600244 28164443
    [Google Scholar]
  162. WangS. LuoQ. ChenH. Light emitting diode therapy protects against myocardial ischemia/reperfusion injury through mitigating neuroinflammation.Oxid. Med. Cell. Longev.202020201810.1155/2020/9343160 32963707
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X363465250407072854
Loading
/content/journals/ccr/10.2174/011573403X363465250407072854
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): arrhythmia; brain damage; brain-heart axis; heart disease; Stroke; systemic inflammation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test