Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

RAS proteins are critical in cellular signal transduction, influencing cell proliferation, differentiation, and survival. While extensively studied for their role in cancer, RAS gene mutations also contribute significantly to cardiovascular diseases, such as hypertrophic cardiomyopathy, pulmonary valve stenosis, and atrial septal defects. Despite their similar primary structures, RAS proteins exhibit distinct functions in cardiac biology: H-RAS regulates cardiomyocyte size, K-RAS governs proliferation, and N-RAS, less associated with cardiac defects, is understudied in cardiac cells. Congenital RAS mutations, collectively known as RASopathies, include syndromes, like Noonan syndrome and cardio-facio-cutaneous syndrome, which often lead to severe cardiac complications, including heart failure. Genetic testing and imaging advances have improved the diagnosis and management of these conditions. Recent research has shown promise with MEK inhibitors and other targeted therapies, offering potential improvements in managing RAS-related cardiac conditions. This review explores the role of the RAS subfamily in heart disease, highlighting key concepts and potential therapeutic targets. PubMed database was searched using keywords, such as RASopathies, RAS gene mutations, cardiac hypertrophy, cardiovascular disease, RAS/MAPK pathway, congenital heart disease, and more. Relevant literature up to June 2024 was examined and summarized, consisting of data from various clinical trials, meta-analyses, retrospective/prospective cohort studies, and current guidelines.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X341624250324164700
2025-03-28
2025-10-12
Loading full text...

Full text loading...

References

  1. WennerbergK. RossmanK.L. DerC.J. The Ras superfamily at a glance.J. Cell Sci.2005118584384610.1242/jcs.01660 15731001
    [Google Scholar]
  2. PriorI.A. LewisP.D. MattosC. A comprehensive survey of Ras mutations in cancer.Cancer Res.201272102457246710.1158/0008‑5472.CAN‑11‑2612 22589270
    [Google Scholar]
  3. Ramos-KuriM. MekaS.H. Salamanca-BuentelloF. HajjarR.J. LipskaiaL. ChemalyE.R. Molecules linked to Ras signaling as therapeutic targets in cardiac pathologies.Biol. Res.20215412310.1186/s40659‑021‑00342‑6 34344467
    [Google Scholar]
  4. Ramos-KuriM. RaptiK. MehelH. Dominant negative Ras attenuates pathological ventricular remodeling in pressure overload cardiac hypertrophy.Biochim. Biophys. Acta Mol. Cell Res.201518531111 Pt A2870288410.1016/j.bbamcr.2015.08.006 26260012
    [Google Scholar]
  5. HandaA. TsujiokaY. NishimuraG. RASopathies for radiologists.Radiographics2024445e23015310.1148/rg.230153 38602868
    [Google Scholar]
  6. TartagliaM. GelbB.D. Disorders of dysregulated signal traffic through the RAS‐MAPK pathway: Phenotypic spectrum and molecular mechanisms.Ann. N. Y. Acad. Sci.2010121419912110.1111/j.1749‑6632.2010.05790.x 20958325
    [Google Scholar]
  7. LioncinoM. MondaE. VerrilloF. Hypertrophic cardiomyopathy in RASopathies.Heart Fail. Clin.2022181192910.1016/j.hfc.2021.07.004 34776080
    [Google Scholar]
  8. FuQ. VanGundyT.B. GalbreathM.M. Cardiac origins of the postural orthostatic tachycardia syndrome.J. Am. Coll. Cardiol.201055252858286810.1016/j.jacc.2010.02.043 20579544
    [Google Scholar]
  9. LinglartL. GelbB.D. TartagliaM. Noonan syndrome and related disorders.Am. J. Med. Genet. C. Semin. Med. Genet.20201841415210.1002/ajmg.c.31765 32022400
    [Google Scholar]
  10. AlbakriA. RASopathy-associated cardiomyopathy: Prognosis and outcomes in infants.Int. J. Med. Sci.20197213414210.1234/ijms.v7i2.2019
    [Google Scholar]
  11. CalcagniG. LeoniC. BazzigaluppiE. Cardiac defects, morbidity and mortality in patients affected by RASopathies.Int. J. Cardiol.201825812613210.1016/j.ijcard.2018.01.045 28768581
    [Google Scholar]
  12. HilalN. ChenZ. ChenM.H. ChoudhuryS. RASopathies and cardiac manifestations.Front. Cardiovasc. Med.202310117682810.3389/fcvm.2023.1176828 37529712
    [Google Scholar]
  13. PierpontE.I. BennettA.M. SchoyerL. PierpontM.E. BostwickB. The impact of the RASopathies on families: A multi-qualitative study.Am. J. Med. Genet. A.2014164A61481149010.1002/ajmg.a.36525
    [Google Scholar]
  14. NakagawaN. KikuchiK. YagyuS. Mutations in the RAS pathway as potential precision medicine targets in treatment of rhabdomyosarcoma.Biochem. Biophys. Res. Commun.2019512352453010.1016/j.bbrc.2019.03.038 30904164
    [Google Scholar]
  15. Al-RashdanI. CanatanH. Al-MaghrebiM. YousifM.H.M. KhanS.A. BenterI.F. Cardioprotection from ischemia‐reperfusion injury due to Ras‐GTPase inhibition is attenuated by glibenclamide in the globally ischemic heart.Cell Biochem. Funct.200725445546110.1002/cbf.1353 16850529
    [Google Scholar]
  16. KocsisG.F. PipisJ. FeketeV. Lovastatin interferes with the infarct size-limiting effect of ischemic preconditioning and postconditioning in rat hearts.Am. J. Physiol. Heart Circ. Physiol.20082945H2406H240910.1152/ajpheart.00862.2007 18359895
    [Google Scholar]
  17. WangW.W. ZhangF.L. ChenJ.H. ZhangC. ZhangC. Telmisartan reduces atrial arrhythmia susceptibility through the regulation of RAS-ERK and PI3K-Akt-eNOS pathways in the rat heart.Cardiovasc. Res.20151082318329 26645981
    [Google Scholar]
  18. BisserierM. Berthouze-DuquesnesM. BrecklerM. Carabin protects against cardiac hypertrophy by blocking calcineurin, Ras, and Ca2+/calmodulin-dependent protein kinase II signaling.Circulation2015131439040010.1161/CIRCULATIONAHA.114.010686 25369805
    [Google Scholar]
  19. LorenzK. RosnerM.R. BrandT. SchmittJ.P. Raf kinase inhibitor protein: Lessons of a better way for β-adrenergic receptor activation in the heart.J. Physiol.2017595124073408710.1113/JP274064 28444807
    [Google Scholar]
  20. CastellanoE. SantosE. Functional specificity of ras isoforms: So similar but so different.Genes Cancer20112321623110.1177/1947601911408081 21779495
    [Google Scholar]
  21. Hernández-PorrasI. FabbianoS. SchuhmacherA.J. K-RasV14I recapitulates Noonan syndrome in mice.Proc. Natl. Acad. Sci. USA201411146163951640010.1073/pnas.1418126111 25359213
    [Google Scholar]
  22. ThorburnA. ThorburnJ. ChenS.Y. HRas-dependent pathways can activate morphological and genetic markers of cardiac muscle cell hypertrophy.J. Biol. Chem.199326832244224910.1016/S0021‑9258(18)53988‑0 8420993
    [Google Scholar]
  23. CirsteaI.C. KutscheK. DvorskyR. A restricted spectrum of NRAS mutations causes Noonan syndrome.Nat. Genet.2010421272910.1038/ng.497 19966803
    [Google Scholar]
  24. SalaV. GalloS. LeoC. GattiS. GelbB.D. CrepaldiT. Signaling to cardiac hypertrophy: Insights from human and mouse RASopathies.Mol. Med.201218693894710.2119/molmed.2011.00512 22576369
    [Google Scholar]
  25. Lezoualc’hF. MétrichM. HmitouI. DuquesnesN. MorelE. Small GTP-binding proteins and their regulators in cardiac hypertrophy.J. Mol. Cell. Cardiol.200844462363210.1016/j.yjmcc.2008.01.011 18339399
    [Google Scholar]
  26. LaudetteM. ZuoH. Lezoualc’hF. SchmidtM. Epac function and cAMP scaffolds in the heart and lung.J. Cardiovasc. Dev. Dis.201851910.3390/jcdd5010009 29401660
    [Google Scholar]
  27. ForceT. HajjarR. Del MonteF. RosenzweigA. ChoukrounG. Signaling pathways mediating the response to hypertrophic stress in the heart.Gene Expr.199974-6337348 10440234
    [Google Scholar]
  28. SugdenP.H. Ras, Akt, and mechanotransduction in the cardiac myocyte.Circ. Res.200393121179119210.1161/01.RES.0000106132.04301.F5 14670833
    [Google Scholar]
  29. ZhaoY. QianY. SunZ. Role of PI3K in the progression and regression of atherosclerosis.Front. Pharmacol.20211263237810.3389/fphar.2021.632378 33767629
    [Google Scholar]
  30. RauenK.A. The RASopathies.Annu. Rev. Genomics Hum. Genet.201314135536910.1146/annurev‑genom‑091212‑153523 23875798
    [Google Scholar]
  31. AokiY. NiihoriT. InoueS. MatsubaraY. Recent advances in RASopathies.J. Hum. Genet.2016611333910.1038/jhg.2015.114 26446362
    [Google Scholar]
  32. TartagliaM. GelbB.D. Noonan syndrome and related disorders: Genetics and pathogenesis.Annu. Rev. Genomics Hum. Genet.200561456810.1146/annurev.genom.6.080604.162305 16124853
    [Google Scholar]
  33. GelbB.D. TartagliaM. RAS signaling pathway mutations and hypertrophic cardiomyopathy: Getting into and out of the thick of it.J. Clin. Invest.2011121384484710.1172/JCI46399 21339640
    [Google Scholar]
  34. Nakhaei-RadS. HaghighiF. BazgirF. Molecular and cellular evidence for the impact of a hypertrophic cardiomyopathy-associated RAF1 variant on the structure and function of contractile machinery in bioartificial cardiac tissues.Commun. Biol.20236165710.1038/s42003‑023‑05013‑8 37344639
    [Google Scholar]
  35. KobayashiT. AokiY. NiihoriT. Molecular and clinical analysis of RAF1 in Noonan syndrome and related disorders: Dephosphorylation of serine 259 as the essential mechanism for mutant activation.Hum. Mutat.201031328429410.1002/humu.21187 20052757
    [Google Scholar]
  36. LorenzS. PetersenC. KordaßU. SeidelH. ZenkerM. KutscheK. Two cases with severe lethal course of Costello syndrome associated with HRAS p.G12C and p.G12D.Eur. J. Med. Genet.2012551161561910.1016/j.ejmg.2012.07.007 22926243
    [Google Scholar]
  37. GrippK.W. LinA.E. StableyD.L. HRAS mutation analysis in Costello syndrome: Genotype and phenotype correlation.Am. J. Med. Genet. A.2006140A11710.1002/ajmg.a.31047 16329078
    [Google Scholar]
  38. HaqS. ChoukrounG. LimH. Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure.Circulation2001103567067710.1161/01.CIR.103.5.670 11156878
    [Google Scholar]
  39. GoetteA. StaackT. RöckenC. Increased expression of extracellular signal-regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation.J. Am. Coll. Cardiol.20003561669167710.1016/S0735‑1097(00)00611‑2 10807475
    [Google Scholar]
  40. JhangW.K. ChoiJ.H. LeeB.H. KimG.H. YooH.W. Cardiac manifestations and associations with gene mutations in patients diagnosed with RASopathies.Pediatr. Cardiol.20163781539154710.1007/s00246‑016‑1468‑6 27554254
    [Google Scholar]
  41. GottshallK.R. HunterJ.J. TanakaN. Ras-dependent pathways induce obstructive hypertrophy in echo-selected transgenic mice.Proc. Natl. Acad. Sci. USA19979494710471510.1073/pnas.94.9.4710 9114056
    [Google Scholar]
  42. ChienK.R. HoshijimaM. Unravelling Ras signals in cardiovascular disease.Nat. Cell Biol.20046980780810.1038/ncb0904‑807 15340447
    [Google Scholar]
  43. ChahalG. TyagiS. RamialisonM. Navigating the non-coding genome in heart development and congenital heart disease.Differentiation2019107112310.1016/j.diff.2019.05.001 31102825
    [Google Scholar]
  44. WeismannC.G. GelbB.D. The genetics of congenital heart disease: A review of recent developments.Curr. Opin. Cardiol.200722320020610.1097/HCO.0b013e3280f629c7 17413276
    [Google Scholar]
  45. ChaputD. AndelfingerG. MEK inhibition for RASopathy-associated hypertrophic cardiomyopathy: Clinical application of a basic concept.Can. J. Cardiol.202440578979910.1016/j.cjca.2024.02.020 38432396
    [Google Scholar]
  46. ChappellW.H. SteelmanL.S. LongJ.M. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: Rationale and importance to inhibiting these pathways in human health.Oncotarget20112313516410.18632/oncotarget.240 21411864
    [Google Scholar]
  47. PierpontE.I. BennettA.M. SchoyerL. The 8th international RASopathies symposium: Expanding research and care practice through global collaboration and advocacy.Am. J. Med. Genet. A.20241944e6347710.1002/ajmg.a.63477 37969032
    [Google Scholar]
  48. van KampenS.J. van RooijE. CRISPR craze to transform cardiac biology.Trends Mol. Med.201925979180210.1016/j.molmed.2019.06.008 31326354
    [Google Scholar]
  49. GrossA.M. FroneM. GrippK.W. Advancing RAS/RASopathy therapies: An NCI‐sponsored intramural and extramural collaboration for the study of RASopathies.Am. J. Med. Genet. A.2020182486687610.1002/ajmg.a.61485 31913576
    [Google Scholar]
  50. DasT.K. GattoJ. MirmiraR. Drosophila RASopathy models identify disease subtype differences and biomarkers of drug efficacy.iScience202124410230610.1016/j.isci.2021.102306 33855281
    [Google Scholar]
  51. LamataP. CaseroR. CarapellaV. Images as drivers of progress in cardiac computational modelling.Prog. Biophys. Mol. Biol.20141152-319821210.1016/j.pbiomolbio.2014.08.005 25117497
    [Google Scholar]
  52. HebronK.E. HernandezE.R. YoheM.E. The RASopathies: From pathogenetics to therapeutics.Dis. Model. Mech.2022152dmm04910710.1242/dmm.049107 35178568
    [Google Scholar]
  53. JohnstonJ.J. van der SmagtJ.J. RosenfeldJ.A. Autosomal recessive Noonan syndrome associated with biallelic LZTR1 variants.Genet. Med.201820101175118510.1038/gim.2017.249 29469822
    [Google Scholar]
  54. RomanoA.A. AllansonJ.E. DahlgrenJ. Noonan syndrome: Clinical features, diagnosis, and management guidelines.Pediatrics2010126474675910.1542/peds.2009‑3207 20876176
    [Google Scholar]
  55. SarkozyA. DigilioM.C. DallapiccolaB. Leopard syndrome.Orphanet J. Rare Dis.2008311310.1186/1750‑1172‑3‑13 18505544
    [Google Scholar]
  56. RauenK.A. HRAS and the Costello syndrome.Clin. Genet.200771210110810.1111/j.1399‑0004.2007.00743.x 17250658
    [Google Scholar]
  57. GoodwinA.F. OberoiS. LandanM. Craniofacial and dental development in Costello syndrome.Am. J. Med. Genet. A.201416461425143010.1002/ajmg.a.36475 24668879
    [Google Scholar]
  58. SiegelD.H. MannJ.A. KrolA.L. RauenK.A. Dermatological phenotype in Costello syndrome: Consequences of Ras dysregulation in development.Br. J. Dermatol.2012166360160710.1111/j.1365‑2133.2011.10744.x 22098123
    [Google Scholar]
  59. LeoniC. RomeoD.M. PelliccioniM. Musculo-skeletal phenotype of Costello syndrome and cardio-facio-cutaneous syndrome: Insights on the functional assessment status.Orphanet J. Rare Dis.20211614310.1186/s13023‑021‑01674‑y 33482860
    [Google Scholar]
  60. LinA.E. AlexanderM.E. ColanS.D. Clinical, pathological, and molecular analyses of cardiovascular abnormalities in Costello syndrome: A Ras/MAPK pathway syndrome.Am. J. Med. Genet. A.2011155348650710.1002/ajmg.a.33857 21344638
    [Google Scholar]
  61. NiihoriT. AokiY. NarumiY. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome.Nat. Genet.200638329429610.1038/ng1749 16474404
    [Google Scholar]
  62. Rodriguez-VicianaP. TetsuO. TidymanW.E. Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome.Science200631157651287129010.1126/science.1124642 16439621
    [Google Scholar]
  63. PierpontM.E.M. MagoulasP.L. AdiS. Cardio-facio-cutaneous syndrome: Clinical features, diagnosis, and management guidelines.Pediatrics20141344e1149e116210.1542/peds.2013‑3189 25180280
    [Google Scholar]
  64. BremsH. ChmaraM. SahbatouM. Germline loss-of-function mutations in SPRED1 cause a neurofibromatosis 1–like phenotype.Nat. Genet.20073991120112610.1038/ng2113 17704776
    [Google Scholar]
  65. MessiaenL. YaoS. BremsH. Clinical and mutational spectrum of neurofibromatosis type 1-like syndrome.JAMA2009302192111211810.1001/jama.2009.1663 19920235
    [Google Scholar]
  66. BremsH. PasmantE. Van MinkelenR. Review and update of SPRED1 mutations causing legius syndrome.Hum. Mutat.201233111538154610.1002/humu.22152 22753041
    [Google Scholar]
  67. StoweI.B. MercadoE.L. StoweT.R. A shared molecular mechanism underlies the human rasopathies Legius syndrome and Neurofibromatosis-1.Genes Dev.201226131421142610.1101/gad.190876.112 22751498
    [Google Scholar]
  68. LuX. WangL. ChenS. Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease.Nat. Genet.201244889089410.1038/ng.2337 22751097
    [Google Scholar]
  69. WeberS.M. CarrollS.L. The Role of R-Ras proteins in normal and pathologic migration and morphologic change.Am. J. Pathol.202119191499151010.1016/j.ajpath.2021.05.008 34111428
    [Google Scholar]
  70. WolfC.M. Hypertrophic cardiomyopathy: Genetics and clinical perspectives.Cardiovasc. Diagn. Ther.20199Suppl. 2S388S41510.21037/cdt.2019.02.01 31737545
    [Google Scholar]
  71. LinglartL. GelbB.D. Congenital heart defects in Noonan syndrome: Diagnosis, management, and treatment.Am. J. Med. Genet. C. Semin. Med. Genet.20201841738010.1002/ajmg.c.31765 32022400
    [Google Scholar]
  72. BoletiO.D. RoussosS. NorrishG. Sudden cardiac death in childhood RASopathy-associated hypertrophic cardiomyopathy: Validation of the HCM risk-kids model and predictors of events.Int. J. Cardiol.2023393131405510.1016/j.ijcard.2023.131405 37777071
    [Google Scholar]
  73. LynchA. TatangeloM. AhujaS. Risk of sudden death in patients with RASopathy hypertrophic cardiomyopathy.J. Am. Coll. Cardiol.202381111035104510.1016/j.jacc.2023.01.012 36922089
    [Google Scholar]
  74. GelbB.D. YoheM.E. WolfC. AndelfingerG. New prospectives on treatment opportunities in RASopathies.Am. J. Med. Genet. C. Semin. Med. Genet.2022190454156010.1002/ajmg.c.32024 36533679
    [Google Scholar]
  75. WangW. ZhangF. ChenJ. Telmisartan reduces atrial arrhythmia susceptibility through the regulation of RAS–ERK and PI3K–Akt–eNOS pathways in spontaneously hypertensive rats.Can. J. Physiol. Pharmacol.201593865766510.1139/cjpp‑2014‑0416 26158699
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X341624250324164700
Loading
/content/journals/ccr/10.2174/011573403X341624250324164700
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test