Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

The health and survival of people with heart failure is a growing concern due to the associated illness and death. Traditional treatments such as medication, surgery, and lifestyle changes have not significantly improved life expectancy, leading to a search for more effective drug options. A drug that can act on oxidative stress and cardiac inflammatory markers while carrying the benefits of existing therapies is needed. Targeting the soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) dependent pathway significantly reduces cardiac myocyte death and improves ejection fraction. In 2021, the USFDA approved Vericiguat, a derivative of pyrazolo[3,4-b]pyridine, to decrease the risk of cardiovascular death and hospitalization. This review provides information on the structure, pharmacokinetics, pharmacodynamics, clinical status, and treatment of Vericiguat in heart failure. Riociguat was the first sGC stimulator used in pulmonary hypertension therapy, but its short half-life required multiple dosing, making it unsuitable for cardiovascular diseases. Vericiguat was developed to address this limitation by decreasing metabolism, and both preclinical and clinical investigations have indicated its minimal pharmacokinetic interactions. This makes it appropriate for long-term use in cardiac patients with multiple comorbidities who require several medications. Vericiguat represents a promising new option for heart failure treatment, potentially improving patient outcomes and quality of life. Its compatibility with other heart failure therapies without significant drug-drug interactions further highlights its potential as a cornerstone treatment. Ongoing studies continue to explore its benefits, suggesting that vericiguat may enable more comprehensive and effective management of heart failure, reducing the burden of this debilitating condition.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X339474250320034144
2025-04-07
2025-10-12
Loading full text...

Full text loading...

References

  1. CookC. ColeG. AsariaP. JabbourR. FrancisD.P. The annual global economic burden of heart failure.Int. J. Cardiol.2014171336837610.1016/j.ijcard.2013.12.028 24398230
    [Google Scholar]
  2. StaschJ.P. EvgenovO.V. Soluble guanylate cyclase stimulators in pulmonary hypertension.Handb. Exp. Pharmacol.20132181227931310.1007/978‑3‑642‑38664‑0_12 24092345
    [Google Scholar]
  3. PuggiaI. RowlandT.J. MiyamotoS.D. SinagraG. MestroniL. Molecular and Cellular Mechanisms in Heart Failure.Heart Failure in the Child and Young Adult. JefferiesJ.L. ChangA.C. RossanoJ.W. ShaddyR.E. TowbinJ.A. BostonAcademic Press201831910.1016/B978‑0‑12‑802393‑8.00001‑6
    [Google Scholar]
  4. MurphyS.P. IbrahimN.E. JanuzziJ.L. Heart failure with rEF: A review.JAMA2020324548850410.1001/jama.2020.10262 32749493
    [Google Scholar]
  5. ChengR.K. CoxM. NeelyM.L. HeidenreichP.A. BhattD.L. EapenZ.J. Outcomes in patients with heart failure with preserved, borderline, and ref in the medicare population.Am. Heart J.2014168572173010.1016/j.ahj.2014.07.008 25440801
    [Google Scholar]
  6. PonikowskiP. AnkerS.D. AlHabibK.F. Heart failure:] Preventing disease and death worldwide.ESC Heart Fail.20141142510.1002/ehf2.12005 28834669
    [Google Scholar]
  7. Chronic heart failure: National clinical guideline for diagnosis and management in primary and secondary care.National Institute for Health and Clinical Excellence: Guidance.LondonRoyal College of Physicians (UK)201016 22741186
    [Google Scholar]
  8. JonesN.R. RoalfeA.K. AdokiI. HobbsF.D.R. TaylorC.J. Survival of patients with CHF in the community: A systematic review and meta-analysis.Eur. J. Heart Fail.201921111306132510.1002/ejhf.1594 31523902
    [Google Scholar]
  9. Crespo-LeiroM.G. AnkerS.D. MaggioniA.P. European society of cardiology heart failure long‐term registry (ESC‐HF‐LT): 1‐year follow‐up outcomes and differences across regions.Eur. J. Heart Fail.201618661362510.1002/ejhf.566 27324686
    [Google Scholar]
  10. AmbrosyA.P. FonarowG.C. ButlerJ. The Global Health and Economic Burden of Hospitalizations for heart failure: Lessons learned from hospitalized heart failure registries.J. Am. Coll. Cardiol.201463121123113310.1016/j.jacc.2013.11.053 24491689
    [Google Scholar]
  11. GoudaP. EzekowitzJ.A. Update on the diagnosis and management of acute heart failure.Curr. Opin. Cardiol.201934220220610.1097/HCO.0000000000000594 30547895
    [Google Scholar]
  12. PonikowskiP. VoorsA.A. AnkerS.D. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure.Eur. J. Heart Fail.201618889197510.1002/ejhf.592 27207191
    [Google Scholar]
  13. WeberM. HammC. Role of B-type natriuretic peptide (BNP) and NT-proBNP in clinical routine.Heart200592684384910.1136/hrt.2005.071233 16698841
    [Google Scholar]
  14. YancyC.W. JessupM. BozkurtB. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Failure Society of America.Circulation20171366e137e16110.1161/CIR.0000000000000509 28455343
    [Google Scholar]
  15. McKieP.M. BurnettJ.C.Jr NT-proBNP.J. Am. Coll. Cardiol.201668222437243910.1016/j.jacc.2016.10.001 27908348
    [Google Scholar]
  16. BoerrigterG. LappH. BurnettJ.C. Modulation of cGMP in heart failure: a new therapeutic paradigm.Handb. Exp. Pharmacol.200919119148550610.1007/978‑3‑540‑68964‑5_21 19089342
    [Google Scholar]
  17. BrutsaertD.L. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity.Physiol. Rev.20038315911510.1152/physrev.00017.2002 12506127
    [Google Scholar]
  18. SandnerP. From molecules to patients: Exploring the therapeutic role of soluble guanylate cyclase stimulators.Biol. Chem.2018399767969010.1515/hsz‑2018‑0155 29604206
    [Google Scholar]
  19. GheorghiadeM. MartiC.N. SabbahH.N. Soluble guanylate cyclase: a potential therapeutic target for heart failure.Heart Fail. Rev.201318212313410.1007/s10741‑012‑9323‑1 22622468
    [Google Scholar]
  20. SandnerP. ZimmerD.P. MilneG.T. FollmannM. HobbsA. StaschJ.P. Soluble guanylate cyclase stimulators and activators.Handb. Exp. Pharmacol.201826435539410.1007/164_2018_197 30689085
    [Google Scholar]
  21. ArmstrongP.W. RoessigL. PatelM.J. A multicenter, randomized, double-blind, placebo-controlled trial of the efficacy and safety of the oral soluble guanylate cyclase stimulator: The victoria trial.JACC Heart Fail.2018629610410.1016/j.jchf.2017.08.013 29032136
    [Google Scholar]
  22. ArmstrongP.W. PieskeB. AnstromK.J. EzekowitzJ. HernandezA.F. ButlerJ. Vericiguat in patients with heart failure and rEF.N. Engl. J. Med.2020382201883189310.1056/NEJMoa1915928 32222134
    [Google Scholar]
  23. VerquvoTM prescribing information: US Food and Drug Administration. 2021. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/214377s000lbl.pdf (Accessed on: Feb 8, 2021)
  24. BoettcherM. ThomasD. MueckW. Safety, pharmacodynamic, and pharmacokinetic characterization of vericiguat: Results from six phase I studies in healthy subjects.Eur. J. Clin. Pharmacol.202177452753710.1007/s00228‑020‑03023‑7 33125516
    [Google Scholar]
  25. PatelA. PatelA. PatelD. PatelK. BambharoliyaT. Mini review on Cariprazine: A promising antipsychotic agent.CNS Neurol. Disord. Drug Targets202221411110.2174/1871527321666220324121935 35331126
    [Google Scholar]
  26. BhattD.K. MehrotraA. GaedigkA. Age- and genotype-dependent variability in the protein abundance and activity of six major uridine diphosphate glucuronosyltransferases in human liver.Clin. Pharmacol. Ther.2019105113114110.1002/cpt.1109 29737521
    [Google Scholar]
  27. MargaillanG. RouleauM. FallonJ.K. Quantitative profiling of human renal UDP-glucuronosyltransferases and glucuronidation activity: a comparison of normal and tumoral kidney tissues.Drug Metab. Dispos.201543461161910.1124/dmd.114.062877 25650382
    [Google Scholar]
  28. PatelA. ShahD. PatelN. Benzimidazole as ubiquitous structural fragment: An update on development of its green synthetic approaches.Mini Rev. Org. Chem.20211881064108510.2174/1570193X17999201211194908
    [Google Scholar]
  29. PeterF.S.P. ChristianF. NatalyaP.K. OlexandrI.G. YuriyG.S. Process for manufacturing 4-(2,2,3,3-tetrafluoropropyl) morpholine.Patent WO20201520102021
  30. PeterF. Method for producing substituted 5-fluoro-1hpyrazolopyridines.Patent WO20130761682013
  31. FeyPG Method for producing substituted 5-fluoro-1h-pyrazolopyridines.Patent AU2019202123A12020
  32. ZhouS. JungeK. AddisD. DasS. BellerM. A general and convenient catalytic synthesis of nitriles from amides and silanes.Org. Lett.200911112461246410.1021/ol900716q 19422207
    [Google Scholar]
  33. FollmannM. GriebenowN. HahnM.G. The chemistry and biology of soluble guanylate cyclase stimulators and activators.Angew. Chem. Int. Ed.201352369442946210.1002/anie.201302588 23963798
    [Google Scholar]
  34. FollmannM. AckerstaffJ. RedlichG. Discovery of the soluble guanylate cyclase stimulator vericiguat (BAY 1021189) for the treatment of chronic heart failure.J. Med. Chem.201760125146516110.1021/acs.jmedchem.7b00449 28557445
    [Google Scholar]
  35. BoettcherM. GerischM. LobmeyerM. Metabolism and pharmacokinetic drug–drug interaction profile of vericiguat, a soluble guanylate cyclase stimulator: results from preclinical and phase I healthy volunteer studies.Clin. Pharmacokinet.202059111407141810.1007/s40262‑020‑00895‑x 32458378
    [Google Scholar]
  36. MileyM.J. ZielinskaA.K. KeenanJ.E. BrattonS.M. Radominska-PandyaA. RedinboM.R. Crystal structure of the cofactor-binding domain of the human phase II drug-metabolism enzyme UDP-glucuronosyltransferase 2B7.J. Mol. Biol.2007369249851110.1016/j.jmb.2007.03.066 17442341
    [Google Scholar]
  37. SlobodchikovaI. SivakumarR. RahmanM.S. VuckovicD. Characterization of phase I and glucuronide phase II metabolites of 17 mycotoxins using liquid chromatography—high-resolution mass spectrometry.Toxins (Basel)201911843310.3390/toxins11080433 31344861
    [Google Scholar]
  38. ZhangZ. MaG. XueC. Establishment of rat liver microsome-hydrogel system for in vitro phase II metabolism and its application to study pharmacological effects of UGT substrates.Drug Metab. Pharmacokinet.201934214114710.1016/j.dmpk.2019.01.005 30744936
    [Google Scholar]
  39. BöhmH.J. BannerD. BendelsS. Fluorine in medicinal chemistry.ChemBioChem20045563764310.1002/cbic.200301023 15122635
    [Google Scholar]
  40. ShahP. WestwellA.D. The role of fluorine in medicinal chemistry.J. Enzyme Inhib. Med. Chem.200722552754010.1080/14756360701425014 18035820
    [Google Scholar]
  41. XiaoS. LiQ. HuL. Soluble guanylate cyclase stimulators and activators: Where are we and where to go?Mini Rev. Med. Chem.201919181544155710.2174/1389557519666190730110600 31362687
    [Google Scholar]
  42. SandnerP. VakalopoulosA. HahnM.G. StaschJ.P. FollmannM. Soluble guanylate cyclase stimulators and their potential use: A patent review.Expert Opin. Ther. Pat.202131320322210.1080/13543776.2021.1866538 33395323
    [Google Scholar]
  43. BreitensteinS. RoessigL. SandnerP. LewisK.S. Novel sGC stimulators and sGC activators for the treatment of heart failure.Handb. Exp. Pharmacol.2016243622524710.1007/164_2016_100 27900610
    [Google Scholar]
  44. StaschJ.P. BeckerE.M. Alonso-AlijaC. NO-independent regulatory site on soluble guanylate cyclase.Nature2001410682521221510.1038/35065611 11242081
    [Google Scholar]
  45. BurnettJ.C.Jr Vericiguat — another victory for targeting cyclic GMP in heart failure.N. Engl. J. Med.2020382201952195310.1056/NEJMe2006855 32402167
    [Google Scholar]
  46. FriebeA. SandnerP. SchmidtkoA. cGMP: A unique 2nd messenger molecule – recent developments in cGMP research and development.Naun Schmied Arch Pharmacol2020393228730210.1007/s00210‑019‑01779‑z 31853617
    [Google Scholar]
  47. NiocheP. BerkaV. VipondJ. MintonN. TsaiA.L. RamanC.S. Femtomolar sensitivity of a NO sensor from Clostridium botulinum.Science200430657011550155310.1126/science.1103596 15472039
    [Google Scholar]
  48. MöglichA. AyersR.A. MoffatK. Structure and signaling mechanism of Per-ARNT-Sim domains.Structure200917101282129410.1016/j.str.2009.08.011 19836329
    [Google Scholar]
  49. LiuY. RuohoA.E. RaoV.D. HurleyJ.H. Catalytic mechanism of the adenylyl and guanylyl cyclases: Modeling and mutational analysis.Proc. Natl. Acad. Sci. USA19979425134141341910.1073/pnas.94.25.13414 9391039
    [Google Scholar]
  50. PurohitR. WeichselA. MontfortW.R. Crystal structure of the Alpha subunit PAS domain from soluble guanylyl cyclase.Protein Sci.201322101439144410.1002/pro.2331 23934793
    [Google Scholar]
  51. HorstB.G. YokomA.L. RosenbergD.J. Allosteric activation of the nitric oxide receptor soluble guanylate cyclase mapped by cryo-electron microscopy.eLife20198e5063410.7554/eLife.50634 31566566
    [Google Scholar]
  52. IrvineJ.C. GanthaveeV. LoveJ.E. The soluble guanylyl cyclase activator bay 58-2667 selectively limits cardiomyocyte hypertrophy.PLoS One2012711e4448110.1371/journal.pone.0044481 23144773
    [Google Scholar]
  53. MasuyamaH. TsurudaT. KatoJ. Soluble guanylate cyclase stimulation on cardiovascular remodeling in angiotensin II-induced hypertensive rats.Hypertension200648597297810.1161/01.HYP.0000241087.12492.47 16982964
    [Google Scholar]
  54. MasuyamaH. TsurudaT. SekitaY. Pressure-independent effects of pharmacological stimulation of soluble guanylate cyclase on fibrosis in pressure-overloaded rat heart.Hypertens. Res.200932759760310.1038/hr.2009.64 19424280
    [Google Scholar]
  55. BiceJ.S. KeimY. StaschJ.P. BaxterG.F. NO-independent stimulation or activation of soluble guanylyl cyclase during early reperfusion limits infarct size.Cardiovasc. Res.2014101222022810.1093/cvr/cvt257 24259501
    [Google Scholar]
  56. SharkovskaY. KalkP. LawrenzB. Nitric oxide-independent stimulation of soluble guanylate cyclase reduces organ damage in experimental low-renin and high-renin models.J. Hypertens.20102881666167510.1097/HJH.0b013e32833b558c 20613628
    [Google Scholar]
  57. StaschJ.P. SchlossmannJ. HocherB. Renal effects of soluble guanylate cyclase stimulators and activators: A review of the preclinical evidence.Curr. Opin. Pharmacol.2015219510410.1016/j.coph.2014.12.014 25645316
    [Google Scholar]
  58. MarkhamA. DugganS. Dostarlimab: First approval.Drugs202181101213121910.1007/s40265‑021‑01539‑5 34106455
    [Google Scholar]
  59. SalehS. FreyR. BeckerC. UngerS. WensingG. MückW. Bioavailability, pharmacokinetics, and safety of riociguat given as an oral suspension or crushed tablet with and without food.Pulm. Circ.20166S1Suppl. 1S66S7410.1086/685020 27162630
    [Google Scholar]
  60. A study of vericiguat in participants with heart failure with reduced ejection fraction (HFrEF) (MK-1242-001).Patent NCT028615342021
  61. CoatsA.J.S. Vericiguat for heart failure and the victoria trial – the dog that didn’t bark?Eur. J. Heart Fail.202022457657710.1002/ejhf.1778 32115834
    [Google Scholar]
  62. HuynhK. Novel sGC stimulator improves outcomes in patients with HFrEF.Nat. Rev. Cardiol.202017632032110.1038/s41569‑020‑0382‑z 32286511
    [Google Scholar]
  63. GheorghiadeM. GreeneS.J. ButlerJ. Effect of vericiguat, a soluble guanylate cyclase stimulator, on natriuretic peptide levels in patients with worsening chronic heart failure and reduced ejection fraction.JAMA2015314212251226210.1001/jama.2015.15734 26547357
    [Google Scholar]
  64. RuehsH. KleinD. FreiM. Population pharmacokinetics and pharmacodynamics of vericiguat in patients with heart failure and reduced ejection fraction.Clin. Pharmacokinet.202160111407142110.1007/s40262‑021‑01024‑y 34086190
    [Google Scholar]
  65. PieskeB. MaggioniA.P. LamC.S.P. Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction: results of the soluble guanylate cyclase stimulator in heart failure patients with preserved of (socrates-preserved) study.Eur. Heart J.201738151119112710.1093/eurheartj/ehw593 28369340
    [Google Scholar]
  66. HeK LiuC LiX LiC ZhangZ GaoX. A kind of compound is treating or preventing the purposes in altitude sickness.. Patent CN108721296B2019
    [Google Scholar]
  67. CsonkaD FaresW HoogkamerH TorfsK Pharmaceutical composition for the treatment of chronic thromboembolic pulmonary hypertension. Patent TW202042818A,2020
    [Google Scholar]
  68. RennieGR PerlN MermerianA Jung J, Jia L, Iyengar RR. sGC stimulators. Patent US10844064B22020
    [Google Scholar]
  69. PeterK. PeterS. Combination containing SGC stimulators and mineralocorticoid receptor antagonists.Patent US10918639,2021
    [Google Scholar]
  70. PeterS. PrickaertsJ. The use of sgc activators and sgc stimulators for the treatment of cognitive impairment.Patent US202100525 28A1,2021
    [Google Scholar]
  71. HadcockJ R Use of sgc stimulators for the treatment of mitochondrial disorders.Patent US20210177846A1,2021
    [Google Scholar]
  72. CsonkaD FaresW HoogkamerH TorfsK Pharmaceutical composition for the treatment of pulmonary arterial hypertension.Patent US20210196715A1,2021
    [Google Scholar]
  73. KochG LoneE Di MaioS Novel dual mode of action soluble guanylate cyclase activators and phosphodiesterase inhibitors and uses thereof.Patent US20220031704A1,2022
    [Google Scholar]
  74. ImGJ CurrieMG SheppeckJE RenhowePA GeP MasferrerJ L. Use of stimulators of soluble guanylate cyclase for the treatment of nonalcoholic steatohepatitis (nash). Patent EP3411026B1,2022
    [Google Scholar]
  75. SandnerP. HemmrichM. PenaJ.D.O. DaweS. Method of identifying a subgroup of patients suffering from dcSSc which benefits from a treatment with sGC stimulators and sGC activators in a higher degree than a control group.Patent US11508483,2022
    [Google Scholar]
  76. CsonkaD FaresW HoogkamerH TorfsK Pharmaceutical composition for the treatment of pulmonary vascular disease and/or cardiac dysfunction in fontan-palliated patients. Patent US20230000865A1,2023
    [Google Scholar]
  77. SchmidtHHHW ElbatrikMHM DaoT-V Casas GuijarroAI SaridakiT PetrainaA Use of a soluble guanylate cyclase (sgc) stimulator or of a combination of a sgc stimulator and an sgc activator for conditions wherein the heme group of sgc is oxidized or wherein sgc is deficient in heme. Patent US20230087609A1,2023
    [Google Scholar]
  78. KatsavLB-S GoldshteinJ AdaniL Solid state forms of vericiguat and process for preparation thereof. Patent WO2023034364A1,2023
    [Google Scholar]
  79. ArmstrongP.W. LamC.S.P. AnstromK.J. Effect of vericiguat vs placebo on quality of life in patients with heart failure and preserved ejection fraction.JAMA2020324151512152110.1001/jama.2020.15922 33079152
    [Google Scholar]
  80. ButlerJ. LamC.S.P. AnstromK.J. Rationale and design of the vitality-HFpEF trial.Circ. Heart Fail.2019125e00599810.1161/CIRCHEARTFAILURE.119.005998 31096775
    [Google Scholar]
  81. VohraM. AmirM. OsoroI. SharmaA. KumarR. Impact of vericiguat on heart failure with reduced ejection fraction: A review.Glob. Health J.20237312312910.1016/j.glohj.2023.07.004
    [Google Scholar]
  82. ChenT. KongB. ShuaiW. GongY. ZhangJ. HuangH. Vericiguat alleviates ventricular remodeling and arrhythmias in mouse models of myocardial infarction via CaMKII signaling.Life Sci.202333412218410.1016/j.lfs.2023.122184 37866806
    [Google Scholar]
  83. OwanT.E. HodgeD.O. HergesR.M. JacobsenS.J. RogerV.L. RedfieldM.M. Trends in prevalence and outcome of heart failure with preserved ejection fraction.N. Engl. J. Med.2006355325125910.1056/NEJMoa052256 16855265
    [Google Scholar]
  84. PatelA.D. PashaT.Y. LunagariyaP. ShahU. BhambharoliyaT. TripathiR.K.P. A library of thiazolidin‐4‐one derivatives as protein tyrosine phosphatase 1B (PTP1B) inhibitors: An attempt to discover novel antidiabetic agents.ChemMedChem202015131229124210.1002/cmdc.202000055 32390300
    [Google Scholar]
  85. PanchalI.I. SenD.J. PatelA.D. Molecular docking, synthesis and biological evaluation of sulphonylureas/guanidine derivatives as promising antidiabetic agent.Curr. Drug Discov. Technol.201815431532510.2174/1570163814666171002102904 28969569
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X339474250320034144
Loading
/content/journals/ccr/10.2174/011573403X339474250320034144
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test