Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Cancer immunotherapy is based on immune checkpoint inhibitors (ICIs) and has brought a revolution in oncology with promising treatment possibilities for diverse cancers. Yet, immune-related adverse events (irAEs) frequently limit the clinical efficacy of ICIs, with cardiotoxicity representing a significant salient consequence. These ICI side-effects underscore the need for well-established models for the assessment of cardiac risk. This review proposes a risk evaluation strategy that uses biomarkers, non-invasive imaging, and individual patient data. The goal is to elucidate the mechanism through which immune-related adverse events affecting the heart might arise, and the need for predictive tools to better tailor treatment regimens to increase both safety and efficacy. Biomarkers play a vital role in the detection and prevention of heart-related side effects,  which means adequate intervention while preserving therapeutic outcomes. Moreover, the study discusses the acknowledgement of novel treatment regimens and the ability of integration of artificial intelligence (AI) and machine learning (ML) to improve the assessment of risk. AI/ML tools are experts at synthesizing heterogeneous datasets to reveal patterns and risk factors, providing clinicians with powerful capabilities to enhance safety and efficacy. This paper aims to develop sound risk assessment models to enhance both the safety and efficacy of cancer immunotherapies by exploring various strategies and interactions in immunotherapy.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X353300250407090657
2025-04-23
2025-10-12
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. LiL. ShanT. ZhangD. MaF. Nowcasting and forecasting global aging and cancer burden: Analysis of data from the globocan and global burden of disease study.J. Natl. Cancer Cent.20244322323210.1016/j.jncc.2024.05.002
    [Google Scholar]
  3. RastinF. OryaniM.A. IranpourS. JavidH. HashemzadehA. Karimi-ShahriM. A new era in cancer treatment: Harnessing ZIF-8 nanoparticles for PD-1 inhibitor delivery.J. Mater. Chem. B Mater. Biol. Med.202312487289410.1039/d3tb02471g 38193564
    [Google Scholar]
  4. SinghS. HassanD. AldawsariH.M. MoluguluN. ShuklaR. KesharwaniP. Immune checkpoint inhibitors: A promising anticancer therapy.Drug Discov. Today202025122322910.1016/j.drudis.2019.11.003 31738877
    [Google Scholar]
  5. PardollD.M. The blockade of immune checkpoints in cancer immunotherapy.Nat. Rev. Cancer201212425226410.1038/nrc3239 22437870
    [Google Scholar]
  6. AboudK. MeissnerM. OcenJ. JonesR. Cytotoxic chemotherapy: Clinical aspects.Medicine202348297102
    [Google Scholar]
  7. SiaJ. SzmydR. HauE. GeeH.E. Molecular mechanisms of radiation-induced cancer cell death: A primer.Front. Cell Dev. Biol.202084110.3389/fcell.2020.00041 32117972
    [Google Scholar]
  8. WeiS.C. DuffyC.R. AllisonJ.P. Fundamental mechanisms of immune checkpoint blockade therapy.Cancer Discov.2018891069108610.1158/2159‑8290.CD‑18‑0367 30115704
    [Google Scholar]
  9. JainA. HariprasadM.G. ShariqueM. RedhwanM.A.M. Chemotherapy-induced peripheral neuropathy.Indian J Pharm Educ Res202357234235310.5530/ijper.57.2.44
    [Google Scholar]
  10. FryR.J.M. HallE.J. Radiobiology for the radiologist.Radiat. Res.199514116
    [Google Scholar]
  11. GonzalezH. HagerlingC. WerbZ. Roles of the immune system in cancer: From tumor initiation to metastatic progression.Genes Dev.20183219-201267128410.1101/gad.314617.118 30275043
    [Google Scholar]
  12. WeiG. WangY. YangG. WangY. JuR. Recent progress in nanomedicine for enhanced cancer chemotherapy.Theranostics202111136370639210.7150/thno.57828 33995663
    [Google Scholar]
  13. FormentiS.C. DemariaS. Systemic effects of local radiotherapy.Lancet Oncol.200910771872610.1016/S1470‑2045(09)70082‑8 19573801
    [Google Scholar]
  14. LiuW. LuoZ. LiuY. SunB. Current landscape and tailored management of immune-related adverse events.Front. Pharmacol.202314107833810.3389/fphar.2023.1078338 36950013
    [Google Scholar]
  15. WheelerH.E. MaitlandM.L. DolanM.E. CoxN.J. RatainM.J. Cancer pharmacogenomics: Strategies and challenges.Nat. Rev. Genet.2013141233410.1038/nrg3352 23183705
    [Google Scholar]
  16. HallE.J. GiacciaA.J. Radiobiology for the radiologist.7th edRadiobiol Radiol2012
    [Google Scholar]
  17. ZhangL. ReynoldsK.L. LyonA.R. PalaskasN. NeilanT.G. The evolving immunotherapy landscape and the epidemiology, diagnosis, and management of cardiotoxicity.JACC Cardiooncol.202131354710.1016/j.jaccao.2020.11.012 33842895
    [Google Scholar]
  18. BallS. GhoshR.K. WongsaengsakS. Cardiovascular toxicities of immune checkpoint inhibitors.J. Am. Coll. Cardiol.201974131714172710.1016/j.jacc.2019.07.079 31558256
    [Google Scholar]
  19. KondapalliL. HsiaJ. MillerR. FlaigT.W. BonacaM.P. Burden of cardiovascular disease in immune checkpoint inhibitor–treated patients.JACC Cardiooncol.20224564965610.1016/j.jaccao.2022.09.003 36636437
    [Google Scholar]
  20. KhungerA. BattelL. WadhawanA. MoreA. KapoorA. AgrawalN. New insights into mechanisms of immune checkpoint inhibitor-induced cardiovascular toxicity.Curr. Oncol. Rep.20202276510.1007/s11912‑020‑00925‑8 32514647
    [Google Scholar]
  21. TajiriK. IedaM. Cardiac complications in immune checkpoint inhibition therapy.Front. Cardiovasc. Med.20196310.3389/fcvm.2019.00003 30729114
    [Google Scholar]
  22. IsawaT. ToiY. SugawaraS. TaguriM. ToyodaS. Incidence, clinical characteristics, and predictors of cardiovascular immune-related adverse events associated with immune checkpoint inhibitors.Oncologist2022275e410e41910.1093/oncolo/oyac056 35348766
    [Google Scholar]
  23. KwanJ.M. ShenM. AkhlaghiN. HuJ.R. MoraR. CrossJ.L. Adverse cardiovascular events related to immune checkpoint inhibitors.PLoS One20241911510.1371/journal.pone.0314555 39621799
    [Google Scholar]
  24. SlomkaP.J. DeyD. SitekA. MotwaniM. BermanD.S. GermanoG. Cardiac imaging: Working towards fully-automated machine analysis & interpretation.Expert Rev. Med. Devices201714319721210.1080/17434440.2017.1300057 28277804
    [Google Scholar]
  25. DreyfusB. HeilbronerS.P. FewR. KrattC. GomezA. Predicting cardiac adverse events in patients receiving immune checkpoint inhibitors: A machine learning approach.J. Clin. Oncol.20203815Suppl.e1507510.1200/JCO.2020.38.15_suppl.e15075
    [Google Scholar]
  26. HeilbronerS.P. FewR. NeilanT.G. Predicting cardiac adverse events in patients receiving immune checkpoint inhibitors: A machine learning approach.J. Immunother. Cancer2021910e00254510.1136/jitc‑2021‑002545 34607896
    [Google Scholar]
  27. ZituM. Gatti-maysM.E. JohnsonK.C. ZhangS. ShendreA. ElsaidM.I. Detection of patient-level immunotherapy-related adverse events (irAEs) from clinical narratives of electronic health records: A high-sensitivity artificial intelligence model.Pragmat. Obs. Res.202424325210.2147/POR.S468253
    [Google Scholar]
  28. LiX. PengW. WuJ. YeungS.C.J. YangR. Advances in immune checkpoint inhibitors induced-cardiotoxicity.Front. Immunol.202314113043810.3389/fimmu.2023.1130438 36911712
    [Google Scholar]
  29. WangD. BauersachsJ. BerlinerD. Immune checkpoint inhibitor associated myocarditis and cardiomyopathy: A translational review.Biology202312347210.3390/biology12030472
    [Google Scholar]
  30. LiuG. ChenT. ZhangX. HuB. ShiH. Immune checkpoint inhibitor-associated cardiovascular toxicities: A review.Heliyon2024105e2574710.1016/j.heliyon.2024.e25747 38434280
    [Google Scholar]
  31. GergelyT.G. DrobniZ.D. KallikourdisM. Immune checkpoints in cardiac physiology and pathology: Therapeutic targets for heart failure.Nat. Rev. Cardiol.202421744346210.1038/s41569‑023‑00986‑9 38279046
    [Google Scholar]
  32. WaheedN. FradleyM.G. DeRemerD.L. Newly diagnosed cardiovascular disease in patients treated with immune checkpoint inhibitors: A retrospective analysis of patients at an academic tertiary care center.Cardiooncology2021711010.1186/s40959‑021‑00097‑9 33736707
    [Google Scholar]
  33. FayA.P. MoreiraR.B. FilhoN.P.R.S. AlbuquerqueC. BarriosC.H. The management of immune-related adverse events associated with immune checkpoint blockade.Expert Rev. Qual. Life Cancer Care201611899710.1080/23809000.2016.1142827
    [Google Scholar]
  34. PostowM.A. SidlowR. HellmannM.D. Immune-related adverse events associated with immune checkpoint blockade.N. Engl. J. Med.2018378215816810.1056/NEJMra1703481 29320654
    [Google Scholar]
  35. AlissafiT. HatzioannouA. LegakiA.I. VarveriA. VerginisP. Balancing cancer immunotherapy and immune-related adverse events: The emerging role of regulatory T cells.J. Autoimmun.201910410231010.1016/j.jaut.2019.102310 31421963
    [Google Scholar]
  36. BergR.E. FormanJ. The role of CD8 T cells in innate immunity and in antigen non-specific protection.Curr. Opin. Immunol.200618333834310.1016/j.coi.2006.03.010 16616476
    [Google Scholar]
  37. SwirskiF.K. NahrendorfM. Cardioimmunology: The immune system in cardiac homeostasis and disease.Nat. Rev. Immunol.2018181273374410.1038/s41577‑018‑0065‑8 30228378
    [Google Scholar]
  38. GrabieN. LichtmanA.H. PaderaR. T cell checkpoint regulators in the heart.Cardiovasc. Res.2019115586987710.1093/cvr/cvz025 30721928
    [Google Scholar]
  39. TschöpeC. AmmiratiE. BozkurtB. Myocarditis and inflammatory cardiomyopathy: Current evidence and future directions.Nat. Rev. Cardiol.202118316919310.1038/s41569‑020‑00435‑x 33046850
    [Google Scholar]
  40. WangE. ZhouR. LiT. The molecular role of immune cells in dilated cardiomyopathy.Medicina2023597124610.3390/medicina59071246 37512058
    [Google Scholar]
  41. CaforioA.L.P. PankuweitS. ArbustiniE. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: A position statement of the european society of cardiology working group on myocardial and pericardial diseases.Eur. Heart J.201334332636264810.1093/eurheartj/eht210 23824828
    [Google Scholar]
  42. GanatraS. DaniS.S. YangE.H. ZahaV.G. NohriaA. Cardiotoxicity of T-cell antineoplastic therapies.JACC Cardiooncol.20224561662310.1016/j.jaccao.2022.07.014 36636447
    [Google Scholar]
  43. AlviR.M. FrigaultM.J. FradleyM.G. Cardiovascular events among adults treated with chimeric antigen receptor T-cells (CAR-T).J. Am. Coll. Cardiol.201974253099310810.1016/j.jacc.2019.10.038 31856966
    [Google Scholar]
  44. ZygadłoJ. ProcykG. BalsamP. LodzińskiP. GrabowskiM. GąseckaA. Autoantibodies in atrial fibrillation—state of the art.Int. J. Mol. Sci.2023243185210.3390/ijms24031852 36768174
    [Google Scholar]
  45. SimbaquebaC.C. AponteM.P. KimP. Cardiovascular complications of chimeric antigen receptor t-cell therapy: The cytokine release syndrome and associated arrhythmias.J. Immunother. Precis. Oncol.20203311312010.36401/JIPO‑20‑10 35663258
    [Google Scholar]
  46. XiaoX. HuangS. ChenS. Mechanisms of cytokine release syndrome and neurotoxicity of CAR T-cell therapy and associated prevention and management strategies.J. Exp. Clin. Cancer Res.202140136710.1186/s13046‑021‑02148‑6 34794490
    [Google Scholar]
  47. AldossI. KhaledS.K. BuddeE. SteinA.S. Cytokine release syndrome with the novel treatments of acute lymphoblastic leukemia: Pathophysiology, prevention, and treatment.Curr. Oncol. Rep.2019211410.1007/s11912‑019‑0753‑y 30666425
    [Google Scholar]
  48. SilveiraC.R.F. CorveloniA.C. CarusoS.R. Cytokines as an important player in the context of CAR-T cell therapy for cancer: Their role in tumor immunomodulation, manufacture, and clinical implications.Front. Immunol.20221394764810.3389/fimmu.2022.947648 36172343
    [Google Scholar]
  49. ZhangH. DhallaN.S. The role of pro-inflammatory cytokines in the pathogenesis of cardiovascular disease.Int. J. Mol. Sci.2024252108210.3390/ijms25021082 38256155
    [Google Scholar]
  50. LuoY. ZhengS.G. Hall of fame among pro-inflammatory cytokines: Interleukin-6 gene and its transcriptional regulation mechanisms.Front. Immunol.2016760410.3389/fimmu.2016.00604 28066415
    [Google Scholar]
  51. MalekiS. EsmaeiliZ. SeighaliN. Cardiac adverse events after chimeric antigen receptor (CAR) T cell therapies: An updated systematic review and meta-analysis.Cardiooncology20241015210.1186/s40959‑024‑00252‑y 39164789
    [Google Scholar]
  52. PuriR.K. TravisW.D. RosenbergS.A. Decrease in interleukin 2-induced vascular leakage in the lungs of mice by administration of recombinant interleukin 1α in vivo.Cancer Res.1989494969976 2783561
    [Google Scholar]
  53. FreyN. PorterD. Cytokine release syndrome with chimeric antigen receptor T cell therapy.Biol. Blood Marrow Transplant.2019254e123e12710.1016/j.bbmt.2018.12.756 30586620
    [Google Scholar]
  54. MalikA. KannegantiT.D. Function and regulation of IL‐1α in inflammatory diseases and cancer.Immunol. Rev.2018281112413710.1111/imr.12615 29247991
    [Google Scholar]
  55. KuwabaraT. IshikawaF. KondoM. KakiuchiT. The role of IL-17 and related cytokines in inflammatory autoimmune diseases.Mediators Inflamm.20172017390806110.1155/2017/3908061
    [Google Scholar]
  56. VistnesM. WæhreA. NygårdS. Circulating cytokine levels in mice with heart failure are etiology dependent.J. Appl. Physiol.201010851357136410.1152/japplphysiol.01084.2009 20224000
    [Google Scholar]
  57. AndresS.M. RamalingamS. LyonA.R. Cardiovascular complications of immune checkpoint inhibitors, TILs and CAR T-cell therapies.J Card Pract202119114
    [Google Scholar]
  58. SarocchiM. GrossiF. ArboscelloE. Serial troponin for early detection of nivolumab cardiotoxicity in advanced non-small cell lung cancer patients.Oncologist201823893694210.1634/theoncologist.2017‑0452 29567824
    [Google Scholar]
  59. FerrerosP. TraperoI. Interleukin inhibitors in cytokine release syndrome and neurotoxicity secondary to CAR-T therapy.Diseases20221034110.3390/diseases10030041 35892735
    [Google Scholar]
  60. Urrego-CallejasT. Soto-RestrepoJ.F. Sandoval-ÁlvarezS. Chvatal-MedinaM. GómezR. VásquezG. Autoantibodies: A manifestation of immune related adverse events of cancer immunotherapy.Rev. Colomb. Reumatol.202229138
    [Google Scholar]
  61. WonT. KalinoskiH.M. WoodM.K. Cardiac myosin-specific autoimmune T cells contribute to immune-checkpoint-inhibitor-associated myocarditis.Cell Rep.202241611161110.1016/j.celrep.2022.111611 36351411
    [Google Scholar]
  62. Rubio-InfanteN. Ramírez-FloresY.A. CastilloE.C. LozanoO. García-RivasG. Torre-AmioneG. A systematic review of the mechanisms involved in immune checkpoint inhibitors cardiotoxicity and challenges to improve clinical safety.Front. Cell Dev. Biol.20221085103210.3389/fcell.2022.851032 35433707
    [Google Scholar]
  63. Müller-JensenL. KnaussS. RoqueG.L. Autoantibody profiles in patients with immune checkpoint inhibitor-induced neurological immune related adverse events.Front. Immunol.202314110811610.3389/fimmu.2023.1108116 36845122
    [Google Scholar]
  64. SuzukiS. IshikawaN. KonoedaF. Nivolumab-related myasthenia gravis with myositis and myocarditis in Japan.Neurology201789111127113410.1212/WNL.0000000000004359 28821685
    [Google Scholar]
  65. ChaconD. Heydari-KamjaniM. CragnottiG. A broken heart: A case of ipilimumab and nivolumab-induced myocarditis.Chest20241664A309A31010.1016/j.chest.2024.06.236
    [Google Scholar]
  66. WeberJ. Review: Anti-CTLA-4 antibody ipilimumab: Case studies of clinical response and immune-related adverse events.Oncologist200712786487210.1634/theoncologist.12‑7‑864 17673617
    [Google Scholar]
  67. MincuRI PohlJ MrotzekS Left ventricular global longitudinal strain reduction in patients with melanoma and extra-cardiac immune-related adverse events during immune checkpoint inhibitor therapy.Eur Heart J202041Suppl. 2ehaa946.3261.10.1093/ehjci/ehaa946.3261
    [Google Scholar]
  68. TamuraY. TamuraY. Usefulness of longitudinal strain to assess cancer therapy-related cardiac dysfunction and immune checkpoint inhibitor-induced myocarditis.Pharmaceuticals (Basel)2023169129710.3390/ph16091297 37765105
    [Google Scholar]
  69. ZamamiY. NiimuraT. OkadaN. Factors associated with immune checkpoint inhibitor–related myocarditis.JAMA Oncol.20195111635163710.1001/jamaoncol.2019.3113 31436802
    [Google Scholar]
  70. LiuY. WuW. Cardiovascular immune‐related adverse events: Evaluation, diagnosis and management.Asia Pac. J. Clin. Oncol.202016423224010.1111/ajco.13326 32129935
    [Google Scholar]
  71. EderhyS. SalemJ.E. DercleL. Role of cardiac imaging in the diagnosis of immune checkpoints inhibitors related myocarditis.Front. Oncol.20211164098510.3389/fonc.2021.640985 34055610
    [Google Scholar]
  72. ConroyM. NaidooJ. Immune-related adverse events and the balancing act of immunotherapy.Nat. Commun.202213139210.1038/s41467‑022‑27960‑2 35046403
    [Google Scholar]
  73. BaikA.H. TsaiK.K. OhD.Y. ArasM.A. Mechanisms and clinical manifestations of cardiovascular toxicities associated with immune checkpoint inhibitors.Clin. Sci.2021135570372410.1042/CS20200331 33686402
    [Google Scholar]
  74. MurtaghG. deFilippiC. ZhaoQ. BaracA. Circulating biomarkers in the diagnosis and prognosis of immune checkpoint inhibitor-related myocarditis: Time for a risk-based approach.Front. Cardiovasc. Med.202411135058510.3389/fcvm.2024.1350585 38410245
    [Google Scholar]
  75. ShalataW. AttalZ.G. ShhadiR. Tolerated re-challenge of immunotherapy in a patient with ICI associated myocarditis: A case report and literature review.Medicina20235911194610.3390/medicina59111946 38003995
    [Google Scholar]
  76. ThunyF. BonacaM.P. CautelaJ. What is the evidence of the diagnostic criteria and screening of immune checkpoint inhibitor–induced myocarditis?JACC Cardiooncol.20224562462810.1016/j.jaccao.2022.06.008 36636431
    [Google Scholar]
  77. SinghS. NumanA. CintiS. Electrochemical nano biosensors for the detection of extracellular vesicles exosomes: From the benchtop to everywhere?Biosens. Bioelectron.202221611463510.1016/j.bios.2022.114635 35988430
    [Google Scholar]
  78. SinghS. MiglioneA. RaucciA. NumanA. CintiS. Towards sense and sensitivity-based electrochemical biosensors for liquid biopsy-based breast cancer detection.Trends Analyt. Chem.202316311705010.1016/j.trac.2023.117050
    [Google Scholar]
  79. JiaX.H. GengL.Y. JiangP.P. The biomarkers related to immune related adverse events caused by immune checkpoint inhibitors.J. Exp. Clin. Cancer Res.202039128410.1186/s13046‑020‑01749‑x 33317597
    [Google Scholar]
  80. TaghdiriA. Cardiovascular biomarkers: Exploring troponin and BNP applications in conditions related to carbon monoxide exposure Egypt.Hear. J.2024761910.1186/s43044‑024‑00446‑w
    [Google Scholar]
  81. JingY. YangJ. JohnsonD.B. MoslehiJ.J. HanL. Harnessing big data to characterize immune-related adverse events.Nat. Rev. Clin. Oncol.202219426928010.1038/s41571‑021‑00597‑8 35039679
    [Google Scholar]
  82. LiJ. ChenJ. LanH. TangY. Role of C-reactive protein in kidney diseases.Kidney Dis.202392738110.1159/000528693 37065607
    [Google Scholar]
  83. OnoderaR. ChibaS. NiheiS. High level of C-reactive protein as a predictive factor for immune-related adverse events of immune checkpoint inhibitors in non-small cell lung cancer: A retrospective study.J. Thorac. Dis.20231584237424710.21037/jtd‑23‑85 37691668
    [Google Scholar]
  84. IzumiT. NishiiM. Diagnostic and prognostic biomarkers in acute myocarditis.Herz201237662763110.1007/s00059‑012‑3661‑6 22941230
    [Google Scholar]
  85. AmiokaN. NakamuraK. KimuraT. Pathological and clinical effects of interleukin-6 on human myocarditis.J. Cardiol.202178215716510.1016/j.jjcc.2021.03.003 33814251
    [Google Scholar]
  86. SinghS. GillA.A.S. NlootoM. KarpoormathR. Prostate cancer biomarkers detection using nanoparticles based electrochemical biosensors.Biosens. Bioelectron.201913721322110.1016/j.bios.2019.03.065 31100601
    [Google Scholar]
  87. SmithS.C. LadensonJ.H. MasonJ.W. JaffeA.S. Elevations of cardiac troponin I associated with myocarditis. Experimental and clinical correlates.Circulation199795116316810.1161/01.CIR.95.1.163 8994432
    [Google Scholar]
  88. MalhotraA. Role of regulatory proteins (troponin-tropomyosin) in pathologic states.Mol. Cell. Biochem.19941351435010.1007/BF00925959 7816055
    [Google Scholar]
  89. WuA.H.B. Release of cardiac troponin from healthy and damaged myocardium Front.Lab. Med.20171314415010.1016/j.flm.2017.09.003
    [Google Scholar]
  90. TalukderS. GhoseA. ChakrabortyT. Olsson-BrownA. RamalingamS. RosenS.D. Evolving cardiac biomarkers for immune checkpoint inhibitor related myocarditis in cancer patients.Int. J. Cardiol. Heart Vasc.20234910127810.1016/j.ijcha.2023.101278
    [Google Scholar]
  91. WestwoodM. RamaekersB. GrimmS. WorthyG. FayterD. ArmstrongN. High-sensitivity troponin assays for early rule-out of acute myocardial infarction in people with acute chest pain: A systematic review and economic evaluation.Health Technol. Assess.20212533127610.3310/hta25330
    [Google Scholar]
  92. RørthR. JhundP.S. YilmazM.B. KristensenS.L. WelshP. DesaiA.S. Comparison of BNP and NT-proBNP in patients with heart failure and reduced ejection fraction.Circ. Heart Fail.2020132e00654110.1161/CIRCHEARTFAILURE.119.006541
    [Google Scholar]
  93. LiuX. AbudukeremuA. YuP. Usefulness of B‐type natriuretic peptide for predicting the risk of stroke in patients with heart failure with preserved ejection fraction.J. Am. Heart Assoc.20221115e02430210.1161/JAHA.121.024302 35904188
    [Google Scholar]
  94. TsurudaT. YoshikawaN. KaiM. The cytokine expression in patients with cardiac complication after immune checkpoint inhibitor therapy.Intern. Med.202160342342910.2169/internalmedicine.5317‑20 32963156
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X353300250407090657
Loading
/content/journals/ccr/10.2174/011573403X353300250407090657
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test